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Abstract—Template protection techniques are used within
biometric systems in order to safeguard the privacy of the
system’s subjects. This protection also includes unlinkability, i.e.,
preventing cross-matching between two or more reference tem-
plates from the same subject across different applications. In the
literature, the template protection techniques based on fuzzy com-
mitment, also known as the code-offset construction, have recently
been investigated. Recent work presented the decodability attack
vulnerability facilitating cross-matching based on the protected
templates and its theoretical analysis. First, we extend the theoret-
ical analysis and include the comparison between the system and
cross-matching performance. We validate the presented analysis
using real biometric data from the MCYT fingerprint database.
Second, we show that applying a random bit-permutation process
secures the fuzzy commitment scheme from cross-matching based
on the decodability attack.

Index Terms— Biometrics, data security, data privacy, secure
biometric data, template protection.

I. INTRODUCTION

W HEN using an application based on biometrics, first
a reference template is generated from the biometric

sample provided in the enrolment phase for later use. In the
authentication phase, a new biometric sample is acquired and
compared with the reference template. Hence, the application
requires this reference template for a successful authentication
and, therefore, it needs to be stored. Basically, there are two op-
tions of storage, namely on a token carried by the subjects them-
selves or in a centralized database. The latter case is considered
to be more convenient for the subjects. However, storing unpro-
tected biometric reference templates in centralized databases for
each application increases the privacy risk. For example, if these
databases are compromised, an adversary could check the types
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of applications or services a specific subject has subscribed to.
In the literature, this is known as cross-matching.

Therefore, it is not a surprise that the ISO guidelines [1] dic-
tate the avoidance of centralized databases if possible. Some
known countermeasures to safeguard the privacy and security
by enforcing some of the ISO guidelines are 1) the practice of
data separation, where the most privacy sensitive information
is stored on an individual smartcard or token, 2) the use of data
minimization principles, 3) the use of classical encryption tech-
niques such as DES, AES, RSA to augment the confidentiality
or integrity of the reference template, and 4) the implementa-
tion of template protection which creates irreversible, renew-
able, and unlinkable reference templates, i.e., protected refer-
ence templates. In our work, we focus only on the template pro-
tection method.

In the literature, numerous template protection methods such
as the Fuzzy Commitment Scheme (FCS) [2], Helper Data
System (HDS) [3]–[5], Fuzzy Extractors [6], [7], Fuzzy Vault
[8], [9], and Cancelable Biometrics [10] have been proposed,
with the claim of preventing cross-matching. However, recently
it was presented in [11] that fuzzy vaults were susceptible to
cross-matching and [12] solved this issue by hardening the
protected reference template using a secret key or password
provided by the subject. The requirement of keeping the key or
password secret, however, has a serious impact on the conve-
nience of the biometric system.

In the FCS construction, also known as the code-offset con-
struction, the binary vector extracted from the biometric sample
is XORed with a randomly selected codeword resulting into aux-
iliary data that is stored as part of the protected template. Cer-
tain implementations of the Helper Data System, Fuzzy Extrac-
tors are based on this FCS construction. Possible cross-matching
vulnerabilities for template protection systems based on the FCS
construction are briefly discussed in [13] and are based on attack
methods using exhaustive search. More recently, a new vulner-
ability known as the decodability attack has been published for
the case when the FCS is based on linear error-correcting codes
(ECCs). To the best of our knowledge, the cross-matching vul-
nerability of the FCS construction was first published by the pre-
sentation of Stoianov at the European Biometrics Forum (EBF)
Biometric Encryption Seminar [14]. Cross-matching is made
possible by simply checking whether decoding the XOR of two
auxiliary data elements stored in different databases leads to a
valid codeword. If it leads to a valid codeword, the two auxil-
iary data most likely belong to the same subject and is labeled
as genuine. Therefore, this vulnerability is also known as the
decodability attack. More recently, a theoretical analysis was
presented in [15] where the authors determine the probability
that the decodability attack incorrectly labels two auxiliary data
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from different subjects as genuine under the assumption that
across the whole population the bits of the binary vector are in-
dependent and uniform.

1) Contributions: As our first contribution, we extend
the theoretical analysis from [15] and show the relationship
between the cross-matching performance with the template
protection system performance itself. Furthermore, we em-
pirically evaluate the theoretical analysis using real biometric
data from the MCYT fingerprint database and show that if no
care is taken cross-matching based on the decodability attack is
indeed possible. However, as our second contribution we will
show that this vulnerability can be prevented by implementing
a bit-permutation or shuffling randomization process on the
binary vector. Consequently, the cross-matching performance
is close to random.

