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Regional Registration for Expression
Resistant 3-D Face Recognition
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Abstract—Biometric identification from three-dimensional
(3-D) facial surface characteristics has become popular, especially
in high security applications. In this paper, we propose a fully
automatic expression insensitive 3-D face recognition system. Sur-
face deformations due to facial expressions are a major problem
in 3-D face recognition. The proposed approach deals with such
challenging conditions in several aspects. First, we employ a fast
and accurate region-based registration scheme that uses common
region models. These common models make it possible to establish
correspondence to all the gallery samples in a single registration
pass. Second, we utilize curvature-based 3-D shape descriptors.
Last, we apply statistical feature extraction methods. Since all the
3-D facial features are regionally registered to the same generic
facial component, subspace construction techniques may be em-
ployed. We show that linear discriminant analysis significantly
boosts the identification accuracy. We demonstrate the recognition
ability of our system using the multiexpression Bosphorus and the
most commonly used 3-D face database, Face Recognition Grand
Challenge (FRGCv2). Our experimental results show that in both
databases we obtain comparable performance to the best rank-1
correct classification rates reported in the literature so far: 98.19%
for the Bosphorus and 97.51% for the FRGCv2 database. We have
also carried out the standard receiver operating characteristics
(ROC III) experiment for the FRGCv2 database. At an FAR of
0.1%, the verification performance was 86.09%. This shows that
model-based registration is beneficial in identification scenarios
where speed-up is important, whereas for verification one-to-one
registration can be more beneficial.

Index Terms—Biometrics, curvature descriptors (CDs),
three-dimensional (3-D) face recognition, three-dimensional
(3-D) registration.

I. INTRODUCTION

IOMETRIC systems try to identify human beings from
B their distinctive physiological and behavioral charac-
teristics. Among popular biometric modalities such as iris,
fingerprint, voice, hand geometry, and gait, human faces have
several advantages which make them attractive for particular
applications. Most importantly, the ease of acquiring facial
images without the need of subject cooperation allows the use
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of face recognition systems in a diverse range of applications
such as surveillance systems. However, although recent studies
show that the performance of face recognition systems can
reach the level of high security biometric modalities such as
fingerprint and iris [1], it is still a very challenging task to
recognize people from their faces under adverse scenarios.
Particularly, the presence of illumination differences, in-depth
pose variations, and facial expressions are important factors
that affect the accuracy of a face recognition system.

With the use of three-dimensional (3-D) facial structure infor-
mation, it is possible to cope with some of these challenges more
efficiently compared to two-dimensional (2-D). In this work, we
are interested in face recognition that exploits 3-D facial data,
because examination of the 3-D surface geometry can lead to
more accurate registration and recognition. By using 3-D in-
formation, the effect of illumination differences can be avoided
and small pose changes can be rectified. However, regardless of
whether 2-D or 3-D information is used, facial expression varia-
tions still complicate the task of identification by creating higher
intraclass variance than interclass variance.

In this work, we aim to tackle these problems with the use of
1) an efficient facial surface registration approach and 2) by in-
corporating discriminative 3-D features. The first phase of any
3-D face recognition system, namely alignment/registration of
facial surfaces, is the most crucial part and the final accuracy
of the system heavily depends on the quality of the alignment
module. In this paper, we propose a simple, fast, and effective
region-based rigid registration approach. The novelty of the ap-
proach is that it requires a single registration for a given test
face. The probe is registered in a two-pass algorithm: First, rigid
registration to an average model, followed by registration to in-
dividual AvRMs. The algorithm is preceded by a novel auto-
matic landmark localization module, which provides the initial-
ization. The registration of facial parts to a generic model signif-
icantly speeds up the identification time because it is sufficient
to perform only a single alignment to a generic model per fa-
cial region. Since all the gallery/training samples are previously
registered offline to the same generic model, single alignment
provides the dense correspondence information to every gallery
image by default. Lastly, and most importantly, since dense cor-
respondence is established and 3-D features are represented as
an ordered feature vector, it is possible to utilize advanced pat-
tern recognition tools either at the level of feature extraction or
at the level of pattern classification. Traditional approaches like
pairwise matching of two 3-D point sets are limited in that sense,
since the 3-D point sets are unordered and the similarity can only
be computed by means of geometrical measures.

At the second phase, after regional registration is performed,
we study the benefits of using several 3-D features according
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TABLE I
RANK-1 CORRECT CLASSIFICATION RATES REPORTED ON THE FRGCv2 FACE DATABASE. N/A ENTRIES REPRESENT CASES WHERE THE CORRESPONDING VALUES
ARE EITHER NOT AVAILABLE OR NOT SPECIFIED EXPLICITLY, N AND NON-N ABBREVIATIONS STAND FOR NEUTRAL AND NON-NEUTRAL SETS, RESPECTIVELY.
THE SCANS ARE LABELED WITH fs, ns, OR fns, DENOTING FIRST SCANS, NEUTRAL SCANS, AND FIRST NEUTRAL SCANS, RESPECTIVELY. VERIFICATION
RESULTS FOR THE FRGCv2 EXPERIMENTAL SETUPS, NAMELY ROC I, ROC II, AND ROC III, ARE ALSO REPORTED FOR COMPARATIVE PURPOSES

Identification Results Verification Results
Author, Year Gallery Size  Probe Size N vs. Al Nvs. N Nvs.Non-N [ ROCI ROCII ROC II
Queirolo et al., 2010 [8] 466 (fs) 3541 98.4% N/A N/A N/A N/A 96.6
Mahoor et al., 2009 [9] 370 (ns) 370 (ns) N/A 93.7% N/A N/A N/A N/A
Faltemier et al., 2008 [10] 410 (fns) N/A 98.1% N/A N/A N/A N/A 94.8
Faltemier et al., 2008 [10] 466 (fs) 3541 97.2% N/A N/A N/A N/A 94.8
Mian et al., 2008 [11] 466 (fs) 3541 93.5% 99.0% 86.7% N/A N/A N/A
Mian et al., 2007 [12] 466 (fs) 3541 N/A 98.82%  92.36% N/A N/A N/A
Osaimi et al., 2007 [13] 466 (fs) 1944 (ns) N/A 93.78% N/A N/A N/A N/A
Kakadiaris er al., 2007 [14] | 466 (fs) 3541 97.3% 99.0% 95.6% 97.3 97.2 97.0
Passalis et al., 2007 [15] 466 (fs) 3541 96.5% N/A N/A 95.8 95.3 94.7
Faltemier et al., 2006 [16] 410 (fns) 3951 ! 94.9% N/A N/A N/A N/A 88.8
Cook et al., 2006 [17] 410 (fns) N/A 94.63% 98.25%  N/A 93.7 92.9 92.0
Passalis et al., 2005 [18] 466 (fs) 3541 89.5% N/A N/A 89.0 88.0 87.0

'In [16], the probe set size was reported as 3951. This should be a typo since 410 and 3951 do not add up to 4007, the total number

scans in FRGCv2.

to their discriminative power. The most common approach is
to use 3-D point coordinates to represent facial surfaces. In our
study, we show that, although it is marginally better to utilize
more advanced 3-D shape descriptors such as principle curva-
ture directions, the use of statistical feature extraction and the
application of linear discriminant analysis (LDA) to 3-D point
cloud (PC) features outweighs this advantage.

In this work, we have used two 3-D face databases containing
expressions: Face Recognition Grand Challenge Version.2
(FRGCv2) and Bosphorus. FRGCv2 is the most commonly
used database for 3-D face recognition and we have obtained
comparable performance to the best accuracy reported in the
literature: 97.51%. This study is also a first in benchmarking the
recently acquired and publicly available Bosphorus database,
which contains an extensive range of expressions. A recognition
rate of 98.19% was obtained on this database.

II. RELATED WORK

Over the past few years, there has been a growing interest
in 3-D face recognition systems. A thorough coverage of pre-
viously proposed 3-D face recognition systems can be found in
surveys [2]-[4] and a more detailed treatment of some funda-
mental concepts can be read from some book chapters[5]-[7].
Comparative performance analysis of 3-D systems with other
biometric modalities such as high-resolution 2-D still face im-
ages and iris can be found from the results of the large-scale
independent evaluation effort of Face Recognition Vendor Test
(FRVT) 2006 [1]. According to the FRVT 2006 results, identi-
fication performance of the 3-D modality has been found to be
comparable to high-resolution 2-D still face images. FRVT 2006
performance benchmarks show that the best 3-D shape only

system from the University of Houston attains a median false
reject rate (FRR) of 5.2% at a false accept rate (FAR) of 0.1%
on a sequestered face database of 3589 scans from 330 subjects.
Another important observation is that when 3-D information is
coupled with 2-D intensity information, the performance im-
provement is significant: the best 3-D+2-D system, from Vi-
isage, achieves a median FRR of 1.0% at an FAR of 0.1%. In
this section, we focus only on the most recent approaches that
try to overcome the expression variance problem with a spe-
cial emphasis on the regional approaches. Table I gives a list of
these approaches together with rank-1 identification accuracies
and verification rates, where present, that are obtained on the
FRGCv2 database.