The outline of this paper is as follows. In Section II, we
briefly describe the FCS construction, present the properties of
a linear error-correcting code (ECC), and discuss a probability
estimation case extensively used in the remainder of this work.
In Section III, we discuss the possible cross-matching attacks
including the newly published decodability attack [14], [15]. In
Section IV, we theoretically analyze both the cross-matching
and template protection system performance and show their
relationship. Validation of the theoretical performances are
conducted in Section V using the MCYT fingerprint database.
In Section VI, we show that a bit-permutation randomization
process reduces the effectiveness of the decodability attack.
Conclusions are given in Section VII.

II. PRELIMINARIES

The template protection scheme under consideration is
known as the Fuzzy Commitment Scheme (FCS) from [2] and
is based on an error-correcting code (ECC). We first discuss
the notations related to the ECC and thereafter we present the
FCS. Furthermore, we discuss the estimation of the probability
mass function (pmf) of the number of bit errors when XORing
two random binary vectors, which is extensively used in the
remainder of this work.

A. Linear Error-Correcting Code

We denote a -error linear binary error-correcting code as
, where is the length of the codeword , the

length of the message or key , and the error-correcting ca-
pability.

The ECC Encoder (Enc) function converts the key
into its corresponding codeword .

The codebook is the set of all valid codewords of the ECC
with cardinality . As the distance function we use
the Hamming distance denoted as and the Hamming
weight denoted as . The minimum distance of the codebook

is ; therefore, it can correct up to bit errors.
Because of the linearity property of the ECC it holds that the
XOR operation between any pair of codewords leads to another
codeword from the same codebook , namely , :

, with . Furthermore, we define to be
the set of possible weights of the codewords from , while
the function returns the number of codewords with
weight , with .

TABLE I
EXAMPLES OF THE BCH ECC GIVEN BY THE CODEWORD �� � AND KEY �� �
LENGTH, THE CORRESPONDING CORRECTABLE BITS �� �, AND THE RELATIVE

ERROR CORRECTING CAPABILITY � ��

Fig. 1. Fuzzy commitment scheme (FCS) combined with a bit extraction
module.

Given a word and the smallest distance to

any codeword defined as , the
ECC Decoder (Dec) function returns the key corresponding to
the closest codeword from the codebook if the smallest dis-
tance is smaller than or equal to the error-correcting
capability , i.e., . When the smallest distance is
larger than the error-correcting capability, , then
the word is not decodable and the ECC Decoder function either
returns a decoding error or randomly selects a key.

In our experiments, we use the linear block type ECC “Bose,
Ray-Chaudhuri, Hocquenghem” (BCH), with some
settings given in Table I. For the BCH ECC, we use the max-
imum error-correcting capability limited to around 25% of
the codeword size (see Table I), and if the word is not decod-
able it outputs the first bits of the word as the key.

B. Fuzzy Commitment Scheme

The fuzzy commitment scheme (FCS) from [2] is one of the
first template protection techniques and is based on the bit com-
mitment technique known within the field of cryptography. The
FCS works on discrete biometric data, while in practice most
biometric data are continuous. Fig. 1 portrays the FCS construc-
tion combined with a bit extraction module.

In the enrolment phase, the real-valued column feature
vector is extracted from each biometric enrol-
ment sample by the feature extraction algorithm. From the
feature vectors, a single binary column vector is
created. For each component, we extract a single bit using a bit
extraction scheme based on thresholding, where the mean of
the background density is chosen as the threshold and estimated
from a disjoint training set [3], [4], [16]. Prior to thresholding
the mean of the feature vectors is taken. Furthermore, a
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Fig. 2. Illustration of the FCS construction principles. The grid of small dots
represent the word space ��� �� , while the bigger dots represent the code-
words from � with the error-correcting capability represented by the circles with
radius � . AD shifts the enrolment binary vector � to the codeword � . In the
verification phase, the same shift is applied to � and will lead to a match if it
is within the radius � of codeword � . Hence, all binary vectors � within the
dashed circle with radius � and center point � will lead a match.

random key is created and encoded by the ECC
Encoder module into a codeword from . The
fundamental property of the FCS is the XOR operation of the
codeword and the binary vector creating the offset AD
as helper data, AD . The helper data is also
referred to as the Auxiliary Data in [17], in line with standard-
ization activities in ISO [1]. Together with the hash of , also
referred to as the Pseudonymous Identifier PI , we obtain the
protected template. As described in [2], is equivalent to
the witness with which we commit the codeword using the
XOR operation considered to be similar to the one-time-pad
encryption algorithm. The outcome of the commitment is the
AD and PI pair, which together is also known as the blob.