Expression insensitive 3-D face recognition systems naturally
focus on rigid parts of faces. The use of the nasal region is a
prominent example of such approaches. In [19], three overlap-
ping nose regions are extracted and matching scores from these
different classifiers are combined at the score level. For auto-
matic landmark localization, some fiducial points (namely the
nose tip, eye pits, and nose bridge) are located using curvatures.
These landmark points are utilized to segment the face into cir-
cular regions. For classifier fusion, product and sum rules yield
the best performance: On the FRGCv2 SuperSet database with
a gallery of 449 subjects with one neutral scan per person, the
reported results are 97.1% and 87.1%, respectively, for neutral
probe and non-neutral probe sets. The results of this study are
not included in Table I, since the database is different. In a sim-
ilar study, Faltemier et al. [16] used seven overlapping regions
around the nose. The nose tip is located automatically by com-
bining three different algorithms. For regional alignment, they
have utilized the iterative closest point (ICP) algorithm. For each
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region, classification votes are obtained using registration dis-
tances and threshold values. The regional classifiers are fused
via committee voting. For the experiments, they have used the
FRGCv2 database, and constructed the gallery with 410 sub-
jects, each with a neutral scan. They provide a rank-1 recogni-
tion result of 94.9%. In their later work, Faltemier et al. [10]
divided the face into a total of 38 regions, distributed over the
whole facial area. The nose tip is automatically located and the
regions are constructed using x and y offset values from the nose
tip location and radius values to define the size of regions. The
regional classification results are fused using a modified ver-
sion of the Borda Count method. They have reported two dif-
ferent recognition results on the FRGCv2 with different gallery
and probe sets. For the first set, the gallery contains 410 neutral
scans from different subjects, and for the second set, the gallery
consists of the first scan of each subject (which can either be
neutral or non-neutral) making a total of 466 scans. The recog-
nition results are 98.1% and 97.2%, respectively, for the first and
second experimental sets. In all of these studies, the ICP-based
core matcher should perform alignment for every gallery face,
a time-consuming task when the gallery set is large.

Passalis et al. [18] utilize an annotated deformable face
model, that is divided into different facial regions. The facial
scans are rigidly registered to the model using ICP to obtain
pose-invariance, where the model is elastically deformed to
fit the registered scan afterwards. From the deformed model,
the deformation image is obtained via UV parametrization and
Haar wavelet filtering is applied for compression. For the ex-
perimental setup, the FRGCv2 database is divided into gallery
and probe sets with 466 (first scan of each subject) and 3541
(remaining scans), respectively. Recognition scores for eye and
nose areas, which are relatively resistant to expression varia-
tions, are reported as 85.8% and 81.5%, respectively. When
the regional scores are fused, the recognition rate increases to
89.5%. In [15], this work is improved by using a simulated
annealing method after the ICP for rigid registration of the scan
to the annotated model. They report the recognition result as
96.5% on the FRGCv2 database. In [14], they further improve
their work by adding the construction of a surface normal map.
Both the geometry image and the normal map are analyzed
using the Haar and Pyramid wavelet transforms, to obtain
two sets of coefficients as distance metrics. The classifiers are
then fused using the weighted sum approach. On the FRGCv2
database, they report results for neutral, non-neutral, and full
probe sets as 99.0%, 95.6%, and 97.3%, respectively.

In [13], automatic nose tip localization is utilized and a region
cropped around the nose tip is obtained. The cropped region is
then triangulated and multiple local and global rank-0 tensors
are computed. Two-dimensional histograms of these tensors are
obtained and dimensionality reduction is done with the prin-
cipal component analysis (PCA) method to form a single feature
vector for each scan. The FRGCv2 database is used in experi-
ments, where a gallery of 466 scans (first scan of each subject),
and a neutral probe set of 1944 scans are constructed. A recog-
nition rate of 93.78% is obtained for this neutral probe set. Mian
et al. [12] developed a multimodal algorithm which combines
2-D and 3-D and the matching is handled in the hybrid mode

where feature-based and holistic approaches are fused. Auto-
matic extraction of inflection points around the nose tip are used
to segment the face into eyes-forehead and nose regions, which
are less affected by facial expressions. Separate matching of re-
gions is handled with ICP and similarity measures are fused at
the metric level. The FRGCv2 database is used for the experi-
ments, with 466 and 3541 scans for gallery and probe sets, re-
spectively. The use of 3-D information alone gives 98.82% and
92.36% recognition rates for neutral and non-neutral probe sets,
respectively. In [11], they improve their multimodal method.
In the 3-D space, they automatically detect key-points at lo-
cations with high shape variations. At each key-point, pose-in-
variant 3-D feature extraction is handled via surface fitting and
regular resampling. PCA is applied on the extracted features
and matching is obtained by fusing results at score and feature
levels. On the FRGCv2 database, the gallery and probe sizes are
466 (first scan of each subject) and 3541 (remaining scans), re-
spectively. When only the 3-D information is used, results on
neutral, non-neutral, and full probe sets are 99.0%, 86.7%, and
93.5%.

Mabhoor et al. [9] propose a method for 3-D face recognition
from frontal range images. Their approach utilizes ridge im-
ages, consisting of points with maximum principal curvatures
(points from eyes, nose, and mouth areas). For registration, two
different methods are applied: Hausdorff distance and the ICP
method. They obtain recognition results both on the FRGCv2
and the GavabDB databases. For the FRGCv2, they constructed
the gallery and probe each with 370 neutral scans. The recogni-
tion accuracies are 58.92% and 91.8%, respectively, when Haus-
dorff distance and ICP methods are utilized for registration. Fur-
thermore, if the whole surface is used for registration via ICP, a
recognition rate of 93.7% is obtained.

In [8], the facial surface is divided into four regions: a cir-
cular and an elliptical region around the nose, an upper head
region containing nose, eyes, and forehead areas, and a region
consisting of the entire face. The regional registration is han-
dled via simulated annealing using the most deformation-resis-
tant areas to obtain expression invariance. The regional classi-
fiers are fused via the sum rule. The FRGCv2 database is used
for experiments, where the gallery contains the first scan of each
subject and the remaining images constitute the probe set. A
recognition result of 98.4% is obtained.

Cook et al. [17] used Log-Gabor templates (LGTs) on range
images to deal with expression variations. A range image is di-
vided into multiple regions both in spatial and frequency do-
mains. Each individual region is classified separately and the
results are fused at the score level. The facial image is divided
into 147 regions and the size of the LGT response features are
reduced by the PCA method. For classification, the Mahalanobis
Cosine distance metric is used and the classifiers are fused by
the sum rule. The experiments on the FRGCv2 database, with
a gallery of neutral scans, yield a recognition performance of
94.63%.

In [20], Lu et al. combine surface matching with appear-
ance-based matching. They apply a hybrid ICP algorithm in
registering and matching phases of 3-D facial surfaces. In the
hybrid ICP, two classical ICP algorithms, using point-to-point
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and point-to-plane distances are the similarity metrics, where
the first algorithm is used for alignment and the second for
refinement. Coarse alignment prior to ICP is handled by
extracting three corresponding feature points. For appear-
ance-based matching, LDA is applied to 2-D textures. The
weighted sum rule is used to combine the two classifiers. On
a database of 200 subjects in the gallery and 598 probe scans
with lighting, pose, and expression variations, recognition
results of 86%, 77%, and 90% are obtained, respectively, for
ICP, LDA, and ICP-LDA combination. In [21], Lu and Jain
propose a method to model expression deformations to deal
with expression variations. A control group consisting of a
small number of subjects, is used to calculate different defor-
mations caused by expressions. When matching a test scan to
gallery faces, all deformation models obtained from the control
group are applied to the gallery and the ICP algorithm is used
to find the best fit. Experimental results are reported on a subset
of FRGCv2, with a total of 150 scans from 50 subjects (each
with one neutral, one smiling, and one surprise expression).
Recognition rates of 97% and 87.6% are achieved, respectively,
with and without the deformable models.