In the verification phase, the binary vector is cre-
ated by quantizing the mean of the verification feature
vectors . Hereafter, the auxiliary data AD is XORed
with resulting in the possibly corrupted codeword

, where the
Hamming distance indicates the
number of errors corrupting the codeword . Decoding by
the ECC Decoder module leads to the candidate key . The
candidate pseudonymous identifier PI is obtained by hashing

. A match is returned by the Comparator module if both
PI and PI are equal, which occurs only when and are
equal. Both secrets are equal when the Hamming distance
between the binary vectors and is smaller or equal to the
error-correcting capability of the ECC, .
Hence, to successfully decommit the blob, a new witness
has to be provided that is within bit differences with the
original witness .

An illustration of the code-offset is presented in Fig. 2, where
the -dimensional problem is simplified into a 2-D problem.
The grid of small dots represent the word space , while
the bigger dots represents the codewords from with the error-
correcting capability represented by the circles with radius .
The auxiliary data AD shifts the enrolment binary vector
to the codeword . In the verification phase, the same shift is
applied to and will lead to a match only if it is within the
radius of codeword . Hence, all binary vectors within

the dashed circle with radius and center point will lead to
a match.

In this work, we consider two cases of the FCS, namely the
unbalanced and balanced system. For the unbalanced system
there are enrolment samples with verification
samples, while for the balanced case the number of verification
samples is equal to the number of enrolment samples, .

C. Hamming Weight After XORing Two Random Binary Vectors

In many derivations in the remainder of this work we need
a solution to the following problem. Consider the case of
having two words and randomly selected from
with weights and , respectively. Defining the number
of bit errors or differences between and , namely

, we are interested in the probability mass
function (pmf) of .

Lemma II.1 (Hamming Weight After the XOR of Two Bi-
nary Vectors): Given two random binary vectors and
with Hamming weight and , respectively, and defining

, and , the number
of possible bit errors is given by the set

with probability
defined as

if

if

(1)

where , and .
Proof: Because and have and bits of value 1,

respectively, the minimum number of possible errors equals the
difference . For example, let , i.e.,

and , and the first bits of have
a value 1 while the remaining bits have a value 0. The
case with errors can be obtained by allocating the bits
of value 1 as the first bits of . Overall, there are possible
combinations of having bits of value 1 of at locations
where the bits of have a value of 1. Thus, the probability of
having errors is equal to the ratio of the number of possi-
bilities with respect to the number of binary vectors of length

with weight , namely .
Note that two bit errors are introduced if one bit of value 1 of
is allocated where has a bit value of 0 instead of value 1.

Hence, there are possible combinations of in-
troducing 2 bit errors. The first binomial coefficient is
the number of possibilities of locating bits of value 1 of

at the locations where has bits of value 1. The second
binomial coefficient is the number of possibilities of
allocating a single bit of value 1 of at the locations
where has a bit of value 0. Similarly, four bit errors are in-
troduced when two bits of value 1 of are allocated where
has a bit value of 0 with possible combinations.

The maximum number of bit errors is introduced by
allocating all bits of value 1 of at locations where the
bits of have a value 0. When , the number of
bits of of value 0 is smaller than the number of bits of
of value 1, namely , because of the
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Fig. 3. Two cases of the cross-matching attack scenario between two appli-
cation databases that are accessible by the adversary. In the first case (Case 1),
both PI and AD are stored in the centralized database. In the second case (Case
2), only AD is stored in the centralized database accessible by the adversary,
while AD is assumed to be stored in a secure way and is not accessible by the
adversary.

assumption. Consequently, the maximum number of bit errors
is limited to .