In [22], Li and Zhang use multiple intrinsic geometric de-
scriptors such as angles, geodesic distances, and curvatures as
features for an expression-invariant 3-D face recognition. For
each individual feature, a set of weights are trained. To com-
bine the attributes, a different set of weights are also trained.
They have experimented with the GavabDB and a subset of the
FRGCv2 containing a total of 180 scans from 30 subjects. For
the GavabDB, recognition rates of 97.00% and 94.17% are ob-
tained, respectively, for the leave-one-out (LOO) approach and
for the normal reference (NR) approach. In the LOO approach,
one scan for each subject is used as a probe face, and all the
other faces constitute the reference system. In the NR method,
all the neutral scans constitute the reference set, and the scans
with expression variations form the probe set. On the subset of
FRGCv2, they have obtained 96.67% and 98.89% recognition
performances for the NR and LOO approaches, respectively. As
a cross-database validation experiment, training was performed
on the GavabDB to determine weights, and FRGCv2 subset was
used as the probe set. Recognition rates of 85.34% and 95.56%
were obtained with the NR and LOO methods, respectively.

III. PROPOSED SYSTEM

The proposed system consists of four parts: 1) a novel au-
tomatic facial landmark detection algorithm, 2) a robust com-
ponent-based registration that can deal with the large surface
deformations caused by expressions, 3) discriminative 3-D fea-
ture extraction, and 4) a classifier fusion module. The auto-
matic landmark detection algorithm locates five points around
the nose region and these points are then used at the first phase of
the coarse alignment step. Our region-based registration method
is inspired by the average face model (AvFM)-based registration
approach [23]-[25] and is extended to incorporate independent
local regions as in [14], which will be referred to as the av-
erage region model (AvRM). The AvRM-based alignment of-
fers several advantages such as using the generic facial parts as
an index file, reducing the computational cost of registration due

to the elimination of pairwise ICP registrations for every gallery
image, and finally providing one-to-one correspondence of all
surface points. After registration, we systematically study the
importance of using several 3-D features ranging from point co-
ordinates, invariant curvature-based features to statistical fea-
tures obtained from point coordinates. At the last phase, we uti-
lize several classifier fusion techniques, at abstract and score
level, to deduce the identity of the given probe image. An illus-
tration of the general outline of the proposed approach, in the
best performing combination, is shown in Fig. 1.

A. Automatic Landmark Localization

The quality of the facial surface alignment methods, espe-
cially iterative approaches like the ICP method, relies on ini-
tial conditions, such as the starting positions of the facial sur-
face pairs. In order to improve the convergence of the iterative
registration methods, prealignment is often necessary. Most of
the 3-D face recognition systems use facial landmarks during
the prealignment, or coarse alignment, phase. Generally, the
most distinctive facial features such as the nose tip, eye corners,
and mouth corners are located for coarse registration. In our
work, we use five fiducial points around the nose region that are
mostly stable even under facial expression variations. These are
left/right inner eye pits, nose tip and leftmost/rightmost points
of the lower nose border region. Except for the situations where
large in-plane rotations are present, all of these points can be
localized efficiently and are sufficient for prealignment of facial
surfaces.

Our landmark localization algorithm uses 3-D shape data
only. We first detect the central profile contour, facial symmetry
axis, and then search for the nose tip on the profile contour.
In order to extract the vertical symmetry axis, we employ a
symmetry operator that uses shape index values computed from
surface curvatures. The use of curvature-based symmetry axis
detection is advantageous since it is invariant to rotations and
translations. The facial profile curve detection algorithm works
as follows: First, for every point on the 3-D facial surface, we
compute the shape index values that are based on maximum
(k1) and minimum (k) curvature values. Given x1 and ko,
shape index S(r) € [0, 1] of a surface point r is defined as

_1 k() + Ka(r)

1
5(r) k1(r) — ka(r)

= M

1
— —tan
s

By sampling S(r), we obtain the shape index image Is. Then,
we use a local sliding window-based symmetry operator which
computes a symmetry map, I, using Is. The symmetry value
of a pixel at the (4, j)th location of I is computed by a local
window W of size 2N x 2M centered at pixel (i, )

M N

InGisj)= Y > Ms(i+m,j—n)—Is(i+m,j+n).
m=—M n=0

@)

In I, pixels having smaller values denote regions of high
symmetry. In our system, we set NV and M to 15 pixels. A frontal
3-D face image without rotation variations is expected to have
high symmetry map values along the vertical facial profile. With
this assumption, we locate the vertical position of the symmetry
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Fig. 1. Illustrative diagram of the proposed 3-D face recognition approach.
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Fig. 2. TIllustration of the automatic landmarking algorithm.

line in the symmetry map by selecting the vertical line which
gives the minimum column-wise symmetry value sum.

In order to account for in-plane rotations of faces, we carry
out the same procedure for different projection axes, i.e., by
not only summing up symmetry values along the vertical lines
but also using rotated lines. The projection axis producing the
minimum symmetry sum gives the rotation angle of the face
together with the position of the central profile line (see Fig. 2).

After finding the facial vertical profile contour, the nose tip
location is found. For that purpose, we use both the depth mea-
surements and the Gaussian curvature values along the profile
axis. Gaussian curvature of a point 7 on a surface with principal
curvatures 1 and ko is defined as

(€)
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Using a simple heuristic such as selecting the point having
the biggest depth value as the nose tip position is not suffi-
cient since in some cases, forehead or mouth may be closer
to the camera due to expression or rotation variations. There-
fore, we propose to combine Gaussian curvature values with
depth measurements. Dome-like shape structures such as the
nose tip region produce large Gaussian curvature values, thereby
in combination with the depth information, the localization of
the nose becomes more reliable. Let z = (z1, 22, ..., 2,) and
k = (ki,ka,..., k) be the normalized, depth, and Gaussian
curvature value vectors along the profile line, respectively. We
define a function of a combination of z and k as

ci=22ki, i=1...n 4)
and select arg max; ¢;.

The third step in automatic landmark localization is to find
the inner eye pit locations. We observe that these points have
cone-like shape structures around the upper nose area. Given
the central facial profile and the nose tip position, it is easy to
estimate a local search region for eye pits. In Fig. 2, the search
window on a sample face can be seen. Since faces may have
in-depth rotations, we use Gaussian curvature values to estimate
the locations of eye pits, instead of using depth measurements.
In the Gaussian curvature surface, cone-like structures produce
values close to zero. Therefore, we search for the local minimum
inside the search window and output these locations as the po-
sitions of eye pits.

Left and right outermost nose borders can be detected with
the use of shape index descriptors efficiently as well. Saddle
rut structures such as the nose border regions produce shape
index values around 0.375. Therefore, we extract the nose
border outline by a contour following approach where the
pixels have saddle rut-like shapes. Using this approach, it is
easy to extract the lower nose border contour, as shown in
Fig. 2. Given the nose border contour, we select the rightmost
and leftmost pixels along this curve as the rightmost and
leftmost nose border points, respectively. More formally, let
C ={(z1,1), (®2,92),- .., (x1,y1)} denote the contour points
where |Is(z;,y;) — 0.375| < 6, where § is a small constant. It
follows that the (z, y) locations of the left-most and right-most
nose border points can be found by zjst = argmin, C and
Tright = argmax, C, respectively. yier; and Yrighe coordinates
are the corresponding indices.

B. Three-Dimensional Face Registration

Three-dimensional registration establishes a one-to-one cor-
respondence between the surface points of two given 3-D faces.
The human face is a nonrigid surface which deforms in the pres-
ence of expressions initiated by muscle movements. The ac-
curacy of rigid registration methods decreases when test scans
with expressions are introduced. Region-based approaches try
to overcome this difficulty by using smaller regions of faces
[12], [14], [16], [19]. In region-based face recognition, a face
is represented by a single robust region or it is considered as
a composition of facial components. Rigid methods use ICP
and rely on positions of landmarks on the face for initializa-
tion [12], [16], [19], while nonrigid methods elastically deform

AVRM Regions Upperface Region
A:Ak e,

(A%

9 &

Fig.3. AvFM and its landmark points computed from the FRGC database (left-
most image). Center and rightmost images show seven facial regions and upper-
face region for the AVRM, respectively.

“9‘}

the surface to overcome the effect of expressions [14]. Our re-
gion-based registration approach provides a simple, fast, and ro-
bust two-pass alternative: We first employ ICP to register the
facial surfaces to a common model, called the AvFM. This ap-
proach was previously used in [23]-[25] and the term AFM was
used. In this paper, we abbreviate the average face model as
AvVFM to avoid confusion with the annotated face model (AFM)
of [14]. The use of AvFM ensures that all gallery faces are in
one-to-one correspondence. A second registration phase uses
ICP registration to register individual regions to their respec-
tive AvRMs, starting from the initialization provided by the first
phase.