III. CROSS-MATCHING ATTACKS

The setup of the cross-matching analysis is depicted in Fig. 3.
We consider the scenario where there are two applications using
the same biometric trait and identical template protection al-
gorithms. Each application creates a protected template from
independent enrolment samples of its subjects and stores it
into its centralized database. We consider both centralized
databases to be accessible by the adversary. Furthermore, we
consider two cases differing on what is stored in the centralized
database. In the first case, Case 1, both the auxiliary data
AD and the pseudonymous identifier PI are stored. Hence,
the protected template for the first and second application is
the pair PI AD and PI AD , respectively. In the
second case, Case 2, we consider only AD to be stored in
the centralized databases that are accessible, while PI may be
stored within a personal storage device such as a smart-card
which is not compromised. The adversary has access to all
protected templates in both databases and tries to find subjects
that are enrolled in both applications. Two protected templates,
each taken from a different database, are compared by a
cross-matching classifier in the Comparator module in order
to determine whether they were derived from the same subject.
The cross-matching classifier computes a cross-matching dis-
tance score on which to base its decision whether the two
protected templates belong to the same subject (genuine) or not
(imposter). The comparison between the protected templates
of the same subject is referred to as a genuine comparison and
between different subjects as an imposter comparison. The
false match rate (FMR) at cross-matching is the rate of
claiming two templates to be from the same subjects at an
imposter comparison. The false nonmatch rate (FNMR) at
cross-matching is the rate of claiming two templates to be
from different subjects at a genuine comparison. Ideally, these
error rates should be as large as possible.

In this section, we discuss several cross-matching classifier
methods. We discuss the exhaustive search approach for Cases

1 and 2. We omitted the third possible case where only PI is
stored in the centralized databases that are accessible by the ad-
versary, because it can be easily shown that cross-matching is
not possible. If the key could be derived from PI, they could
still not be used for cross-matching because the keys were gen-
erated randomly within each application. Furthermore, we dis-
cuss the recently published method known as the decodability
attack [14], [15], which is not based on an exhaustive search and
only consists of an XOR and decoding operation by exploiting
the linearity property of the ECC.

A. Exhaustive Search Attack

Given two protected templates, the exhaustive search type of
the cross-matching attack relies on searching the complete code-
book in order to determine whether the two protected tem-
plates belong to the same subject.

1) Case 1: PI and AD : Recall that the pseudonymous iden-
tifier PI is the hash of the randomly selected key . Because
the PI is part of the protected template, a possible attack would
be to search the key from the PI. Assuming that the probability
of a collision is small, i.e., the probability that two different
keys have the same hash value, the key leading to the hash
value equal to PI can be found by searching the key space of

and taking its hash value. The enrolled binary vector
can be obtained by computing the XOR of auxiliary data

AD and the codeword corresponding to the obtained key ,
namely AD . By performing this exhaustive search
on each protected template, we obtain the binary vector
and for the first and second application, respectively. As
the cross-matching distance score we use the Hamming
distance . On average only half
of the key space has to be searched, hence the average effort
of finding the key corresponding to PI is . Consequently,
finding both keys separately only takes twice the effort, namely

.
2) Case 2: Only AD : Because PI is not available, the dis-

tance measure has to be obtained from AD only. By defining
the XOR operation of the two auxiliary data as AD AD
AD , we can rewrite AD as

(2)

where and are the binary vectors (code-
words) in the enrolment phase for application 1 and 2,
respectively, is the error pattern between the enrolment
binary vectors, and we used the property of linear codes
where the XOR of two codewords leads to another code-
word from the same codebook. A graphical representation
of the XOR operation is presented in Fig. 4. Hence, all
possible error patterns can be computed by exhaustively
taking the XOR of AD with any codeword from , which
is an effort of . As the cross-matching distance score

we take the error pattern with the smallest Hamming
weight, namely . Note that
it holds that only when

, because in this case will lead
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Fig. 4. Illustration of the XOR of AD and AD obtained from the enrolled
binary samples � and � from the same subject.

to the smallest distance. For the case when
there is a probability that we obtain . Because the dis-
tance of AD to is larger than , there is a probability that
another neighboring codeword is closer, due to the existence of
multiple codewords at the minimum distance . The
obtained cross-matching score is equal to
only if the error pattern can be rewritten as with

and .
Note that when the codeword is known, it is not possible to

derive the binary vectors and , because the codewords
and are not known. Because of the linear property of the

ECC there are possible combinations of and that lead
to . Hence, with this cross-matching attack, we obtain only
a distance measure between the two enrolment binary vectors

and but not their actual value.
The effort of determining the cross-matching distance score

is case-dependent. If we obtained a cross-matching score
smaller than , the average effort of the corresponding

cross-matching attack equals , because the search can be
stopped once a score smaller than has been obtained. When

then the complete codebook had to be searched and
the effort is then .

B. Decodability Attack

The decodability attack method presented in both [14] and
[15] is based on cross-matching with only AD . For linear
ECCs, they show that when AD is decodable, the two pre-
sented auxiliary data are most probably derived from the
same subject. More formally, if AD is successful, the
cross-matching classifier outputs a match. From (2) we can
derive that AD is decodable when or
with and . Hence, the decodability attack
exploits the same underlying mechanism as shown in Case
2 in Section III-A and has, therefore, the same performance.
However, the effort is significantly reduced towards a single
decoding operation by using the decoding function of the ECC.
Similarly, only a distance measure between the binary vectors

and can be obtained but not their actual value.

IV. RELATING THE CROSS-MATCHING AND SYSTEM

PERFORMANCE

In Section III, we presented several cross-matching attack
methods from which the decodability attack is the most serious

one because of its reduced effort towards a single decoding
operation of the ECC. In this section, we will determine the
cross-matching classification performance in terms of the FMR
and FNMR under the assumption that the subjects are in both
databases. Furthermore, we compare the cross-matching perfor-
mance with the system performance of the fuzzy commitment
scheme. We assume the extracted bits to be independent with
equal bit-error probability.

A. False Match Rate Relationship

Lemma IV.1 (FMR Relationship): Under the assumption
that the bits of across the population are indepen-
dent and uniform and given a -error binary linear ECC, the
cross-matching and system FMR, and , respectively,
at the error correcting threshold are related according to

.
Proof: The false-acceptance rate for the template protec-

tion system depends on the probability mass function (pmf)
of the Hamming distance at imposter compar-
isons. As presented in [18], under the assumption that the bits of

across the population are independent and uniform, the im-
poster Hamming distance pmf can be modeled by the binomial
density

(3)

with dimension and bit-error probability
, where is the bit-error probability at imposter com-

parisons. Due to the single-bit extraction scheme employing a
quantization threshold that is equal to the background mean, the
bit-error probability does not depend on either the number
of enrolment or verification samples. Hence, the false-
acceptance rate at threshold is the following sum of the
binomial pmf:

(4)

where is the number of vectors in a sphere
with radius in . An illustration of the binary vectors
that will lead to a match at the verification phase is depicted in
Fig. 2. Examples of at several BCH ECC settings
are given in Table II. Increasing the codeword size decreases
the FMR. Increasing the key size and, therefore, decreasing
the error-correcting capability , also decreases the FMR.

As shown in Section III-B, the FMR of the cross-matching
classifier is the probability that the XOR of the auxiliary
data from two different subjects is decodable. As defined in [15],
under the assumption that the bits of are independent and
uniform with , the is equal to the probability
of randomly selecting a word that is decodable,
i.e., within bits of any codeword from , namely

(5)
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TABLE II
EXAMPLES OF � AND � FOR DIFFERENT � � ����� ��� ��� AND

�� � � � SETTINGS

Fig. 5. Illustration of the binary vectors that would lead to a match.

An illustration of the binary vectors that will lead to a match
is shown in Fig. 5. The is equal to the ratio of all
possible vectors within the dashed circles with respect to all pos-
sible vectors in the space. Examples of at
some BCH ECC settings are given in Table II. Increasing the
codeword size decreases ; however, increasing
the key size does not always decrease . Note
the special case of with , where

because the full space is decodable. Thus,
this setting of the BCH ECC coincides with the Ham-
ming code which is known to be perfect.

By combing the system FMR from (4) and the cross-
matching FMR from (5), we obtain

(6)

which implies that the cross-matching FMR is times larger
than the system FMR under the assumption that the bits of
across the population are independent and uniform.

B. False Nonmatch Rate Relationship

Lemma IV.2 (FNMR Relationship): Under the assumption
that the bits of are independent with equal bit-
error probability , given a balanced system where
and a -error binary linear ECC, the cross-matching at the
error correcting threshold is smaller than the system FNMR

, namely .
Proof: For the template protection system, a false non-

match occurs when at genuine compar-
isons. Similar as in Section IV-A, we model the pmf of with
a binomial density with dimension , however, with bit-error

probability . The theoretical FNMR of the template protec-
tion system at threshold , , is the following sum of
the binomial pmf:

(7)

For the cross-matching classifier, is the probability that
the XOR of the auxiliary data AD and AD from the same
subject at different databases is not decodable, hence an non-
match at a genuine comparison. As discussed in Section III-A,
the decodability probability is determined by the Hamming dis-
tance between the binary vectors at enrolment, namely