In AvFM-based registration, the aim is to find the rigid trans-
formation that will align a probe face, P = {py, ..., p}, with
the AVFM, M = {m,,...,m;}. The transformation T in-
cludes rotations around z, y, z axes, R, Ry, R, respectively,
and a translation t

T(p;) =R, R,R.p; +t, i=1,...,n 5)

The alignment error after the transformation is applied can be

defined as

m;| (6)

> IT(pi) —
Jj=1

where my; is the point on the model which is in correspondence
with the point p;. The optimal registration can be estimated as

t
T = arnginZ I T(pi) — my]|. (7)

i=1

As a holistic registration method, we use the iterative closest
point (ICP) [26] to solve the linear numerical system defined
over the whole surface points. Initial alignment prior to ICP it-
erations is carried out by the Procrustes analysis [27] using au-
tomatically located facial landmarks. The AvFM is constructed
using coarsely registered gallery images by computing the mean
shape. Details of AvFM construction algorithm can be read from
[24] and [28]. An example AvFMs generated for the FRGC data-
base is shown in Fig. 3 together with the landmarks.

For the AvRM-based registration, the construction of regional
models is necessary. For this purpose, first of all an AvFM is
generated from the gallery images using thin plate spline (TPS)
warping, as described in [28]. Then, regional masks are created
to divide the facial surface into patches that constitute the basic
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building blocks. The facial patches are constructed by manu-
ally labeling corresponding areas on the AvFM. Patch construc-
tion on the AvFM is performed only once. The patches are col-
lected into higher level components, namely the AvRMs. These
regional models act as index files for the regional registration
approach. In this work, we divided the face into a total of 15
patches, and from these patches we constructed seven mean-
ingful regions: nose, left/right eye, forehead, left/right cheek,
and mouth-chin. We also constructed a regional model for the
area which is considered to be the region least affected by facial
expression variations. This region is referred to as the upperface
region and covers patches belonging to eye, nose, and forehead
areas. The division of the facial surface into patches and the con-
struction of regions from these patches are illustrated in Fig. 3.
The dense correspondence obtained between the face and the
whole facial model acts as a coarse alignment for the regional
approach. The aligned probe face, Preg = {P1, ..., Pt} has the
same number of points as the AvFM in exactly the same order. In
AvRM-based registration, a second ICP is performed between
the AVRM, M (¥) = {m(k) ..... (k)} and the face previously
registered to the AVFM P, to construct a local one-to-one cor-
respondence of individual regions. The regions to be registered
are considered independently of each other and for each com-
ponent, different transformation parameters are calculated. For
a region k, the transformation can be expressed as
T (p;) =RPRFPRMp, +t*), i=1,....¢t. @®
The alignment error after the transformation is applied can be
defined as

3 e -

where m; is the point on the AVRM model which is in corre-
spondence with the point p;. The optimal registration for the
considered region can be estimated as

S

T®) = arg mln Z HT(’“) Ek)H . (10)

The steps of our registration technique are summarized in the
upper part of Fig. 1.

C. Three-Dimensional Features

1) PC Features: After the alignment phase, 3-D facial sur-
faces can be compared since they lie on the same coordinate
system. A simple method is to use the coordinate differences
between two corresponding surfaces. If the registered facial sur-
faces are resampled at the same (z, y) coordinates, then it suf-
fices to use only the depth (z-coordinates) measurements in
the computation of the PC value. More formally, let ® be the
whole facial surface composed of N local regions, ¢;, then
® = U;—1.. n¢;. With the assumption of regular resampling
in the PC method, each region ¢; is represented by a vector of
z-depth measurements: ¢; = [21, 22, . . ., 2Ar, ], Where each re-
gion ¢; contains M; z-depth values. The dissimilarity between

any two corresponding facial region then can be computed for
person A and B as

[¢2. 6]

0 Y

D (¢7,7) =
where |.| denotes Lj-norm.

2) Statistical PC Features: A useful property of the generic
AvRM-based registration is that 3-D facial features, particularly
¢i, are ordered vectors. In order to have a more compact and
discriminative feature space, we propose to utilize LDA for the
point coordinate features. Basically, we form a separate LDA
space for every facial region. Construction of the LDA space,
i.e., the computation of the LDA transformation matrix, is car-
ried out by using an independent training set. Let A; be the LDA
transformation matrix found by region <. Then the regional LDA
features 7; can be found by the projection of ¢;: v; = A;¢;. The
dissimilarity between any two facial regions can be computed
by the angular cosine distance measure in LDA subspace as

v 4P

D(FyiAv’V’LB) =1- 'V/LA 'YZ‘B

12)

3) Curvature-Based 3-D Shape Descriptors: Given an erro-
neous alignment, PC representation-based similarity values are
not discriminative. It is, therefore, necessary to consult better
shape descriptors. In our system, we propose to use normal cur-
vature descriptors (CDs) since they measure intrinsic character-
istics of a surface, and are invariant to translations and rotations.

Normal curvatures measure the bending degree of a surface.
For a 2-D surface, specifically, a Monge patch, s, character-
ized by a height function f(u,v) defined over a support plane
parameterized by (u,v), the intersection of s with planes de-
fined by two orthogonal vectors in the tangent space produces
plane curves. The direction at which the curvature of the plane
curve is maximal or minimal determines the principal directions
Qmax, Omin- We use an analytical method outlined in [29] to es-
timate the principal directions. It is based on fitting a quadratic
order surface of the form
= ng + Bxy + gy

z = f(z,y) (13)

in a neighborhood of the point of interest. The eigenvec-
A B

B C

can then be transformed by @max = €max X [XuX,] and
Qmin =  €min X [X,X,] to obtain principal directions
(max, Cmin in R3. The support plane parameterized by (u,v)
is defined by the orthogonal vectors X, and X, in R3.
Eigenvalues (A1, A2) of the Weingarten matrix correspond to
principal curvature values (K1, ko). Coefficients A, B, and C
are estimated by the least-squares technique. Using this method,
we represent each point by a (max, @min) three-vector pair
(see Fig. 4 for a sample principal direction pair). Distance
between corresponding points can then be calculated by the
sum of the angle differences of maximal and minimal principal
direction pairs. More formally, if only maximum principal
curvature directions are considered, facial regioni with M; 3-D
points is represented by Y; = [al ;a2 The

max?’ amaxa tee

tors €max, €min Of the Weingarten matrix W =

max]
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Fig. 4. Principle curvature direction pairs computed around the nose region,
viewed from different angles. Red and blue lines show the minimum and the
maximum principal curvature directions, respectively.

dissimilarity between two facial regions can then be computed
by

M; Jj o
ijl ang ( oy, ap
M,

Dpax (Y2, T2) = (14)

where o, denotes the jth maximum principal direction for
person A. The function ang(.) denotes the angular difference
between corresponding three-vector principal directions. Simi-
larly, dissimilarity between facial regions is also computed for
minimum principal directions, to obtain D,y,;,. The final curva-
ture-based dissimilarity value is then computed by summing up
these two values: D = D, ax + Dmin-

D. Classification: Fusion Techniques

In region-based techniques, each region acts as an indepen-
dent classifier, and recognition results can be fused to obtain
an improved overall performance. The fusion techniques can be
grouped into three basic categories, namely score-level, rank-
level, and abstract-level approaches [25]. In this work, we use
score- and abstract-level fusion. In score-level fusion, the simi-
larity measures obtained from different classifiers are combined
using basic arithmetic rules. Two score-level methods are con-
sidered: sum rule (SUM) and product rule (PROD). Both of
these rules operate on normalized distances. For distance nor-
malization, we utilized the min—-max normalization method.

In abstract-level fusion, each individual classifier produces a
class label. The individual class labels are combined to provide a
single label. In this category, plurality voting (PLUR) and mod-
ified plurality voting (MOD-PLUR) methods are considered. In
PLUR, each expert provides the class label of the nearest gallery
subject. Among the set of classifiers, the class label with the
highest vote is assigned as the final label. When there are ties,
the final label is randomly selected. In MOD-PLUR, the ap-
proach of plurality voting is improved, where for each classifier,
a confidence value is estimated together with the class label.
When there are ties, the decision is based on the confidence
values. The confidence value is based on normalized scores. If
d = [dy,da,...,dN] denotes the sorted dissimilarity values to
N gallery samples in ascending order, a second score normal-
ization is performed by

g = dizdy) i=2

_ ...,N. 1
‘" median(d) — dy’ T (15)

After this score normalization, the classifier confidence can
be defined as dj. The d), value gives the slope between the nor-
malized scores of the first two top-ranked gallery classes. As
the slope increases, the classifier gets more confident about its

decision on the rank-1 class. For further details on confidence
estimation, please refer to [25].

IV. EXPERIMENTAL RESULTS

A. Databases

The main purpose of this work is to develop a 3-D face
recognition system that is resistant to expression variations. For
this purpose, we employed two 3-D face databases containing
scans with facial expressions. The first one is the Bosphorus
3-D face database [30], which has a large variety of expres-
sions. The second database considered is the FRGCv2 [31],
which is a widely used database in the literature, exhibiting
expression variations. In the following sections, details about
the two databases are given.

1) The Bosphorus 3-D Face Database: The Bosphorus data-
base is a multiexpression and multipose 3-D face database. The
database is constructed to enable testing of three main chal-
lenging scenarios for 3-D face recognition. For that purpose,
both realistic and extreme pose variations, expression varia-
tions, and typical occlusions that may occur in real life are in-
corporated. A comprehensive set of scans that include both emo-
tional expressions such as sadness, happiness, surprise, and fa-
cial action units, which are the building blocks of any facial
mimic, were gathered, especially for automatic facial expres-
sion understanding studies. In order to incorporate realistic ex-
pressions, professional actors/actresses were also used during
the acquisitions. For each subject, there are approximately 34
expressions, 13 poses, and 4 occlusions. The database includes
a total of 4666 scans collected from 105 subjects, 61 men and 44
women. Professional actors/actresses constitute 29 of the sub-
jects. For each scan, 22-26 manually labeled landmark points
are present. The 3-D facial PC data is acquired using Inspeck
Mega Capturor II 3-D, which has about 0.3-mm sensitivity in all
dimensions and a scan consists of approximately 1.3-M points.
The 3-D surfaces were processed to remove spikes and holes
and to crop the facial area.

In this study, the focus is on expression variations: therefore,
a subset of the database excluding pose variation and occlu-
sion scans is considered. The subset has a total of 2919 scans,
with roughly 34 different expression scans per subject. There are
mainly two groups of facial expressions: The first group con-
sists of action units (AUs) based on the Facial Action Coding
System (FACS), which was developed for the taxonomy of plau-
sible facial expressions of humans [32]. Among the 28 AUs,
20 lower face AUs, five upper face AUs, and three upper-lower
combination AUs are taken into account. Expressions defined
by AUs code the movement of several muscles; thus, some AUs
are not present for some subjects who cannot control the related
muscles. The second group of expressions is related to common
emotions: happiness, surprise, fear, sadness, anger, and disgust.
In Fig. 5(a), the manual landmark points present for each scan
and the expression variability are illustrated.

As the experimental setup, we constructed a gallery set con-
taining one neutral scan for each subject. The remaining scans
constitute the probe set. Hence, gallery and probe set sizes are
105 and 2814, respectively.
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Inter Eye Left Inner Right Inner | Nose Left Right
Distance | Eye Corner | Eye Corner Tip Nose Corner | Nose Corner
Bosphorus 64 3.96 3.43 3.05 3.19 3.00
MLV (Bosphorus) 2.70 2.32 2.96 1.68 1.82
FRGCv2 70 4.90 5.05 3.26 4.68 451

LEEEEE

(b)

Fig. 5. Sample 3-D scans for the (a) Bosphorus and (b) FRGCv2 databases.
For each database, manually located landmarks are shown on a neutral face.
The orange-colored landmarks are used in the coarse registration phase. For the
Bosphorus database, emotional expression variations are shown on the bottom
left: happiness, sadness, surprise, fear, disgust, anger. On the right, scans for AU
variations are shown. For the FRGC database, expression types are happiness,
sadness, surprise, fear, cheek puffing, and disgust.

2) FRGCv2: The FRGCv2 database is widely used in the lit-
erature of 3-D face recognition due to its large number of sub-
jects and large number of total scans. It consists of 4007 scans
collected from 466 subjects using a Minolta Vivid 900/910 se-
ries sensor. The scans are frontal containing a number of fa-
cial expression variations such as happiness, sadness, surprise,
anger, disgust, and cheek puffing. For this database, we manu-
ally labeled a set of nine landmark points on each facial surface.
In Fig. 5(b), an example subject is shown with manual land-
marks available and the expression variability is illustrated.

For the identification scenario, we designed an experimental
setup with one image per subject in the gallery set and all the
other images in the probe set. The gallery set constitutes a total
of 466 scans, one scan per each subject. The images contained
in the gallery are not restricted to be neutral, they are the first
appearing scan of each subject. This experimental protocol is
also used in [10], [11], and [14] and we have chosen the same
setup to allow a direct comparison with the techniques proposed
in those studies.

B. Automatic Landmark Localization Performance

Good landmarks are needed for convergence of the regis-
tration algorithm. The performance of the automatic landmark
localization is thus, crucial. The average Euclidean distances
of the automatically labeled landmarks to the corresponding
manual landmarks are given in Table II for the Bosphorus and
FRGCv2 databases. The average Euclidean distance between
the eyes is 64 mm for the Bosphorus database. Therefore, it is
seen that automatic landmark localization algorithm has an av-
erage error rate of 4%—6% of the inner eye distance. This ac-
curacy is sufficient for a coarse registration, as will be shown

by the identification accuracies in later sections. To evaluate
the performance of the proposed automatic landmarking method
better, we designed an experiment to observe the variability of
the manual landmarking subject to the precision of the annota-
tors. The five-point landmark set (the inner eye corners, nose
tip, and the nose corners) is labeled by ten different annotators
on a subset of the Bosphorus database, consisting of 20 scans.
The average Euclidean distances given in the second row of
Table II correspond to the manual labeling variability (MLV),
which is the average distance of the manually labeled landmarks
by the ten different subjects to the original manual landmarks.
The results show that the variability of the automatic landmark
locations and the variability that can be caused by the anno-
tators are not significantly different. It is also evident that the
outer nose corners are located more precisely both automatically
and manually. Table III provides previously reported automatic
landmarking accuracies on the FRGC database. As can be seen
from Table III, some methods present average distance error in
millimeters and others present localization rates in percentage
given a distance threshold value. In addition to our FRGC re-
sults in millimeters (see Table II), we also provide localization
rates (%) for commonly used threshold values, namely, 10, 12,
and 20 mm, at the last row of Table III. When compared to the
other results on the FRGC set, we see that our landmark local-
ization method is sufficiently accurate.

The automatic landmark localization results are illustrated in
Fig. 6(a) and (b) on a sample set of scans with facial expression
variations for the Bosphorus and FRGCv2 databases, respec-
tively. The original manually labeled landmarks are also shown,
to permit visual interpretation of the results. It can clearly be
seen that the eye and nose corner points can be located effi-
ciently in the presence of expressions, enabling adequate results
for the coarse registration phase.

C. Identification Results

Expression variations give rise to deformations on the facial
surface. These deformations cause performance degradations of
the registration approaches that treat the faces as rigid and global
surfaces. To substantiate our assertion, we examined the AvFM-
based rigid registration method on both the Bosphorus and the
FRGCv2 databases. For coarse alignment of faces, Procrustes
analysis utilizing the five-point landmark set is performed. The
coarse alignment is followed by a fine registration step via the
ICP algorithm. Subsequent to registration of the faces, the sur-
faces are considered as PCs and the Euclidean distances be-
tween a probe face and each of the gallery faces are computed.
As a classification approach, the nearest neighbor algorithm is
utilized to obtain identification results. In Table IV, the rank-1
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TABLE III