. Because of the balanced system assumption the
bit-error probability is also equal , consequently the pmf of

is equal to the pmf of
and for convenience we use in the remainder of this section.
As discussed in Section III, there is also a probability that when

, the XOR of the auxiliary data AD will also be decod-
able and hence correctly labeled as genuine. We define the de-
codability probability as

(8)

which has to be taken into account when estimating ac-
cording to

(9)

Observe that from (9) is equal to from
(7) when for . In other words,

stating that should not be decodable
for any cases of and with error pattern of weight .
However, if there is at least one case
of and with error pattern of weight where AD is
decodable. Hence, it suffices to prove that there is at least one
case of and with error pattern of weight where
AD is decodable.

Let the codebook be with minimum dis-
tance , where the codewords and are used in
the enrolment phase of applications 1 and 2, respectively, and

. Note that the XOR of the auxiliary data can be
rewritten as with

and is decodable for the cases only if the error
pattern can be rewritten as with and

. Hence, there are at least two cases where AD
with is decodable, namely the cases AD or
AD where .

Lemma IV.2 only states that for
any settings of and . In order to know the actual differ-
ence between and , we have to deter-
mine given a specific codebook . Assume we
have an ECC with the codebook consisting of one codeword
of weight 0 and and codewords of weight

. Because of the properties of linear codes, each codeword has
neighbors at a distance and one codeword at a distance

. Consider the case of being at codeword and having a bi-
nary vector with errors with respect to , hence having the
weight . There are neighboring codewords at a distance
of bits from , thus they have a weight of . Furthermore,
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Fig. 6. � ��� � � �� values for different � settings at � � ���� ���
(a) � � ��; (b) � � ��.

the error-correcting capability is equal to . The fundamental
question we want to answer is the decodability probability of
the binary vector of . If its weight is within the error-cor-
recting capability , , will always be decodable with
respect to . However, if , the binary vector will
not be decodable with respect to but there is a probability
that is decodable with respect to one of the neighboring
codewords at distance . will only be decodable if its dis-
tance to the neighboring codewords is smaller or equal to , i.e.,

. In Section II-C we have discussed the prob-
ability of the weight of the binary vector
after XORing two binary vectors of length and weights
and , respectively. Hence, the decodability probability with
respect to the neighboring codewords of weight is equal to

. Similarly, the decodability prob-
ability with respect to the codeword has to be included,
which is equal to .

For a general codebook , the decodability probability at
errors, , is given by

(10)

where is the set of the unique weights of the codewords
from and the function returns the number of code-
words with weight , with . Some ex-
amples of for the BCH code we consider are por-
trayed in Fig. 6 for and different settings. From
these figures, we can conclude that when ,
will always be decodable, because of the existence of a comple-
mentary codeword at distance with respect to each codeword
from . Furthermore, when at most of the cases
where are still decodable, which is significantly
decreased to when . Some examples of
and for different and
settings are given in Table III. There is no significant difference
between and for the case; however, there is
a clear difference for the case.

C. Performance Relationship

1) Conjecture IV.1 (Performance Relationship): Under the
assumption that the bits of are independent with
equal bit-error probability and at genuine and
imposter comparisons, respectively, given a balanced system
where , the cross-matching performance is worse than
the system performance.

TABLE III
COMPARISON BETWEEN � AND � FOR DIFFERENT � � �������,

�� � � 	, AND � � �
	��� 
	�
� SETTINGS

With Lemma IV.1 we showed that FMR between
the cross-matching and system is related according to

, where the cross-matching
FMR is worse than the system FMR. However, with
Lemma IV.2 we showed that the FNMR at cross-matching
is better than the system FNMR; however, the difference is
marginal at larger codeword lengths. In order to compare the
overall performance we use the receiver operating character-
istic (ROC) curves as illustrated in Fig. 7 for the
and settings. The system performance is given by
the ROC labeled as TP , while the cross-matching performance
is indicated by the points labeled with different markers rep-
resenting the different settings of the ECC. Note that
a performance is considered as being better when it is closer
to the upper-left corner of the graph. Because the system ROC
curve is clearly closer to the upper-left corner, we have shown
that the system performance is better than the cross-matching
performance.

V. EXPERIMENTS

In this section, we empirically estimate both the template pro-
tection system and cross-matching performance based on a fin-
gerprint database in Sections V-B and V-C, respectively. The
biometric database, feature extraction, and evaluation protocol
are described in Section V-A.