OVERVIEW OF LANDMARK LOCALIZATION ALGORITHM PERFORMANCES ON THE FRGC DATABASE

Author, Year Database  # Scans  Detected landmarks Performance Performance cri-
teria
Nose tip: 4.56 + 2.51mm
Right inner eye corner: 3.27 &+ 1.14mm
Zhao et al, 2009 [33] FRGC v1 462 15 landmark poims Left inner eye corner: 3.27 + 1.51mm Average
Left nose corner: 4.36 £ 3.73mm distance(mm)
Right nose corner: 4.72 £ 2.12mm
. Nose tip: 99.77%
Romero and Pears, 2009 [34] FRGC v2 4003 Inner eye corners, nose tip Less than 12mm
Inner eye corners: 96.82%
Nose tip: 99.10%
Dibeklioglu et al, 2008[35] FRGC vl 314 Nose tip, Inner/outer eye Less than 24 pix-
Inner eye corners: 99.55%
corners, mouth els (14.4mm)
Mian et al, 2007 [12] FRGC v2 4007 Nose tip Nose tip: 98.3% Not stated
Nose tip: 99.95%
Segundo et al, 2007 [36] FRGC v2 4007 Nose tip, nose corners, Inner eye corners: 99.83% Not stated
nose base, inner eye cor- Nose corners: 99.76%
ners
Nose tip: 3.17 4= 1.86mm
Hose et al, 2007 [37] FRGC vl 100 Nose tip, upper/lower Less than 10 or
(99.89%=20mm, 99.37%=10mm)
nose corners, Outer eye 20mm
corners
o Nose tip: 98.00% .
Salah and Akarun, 2006 [38] FRGC v2 1893 Nose tip, inner/outer eye Less than 24 pix-
Inner eye corners: 97.10%
corners, mouth corners els (14.4mm)
. 7.81 pixels = 4.69mm
Akakin et al, 2006 [39] FRGC vl 235 Inner/outer eye corners, Average
. (average distance of all landmarks) .
nose tip, mouth corners distance(mm)
99.4%
Chang et al, 2006 [19] FRGC v2 4485 Inner eye corners, nose Not stated
. . (average distance of all landmarks)
tip, nose bridge
Nose tip: 8.3 + 19.4mm
Lu and Jain, 2006 [40] FRGC vl 953 Outer/Inner eye corners, Right inner eye corner: 8.3 &+ 17.2mm Average
nose tip, mouth corners Left inner eye corner: 8.2 + 17.2mm distance(mm)
<10mm <I2Zmm  <20mm
Nose tip 99.62 99.80 99.87
Inner Left Eye Corner 98.02 98.82 99.55
Our method FRGC v2 4007 Inner eye corners, nose
. Inner Right Eye Corner 95.15 98.25 99.52
tip, nose borders
Left Nose Corner 98.62 99.30 99.87
Right Nose Corner 98.57 99.27 99.87

recognition rates obtained via AvFM-based registration are re-
ported on both databases, using manual and automatic land-
marks in the coarse alignment phase. The first, second, and third
rows are the identification performances for neutral, non-neu-
tral, and for the full probe set, respectively. These results support
our claim that the rigid registration accuracy decreases in the
presence of facial expression variations. For the FRGCv2 data-
base, which contains a large probe set of neutral and non-neutral
scans, the performance degradation due to expression is about
40%. The performance decrease is also quite significant (30%)
for the Bosphorus face database. Regarding the effect of manual
and automatic landmarking on the identification performance,
we see that performance decrease is quite small if landmarks are

found automatically. By looking at the whole probe set (neutral
+ non-neutral), it is observed that rank-1 accuracies decrease by
0.14% and 0.36% for the FRGCv2 and Bosphorus databases,
respectively, when automatic landmarks are used.

After showing that global ICP-based registration is not suffi-
cient for non-neutral faces, we can now proceed to analyze local
AvRM-based registration performances. As explained before, in
the AVRM-based alignment, first a global ICP alignment is per-
formed and then AvRMs are independently registered to a given
probe facial surface. In Table V, the independent regional identi-
fication results using a single region are given. For comparative
reasons, the identification rates obtained using the AvFM-based
registration are given in the first row. As these results exhibit,
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TABLE 1V
IDENTIFICATION RESULTS OF THE AvFM-BASED APPROACH FOR MANUAL AND AUTOMATIC LANDMARKS
FRGCv2 (Gallery Size: 466) Bosphorus (Gallery Size:105)
Probe Size  Manual  Automatic | Probe Size Manual  Automatic

Neutral Probes 1984 84.07 83.92 193 99.48 100.00

Non-Neutral Probes 1557 48.62 48.49 2621 69.71 69.29

All Probes 3541 68.48 68.34 2814 71.75 71.39

TABLE V
IDENTIFICATION RESULTS OF THE INDIVIDUAL REGIONS
FRGCv2 Bosphorus
Manual ~ Automatic | Manual  Automatic

AvFM 68.48 68.34 71.75 71.40
Nose AvRM 85.12 84.98 86.96 86.70
Left Eye AVRM 65.15 65.04 60.23 60.27
Right Eye AVRM 64.90 64.78 62.30 62.26
Forehead AVRM 62.92 62.84 77.36 77.19
Left Cheek AVRM 34.11 33.95 32.76 32.66
Right Cheek AVRM | 31.69 31.74 36.28 36.17
Chin-Mouth AvRM 41.51 41.46 36.64 36.57
Upperface AvRM 86.78 86.59 91.22 91.05

Fig. 6. Manually (red dots) and automatically (black stars) located landmarks
shown on a sample set of scans for the Bosphorus and the FRGCv2 databases.
(a) Bosphorus; (b) FRGCv2.

some regions are less affected by facial expressions, such as the
nose, eye, and forehead regions. When the combination of these
regions is used as a single AvRM, namely the upper-face AvRM,
the best regional recognition rates are obtained. The cheek re-
gions and the region containing the mouth and chin are the worst
performing areas. This is basically due to the fact that facial ex-
pressions deform the mouth greatly and subsequently the cheek
regions are affected by the mouth movement. Although their re-
gional deformations are less than the mouth and chin area, cheek
regions perform even worse, implicating their low discrimina-
tive ability.

An important observation from the results in Table V is that
using only the nose region, it is possible to significantly improve
the identification rates, compared to using the whole face with
the standard ICP approach (the AvFM method). This finding
is also compliant with the other studies that focus on the nasal
region. However, we see that incorporating the forehead and eye
regions with the nose, by forming a bigger upperface region, it
is possible to improve the accuracy obtained by the nasal region
alone. In terms of the landmarking method used in the coarse
registration phase, we see that automatically located landmarks
only slightly reduce the rank-1 identification accuracy for all the
regions.

To improve the identification performances, we propose uti-
lizing CDs as facial features instead of the PC of the surface.
These features are invariant to rigid transformations, and are,
therefore, less affected by erroneous registrations. Instead of

using the whole PC for facial surface comparison, utilizing the
intrinsic surface information residing in the principal curvature
directions is beneficial. The global and local identification re-
sults using the CDs are reported in Table VI together with the
previous results obtained using PC as the facial feature. As these
results exhibit, the use of curvature directions is beneficial. The
performance improvement is most distinct when the global reg-
istration approach is used, where the recognition rates increase
by about 20%: For the FRGCv2 database, classical global ICP-
based recognition rate improves from 68.34% to 87.15% and
for the Bosphorus database, the improvement is from 71.40% to
94.92%. These results indicate that if a global registration is to
be employed, it is better to utilize curvature features compared
to using commonly used point coordinates. If a part-based reg-
istration is carried out, we also see an increase in the discrimina-
tive ability of individual regions by looking at the performances
for facial regions in Table VI.

D. Fusion of Regional Classifiers

Although some regions are deformed less in the presence of
facial expression variations, use of a single region is not suf-
ficient for identification purposes. To improve the recognition
results obtained by independent regional classifiers further, we
propose to fuse the classification results. For each facial fea-
ture, namely PC or CD, we have eight regional classifiers: nose,
left/right eye, forehead, left/right cheek, chin-mouth, and up-
perface classifiers. In Table VII, we present the fusion results
for PC and CD methods using sum, product, plurality voting,
and modified plurality voting fusion schemes. We also provide
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TABLE VI
IDENTIFICATION RESULTS OF THE POINT CLOUD (PC) AND CURVATURE DESCRIPTORS (CDs)

FRGCv2 Bosphorus
Manual Automatic Manual Automatic
PC CD PC CD PC CD PC CD
AvFM 68.48 8740 | 68.34 87.15 [ 71.75 95.38 | 71.40 94.92
Nose AVRM 85.12  92.01 | 84.98 91.81 [ 86.96 97.94 | 86.70 97.69
Left Eye AVRM 65.15 86.53 | 65.04 86.53 | 60.23 90.94 | 60.27 90.76
Right Eye AVRM 64.90 85.60 [ 64.78 85.20 [ 62.30 91.68 | 62.26 91.54
Forehead AvRM 62.92 66.53 | 62.84 7210 | 77.36 78.39 | 77.19 78.25
Left Cheek AvRM 34.11 56.76 | 33.95 56.68 | 32.76 40.58 | 32.66 40.47
Right Cheek AVRM | 31.69 57.22 | 31.74 56.93 | 36.28 52.59 | 36.17 52.31
Chin-Mouth AvRM 41.51 54.14 | 41.46 58.94 | 36.64 43.89 | 36.57 43.71
Upperface AvRM 86.78 93.36 | 86.59 92.80 | 91.22 95.20 | 91.05 94.96
TABLE VII TABLE VIII
FUSION RESULTS OF REGIONAL CLASSIFIERS USING RANK-1 CLASSIFICATION RESULTS OF THE LDA-BASED AvRM APPROACH
PC, CD, AND COMBINED (PC+CD) FEATURES
FRGCv2 Bosphorus (Evaluation Set)
FRGCv2 Bosphorus
v OSpROTUS Gallery vs Probe Manual Automatic | Manual Automatic
M I Automati M 1 Automati
e  Adlomatie | Vanual  AWOMAMC  Neutral vs Neutral | 98.59 9839 | 99.47 100.00
. 25 . 15
PC 8111 61.2 8611 761 Neutral vs Non neutral| 97.11 96.40 99.60 99.25
5 .93 A .
SUM b 92.57 909 9847 98.19 Neutral vs All 97.94 97.51 99.59 99.31
PC+CD 92.83 90.68 98.29 97.80
P 3 11 5.91 5.5 . . . .
¢ 88.39 88 959 9356 instance, by inspecting the automatic FRGCv?2 results, PC and
PROD CD 93.36 91.81 98.47 98.15 CD fusions by the product rule achieve 88.11% and 91.81%
PC+CD | 90.96 90.68 97.12 96.87 accuracies. However, if PC+CD classifiers are fused with the
pC 90.39 90.14 93.75 93.57 product. rule, the ﬁnal accuracy is 90.68% Wh.ICh is not beFter
than using CD fusion alone. In contrast, if voting-based fusion
PLUR CD 94.21 93.39 98.06 97.80 . . .
mechanisms are used, having more base classifiers always leads
PC+CD | 95.72 94.99 98.39 98.05 to a performance improvement. With this observation, we can
PC 91.39 91.16 94.92 94.63 deduce that it is better to fuse many individual classifiers with
MOD-PLUR  CD 9427 93.56 08.26 98.01 a voting-based mechanism. The same trend is also observe.d
in the Bosphorus results. However, for the Bosphorus experi-
PC+CD | 9574 94.80 98.37 98.08 ments, we see that sum/product rules are marginally better than

the fusion results of combining eight PC and eight CD classi-
fiers, denoted as PC+CD in Table VII. In addition to the reported
fusion schemes in Table VII, we have also tried several other
fusion mechanisms such as highest confidence and the Borda
count method. However, they have performed worse than the
reported results in Table VII.

For the FRGCv2 database, the best identification accuracies
are obtained by fusing 16 individual classifiers with the modi-
fied plurality voting scheme. If automatically found landmarks
are used, MOD-PLUR achieves 94.80% rank-1 identification
rate with the PC+CD classifiers. This is significantly better than
the best individual classifier, namely, the nose classifier using
the curvature features (91.81%, Table VI). It is also better than
the best AvFM-based classifier (87.15%, AvFM-based CD,
Table VI). If we compare the fusion methods, we see that if
arithmetic rules such as sum/product are applied, increasing the
number of base classifiers does not lead to an improvement. For

the plurality schemes. On the other hand, as in the FRGCv2
results, having more classifiers, as using PC+CD, does not lead
to superior results if arithmetic rules are employed. If automatic
Bopshorus results are considered, it is seen that the best fusion
accuracy, 98.19% with the sum-based fusion of CD classifiers
is better than the best global AvFM-based classifier: 94.92%
(see Table VI, CD-based AvFM classifier).

E. Results of Statistical Features

In this section, we provide the classification results of using
statistical point set-based features using the LDA technique. As
explained before, ordered z-coordinates of the independently
registered facial surfaces are used to construct LDA subspaces
per region. In order to determine the LDA transformation
matrix, we use separate training sets. For the FRGCv2 ex-
periments, we use the FRGCvl set which includes a total of
943 3-D scans. For the Bosphorus face database, we divide the
whole database into two parts: 643 scans of 20 subjects are used



ALYUZ et al.: REGIONAL REGISTRATION FOR EXPRESSION RESISTANT 3-D FACE RECOGNITION

437

TABLE IX
OVERALL COMPARISON OF RECOGNITION RESULTS
FRGCv2 Bosphorus (Evaluation set)
Method Description (registration method, features used) | Manual  Automatic | Manual Automatic
AVFM-PC Global reg., point set features 68.48 68.34 72.39 72.02
AVFM-CD Global reg., curvature features 87.40 87.15 95.92 95.51
AVRM-PC Regional reg., product fusion of point sets 88.39 88.11 96.47 96.24
AVRM-CD Regional reg., product fusion of curvature 93.14 91.81 98.30 98.17
AVRM-PC-LDA  Regional reg., statistical LDA features 97.94 97.51 99.59 99.31

to construct LDA subspaces and the 2265 scans of 85 subjects
are used to form an evaluation set (gallery and probe sets) for
identification tests. The 20 subjects that are used for the LDA
training are different from the ones in the evaluation set. In the
Bosphorus evaluation set, there are 85 gallery images (single
neutral image per person) and 2180 probe images. The rank-1
identification rates obtained by the product fusion of individual
LDA-based regional classifiers are given in Table VIII. The
results are provided in terms of Neutral versus Neutral and
Neutral versus Non-neutral comparisons in order to analyze the
behavior of the proposed scheme under expression variations.
If we look at the FRGCv2 results with automatic landmarking,
we see that a 97.51% rank-1 rate is achieved. Compared to the
best performance of fusing raw features, i.e., using point sets
or curvature directions directly without any statistical feature
extraction, in the AVRM framework, that is fusing PC+CD with
the PLUR scheme, we improve the accuracy from 94.99% (see
Table VII) to 97.51%. This rank-1 classification rate obtained
on the FRGCv2 database is the best reported accuracy in the
literature and it is statistically significantly better than the best
results obtained with the same experimental protocol (97.2%
reported in Faltemier ez al., 2008 [10], 97.3% reported in Kaka-
diaris et al., 2007 [14]) using a 0.05 level of significance. We
have used the test provided in [10] to measure statistical signif-
icance. For the Bosphorus face database, fusion of LDA-based
classifiers also provides very high identification rates: on the
independent evaluation set 99.31% of the probe set is correctly
classified. It should be noted that this performance value cannot
be directly compared to the results provided in Table VII since
the evaluation set is a subset of the whole database used in
Table VII. A very important observation about our LDA-based
regional approach is that non neutral probes are identified
quite accurately compared to neutral probes. This proves that
our proposed scheme, with the help of 1) regional registration
and 2) the statistical subspace analysis is very beneficial and
insensitive to expression variations. A very practical advantage
of the LDA-based regional approach is the compactness of the
feature vectors. The results shown in Table VIII are obtained by
an LDA feature dimensionality of 90 per region. In real-world
biometric applications, where the template size and matching
speed are important, the use of such compact features is very
crucial.

Lastly, in order to further analyze the generalization ability
of the LDA approach, we perform cross database training for
the FRGCv2 set. Basically, we train the LDA subspace with

the Bosphorus training set and form the feature vectors for the
FRGCv2 set by using the LDA space trained with the Bosphorus
database. With cross database training, the rank-1 identification
rate is 94.55% for the FRGCv?2 database. This result implicates
that even with such a challenging scenario of training with a
completely different database with different sensor and different
composition, it is possible to achieve quite acceptable recogni-
tion accuracy.

F. Overall Performance Comparison

In Table IX, we provide a summary of the classification
performances of the methods studied in this paper. For each
method, we emphasize the registration method (global versus
local) and the types of features used (point sets, curvature
based, and statistical). If the results are examined with respect
to the landmarking method, we observe that automatic local-
ization of facial fiducial points leads to a small performance
decrease in general. For instance, the best performing approach,
namely the AVRM-PC-LDA method, achieves 97.94% rank-1
identification rate on the FRGCv2 database with manually lo-
cated landmarks. If automatically localized landmarks are used
during registration, performance drops by 0.43% to 97.51%.
For the Bosphorus database, performance degradation is even
smaller. This finding shows that our proposed landmarking
method is sufficient for identification.

With respect to the registration method utilized, we observe
that for both PC and CD features, AvRM-based regional regis-
tration significantly improves the classification rates when com-
pared to AvFM-based global registration. The performance im-
provement is more apparent for the PC features, from 68.34%
to 88.11%, than for the CD features, from 87.15% to 91.81%
(see automatic FRGCv?2 results). This observation shows that
point set features are more sensitive to registration errors thus
leading to more improvement if better regional registration is
carried out.