A. Experimental Setup

1) Biometric Modality and Database: The database we use
is the Ministerio de Ciencia y Tecnología (MCYT) containing
fingerprint images from a capacitive and optical sensor as de-
scribed in [19]. It contains 12 images of all 10 fingers from

subjects for each sensor. However, we limit our
dataset to the images of the right-index finger from the optical
sensor.

2) Feature Extraction Algorithms: In order to compensate
for possible translations between the enrolment and verifica-
tion measurements, a translation-only prealignment step is per-
formed during the feature extraction process. Such prealign-
ment requires extraction of the core point which is performed
according to the algorithm described in [20]. Around the core
point we define a 17 17 grid with eight pixels between each
grid point. The feature extraction algorithm extracts a feature
value on each grid point. Our feature extraction algorithm failed
to extract a feature vector from a single subject, so we excluded
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Fig. 7. Performance comparison between the template protection system �TP � and cross-matching performance (CM) for the (a) � � �� and (b) � � ��
case, under the assumption of independent bits with bit-error probabilities � � ��� and � � ����, and a balanced system � � � . The suffix indicates � .

Fig. 8. ROC curve of the balanced and unbalanced and �TP � template protec-
tion system derived from the � � � �� � � � scores for the � � �������
settings. For the balanced case, we have � � � � �, while � � � and
� � � for the unbalanced case.

it from the dataset, hence there are effectively sub-
jects.

The feature extraction method is based on the Gabor filter re-
sponse, described in [21], where each grid point is filtered using
a set of four 2-D Gabor filters at angles of ,
respectively. The feature vector is the concatenation of the mod-
ulus of the four complex responses at each grid point, resulting
into a feature vector dimension of .

3) Performance Evaluation Protocol: The performance eval-
uation protocol consists of randomly selecting 219 out of

subjects as the training set and the remaining 110 subjects
as the evaluation set, which is referred to as the training-evalua-
tion-set split. To decorrelate the feature components we use the
principle component analysis (PCA) and the linear discriminant
analysis (LDA) techniques. The PCA and LDA transformation
matrices are computed using the training set, where is the
reduced dimension after applying the PCA transformation and

is the reduced dimension after applying the LDA trans-
formation. Furthermore, the template protection system param-
eters such as the quantization thresholds, used within the Bit
Extraction module, are also estimated on the training set.

From the evaluation set we evaluate both the system and
cross-matching classification performance.

• For the system performance evaluation, samples of
each subject are randomly selected as the enrolment sam-
ples while the remaining samples are considered as the
verification samples. The protected template is generated
using all the enrolment samples and compared with
disjoint groups of verification samples where the mean
of the feature vectors is taken prior to the bit extraction
process.

• For the cross-matching performance evaluation, we ran-
domly select samples for the enrolment for the first ap-
plication and another random samples for the second
application as such that we have distinct samples for each
application. For each application we create the protected
template and compare all protected templates using the
cross-matching classifier.

This split of creating the enrolment and verification set or the
enrolment set for application one and two is referred to as the
enrolment-verification split. If the verification sample is from
the same subject as of the protected template, it is referred to as
a genuine comparison, otherwise it is an imposter comparison.

Both the training-evaluation-set and the enrolment-verifica-
tion splits are performed five times. Note that the splits are per-
formed randomly; however, the seed at the start of the protocol
is always the same, hence all the splits are equal for the perfor-
mance tests at different settings. Therefore, the splitting process
does not contribute to any performance differences.

B. Template Protection System Performance

We evaluate the template protection system classification per-
formance using the evaluation protocol in Section V-A3 with

and . The case where is referred
to as the balanced TP case and the unbalanced TP case
when .

The optimal setting was found to be around 220 com-
ponents and we set equal to to evaluate the perfor-
mance. Note that we assume the FCS construction to act as a
Hamming distance classifier as discussed in Section II, hence we
actually evaluate the scores and limit
the ROC curve at the threshold equal to . The ROC curves for

settings are portrayed in Fig. 8. The ROC curves
are obtained by varying the and settings. For both set-
tings, the balanced case has a better performance because taking
the average of feature vectors suppresses the noise during
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Fig. 9. ROC curve of cross-matchingt using AD (CM) at different � and � indicated by the suffix. As reference, the ROC curve corresponding to � �
� �� � � � is used and is labeled as CM .