In terms of the 3-D features, we see that the use of raw point
sets is always worse than using curvature-based features irre-
spective of the registration method employed. For both global
and regional registration schemes, curvature features always at-
tain better classification rates. However, we note that the perfor-
mance gain is clearly more visible if the registration method is
prone to errors as seen by the global registration results. By in-
specting the automatic FRGCv2 results, we see that the perfor-
mance improvement is 18.81% (from 68.34% to 87.15%) while
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Fig. 7. CMC curves of the methods. First rank-60 results are shown for the
manually landmarked FRGCv2 database.

for the AvRM-based regional registration the improvement is
3.70% (from 88.11% to 91.81%).

Lastly, we observe that by merging the power of regional reg-
istration through generic facial region models with the statistical
feature extraction methods, the discriminative ability of 3-D fea-
tures can be highly improved. The application of LDA, as a sta-
tistical feature extractor, improves the classification rates of the
point set features from 88.11% to 97.51% for the FRGCv2 data-
base, and from 96.24% to 99.31% for the Bosphorus database
(see automatic landmarking results). Fig. 7 shows the cumu-
lative match characteristics (CMC) curves of the methods for
the manually landmarked FRGCv2 database. As verified by the
CMC behaviors, the AVRM-PC-LDA method is superior to the
others. We have also performed verification simulations using
the AVRM-PC-LDA method on the FRGCv2 database using
all possible pairwise genuine and impostor comparisons. The
equal error rate (EER) obtained by the AVRM-PC-LDA method
with automatically detected landmarks is 1.91% on the FRGCv2
database. In order to compare our verification performance with
the ones reported in the literature, we carried out the standard
verification tests of the FRGC protocol for the AVRM-PC-LDA
method. Table X shows the verification rates for three different
FRGC masks, namely ROC 1, II, and III, at an FAR of 0.1%.
Receiver operating characteristics (ROC) curves for the ROC
I, ROC 1II, and ROC III masks are also shown in Fig. 8. When
compared to the state-of-the-art verification rates provided in
Table I, we see that our proposed scheme does not improve
the state-of-the-art performances when used in the verification
mode. We believe that fast registration of all the gallery scans
with the probe image through the use of an AvFM is very effi-
cient for fast matching computation in the identification mode.
However, a further step of regional pairwise registrations be-
tween gallery and probe facial parts could be very beneficial for
one-to-one matching in the verification mode where the speed
of matching is not as crucial as in the identification mode.

One important advantage of our approach is its speed:
Since the AvVFM-AvRM approach aligns all gallery faces
in the training phase, a single registration is sufficient for a
test face. The computational complexity of ICP-based rigid
registration is known to be O(PQ), where P and @ are the

TABLE X
VERIFICATION PERFORMANCE (%) OF THE AVRM-PC-LDA METHOD ON THE
FRGCv2 DATABASE. VERIFICATION RATES ARE COMPUTED AT FAR = 0.1%

Manual ~ Automatic
ROC 1 85.81 85.39
ROC 11 86.03 85.63
ROC 11 86.09 85.64

Yerification Rate (%)

50 i I I i 1 i i |
0 0.1 02 03 04 05 0B 07 08 08 1
False Acceptance Rate (%)

Fig. 8. Verification performance of the AVRM-PC-LDA method on automat-
ically landmarked FRGCv2 database for the ROC I, ROC II, and ROC III
masks. (Since the numerical values are very close, the three curves cannot be
distinguished.)

number of points in the probe and gallery faces, respectively
[9].The use of faster ICP implementations can reduce this
complexity to O(Q log P). However, the use of a single ICP is
still a significant advantage. In our implementation, we have
used unoptimized MATLAB code running on a 64-bit Core
i7 2.67-GHz PC with 12-GB RAM. The detailed timings for
processing a single test face are as follows: Detecting five land-
marks takes approximately 11 s: 8 s for curvature calculations
and the rest for other operations. Registration to the AvFM
takes 10 s. The second phase of registration involving eight
individual ICP registrations, each ranging from approximately
8-23 s (on the average, 15 s), is actually parallellizable. It is
remarkable that the rest of the distance calculations is negligible
due to reduced dimensions by LDA: under 3 ms per region for
the whole FRGCv2 gallery (466 faces).

V. CONCLUSION

In this paper, we have presented a fully automatic 3-D face
recognition system which exploits facial surface characteristics
to infer the identity of a person. Our focus was to design an ex-
pression insensitive face recognition system. Among other fac-
tors such as occlusions and large head pose rotations, facial ex-
pression variations present considerable challenges for a typ-
ical 3-D face recognition system. In order to achieve an accurate
identification system under severe expression variations, it is es-
sential to employ an efficient facial surface registration scheme.
The main contribution of our work is the utilization of compo-
nent-based regional registration methodology with the help of a
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generic face model and generic region models which has advan-
tages for 1) better registration under local facial surface defor-
mations, 2) fast search in identification mode, and 3) the appli-
cability of statistical feature extraction methods for unordered
3-D point data.

Our proposed locally rigid regional registration scheme has
shown to be resistant to circumstances where faces exhibit ex-
pression variations. Our regional registration scheme automat-
ically locates five facial landmarks around the nose region and
performs two-phase rigid alignment. In the first phase, a coarse
alignment is performed with a global AvFM and at the second
step, generic regional templates are independently fitted to a
given probe surface. Thereby, we can automatically divide any
given facial surface into its meaningful parts, registered to a
generic part model. The use of average facial region models
during the registration considerably reduces the time complexity
of the dense correspondence establishment with the gallery set.
We show that with the use of component-based methodology,
the performance of standard global ICP-based approach can be
significantly improved. On the FRGCv?2 set, this improvement
is from 68.34% to 88.11%.

We also study the use of better 3-D features in terms of clas-
sification performance. As opposed to using popular point co-
ordinate features, we propose to use curvature-based 3-D shape
descriptors, particularly principal curvature directions. We show
that principle curvature directions offer higher discriminative
power than the point sets. Especially, if a global registration
has been used, the accuracy gain is substantial. On the FRGCv2
set, the classification rate of a globally registered 3-D face rec-
ognizer improves from 68.34% to 87.15%. Together with the
use of component-based registration for curvature features, this
performance rate increases to 91.81%. This finding leads to a
conclusion that it is possible to utilize more effective 3-D fea-
tures than point coordinates, and principle curvature directions
are good alternatives.

The use of generic template-based alignment also provides a
natural ordering of 3-D facial features so that they can later be
considered as feature vectors. As opposed to unordered classical
point set matching methods commonly employed in 3-D face
recognition systems, ordered feature representation allows the
use of statistical pattern recognition techniques. We demonstrate
the strength of this methodology by utilizing the LDA-based
feature extraction method. For each separate facial region, we
form an LDA subspace and combine the decisions of local clas-
sifiers via several score/abstract-level fusion schemes. A partic-
ular advantage of using an LDA-based system is the low space
complexity of the biometric templates which also leads to a
very fast matching. With the use of LDA features computed
from depth measurements, we can achieve comparable perfor-
mance to the best reported rank-1 identification rate, 97.51%,
on the FRGCv?2 database using a standard evaluation protocol.
On this specific FRGCv2 experiment, 98.39% of the neutral
probes (1984 scans) and 96.40% of the non-neutral probes (1557
scans) are identified correctly. Similar performance figures are
also obtained on a more challenging multiexpression Bosphorus
face database. On the evaluation set of the Bosphorus data-
base, the proposed system attains 99.31% rank-1 classification
rate. These identification results show that the proposed AvRM-

based 3-D face recognition system with the use of discriminative
features can be able to deal with expression variations and per-
form quite accurately. While the regional registration can cope
with facial expression variations effectively, registering to an av-
erage model brings the ability to use dimensionality reductions
techniques such as LDA. By registering each facial region to a
common regional model (AvRM), we perform LDA in a smaller
space where the main mode of variation is based on identity.
Hence, the LDA in the regional spaces is able to capture iden-
tity variations better.

An interesting aspect of this work has been the use of two very
different 3-D databases for experimental validation. While the
FRGCv2 database is a commonly used benchmark, it uses a high
sensitivity sensor that has a high capture time. The Bosphorus
database has been collected with a less expensive device with
a different sensor technology. The captured data is noisier, and
the expression variation is much larger in the captured faces.
We have shown that our techniques are valid, and roughly com-
parable, in both databases. Furthermore, we have shown that
cross-database training is possible and beneficial. Future studies
must investigate aggregation of data from different sensors.
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