TABLE IV
EXPERIMENTALLY OBTAINED SYSTEM PERFORMANCE �� � � �

AND CROSS-MATCHING PERFORMANCE �� � � � FOR DIFFERENT

� � ���� ��� AND �� � � � SETTINGS

verification which significantly improves the performance. Be-
cause of the BCH error-correcting limitation the FNMR is lower
bounded and the FMR is upper bounded. The performance of
the case is better; however, the BCH limitation has a
greater impact on the FNMR and FMR.

Note that the experimentally obtained , given in Table IV,
for both the balanced and unbalanced case are very similar, how-
ever they deviate from the theoretical expectation presented in
Section IV. Comparing Tables II and IV, the experimentally ob-
tained at is roughly an order of magnitude larger for the

case, while twice larger for the case. We
conjecture that the main cause of the deviation is the fact that
the bits are still slightly dependent, while the theoretic work as-
sumed independent bits. We omitted the case due to
the limited dataset with respect to its small theoretic FMR at
the maximum error-correcting capability , namely

.

C. Cross-Matching Performance Evaluation

As discussed in Section V-A3 for the cross-matching (CM)
performance evaluation, we create two datasets containing the
same subjects with distinct samples of each subject.
The two datasets represent the enrolment samples for the two
applications. From each dataset we compute the binary vectors

and , and auxiliary data AD and AD from two
randomly generated codewords and , respectively.

The cross-matching classifier from the decodability attack, as
presented in Section III-B, is based on the property whether the

XOR of the auxiliary data AD AD AD is decodable,
i.e., AD is successful, where is the ECC decoding
function. When successful the classifier outputs a match, other-
wise a nonmatch. The decoding function of the BCH ECC we
use does not return an error when it is not decodable, but returns
the first bits of AD as the key instead. Therefore, we com-
pute the cross-matching distance score as

(11)

where is the distance measure of the cross-matching clas-
sifier, and and are the encoding and decoding function
of the BCH ECC, respectively. Consequently, we can extend the
cross-matching classifier beyond the decision of either match or
nonmatch with a score indicating how similar the comparison is.

The cross-matching performance ROC curves (CM) are de-
picted in Fig. 9 for and different settings.
Because of the availability of a score value instead of a decision,
the ROC curves consist of multiple points instead of a single
point as in Fig. 7, where the outmost right-upper point corre-
sponds to the decision-based performance. The and
values of these points are provided in Table IV. We also show the
ROC curve from the Hamming distance of the enrolled binary
vectors, , indicated by CM . Note that the
CM ROC curve is equal to the balanced system performance
ROC curve TP from Fig. 8. Thus confirming the assumption
made in Section IV-B that the pmf of is equal
to the pmf of . Note that when comparing
Tables II and IV, the experimentally obtained are close to
their theoretical expectation. Also note that we do not observe
the same order of estimation errors as for the case of the system
performance .

With Fig. 9 we also experimentally validate Lemma IV.1 dic-
tating that the cross-matching performance is always worse than
the balanced system performance. Also note that the difference
significantly increases when is decreased and thus increasing

. However, the cross-matching performance can be better than
the unbalanced system performance as shown by the compar-
ison of the TP and TP ROC curves from Fig. 8
with the CM-7 and CM-15 curves from Fig. 9(a) and (b), re-
spectively. Hence, designing a balanced system with
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Fig. 10. Comparison between � � � �� � � � and � � � ��� ��� � for � � ���� ��� and different 	� � � 
 settings (a) � � ��, � � ��,
(b) � � ��, � � ��, (c) � � ��, � � �, (d) � � ��, � � �, (e) � � ��, � � �, (f) � � ��, � � �, (g) � � ��, � � �, and (h) � � ��, � � �.

guarantees that the cross-matching performance is always worse
than the system performance itself.

Comparing Tables II and IV, for further analysis we show
the comparison between the cross-matching Hamming distance

and distance score in Fig. 10. Note that the attacker
only knows but not . These figures illustrate that
for both the genuine and imposter comparisons if
then . Furthermore, from the imposter comparisons,
notably for the case, we also observe that when

then it holds that , because
for each codeword there also exists its complementary one with
a distance of bits. For the case when , AD
is occasionally decodable leading to a score with
probability from (10) only when we can rewrite

with and .
Also note that the average of the scores , for the cases

when is not decodable and leading to a score ,
decreases when decreases. Because of the systematic imple-
mentation of the BCH ECC and the fact that the decoding func-
tion of the ECC returns the first bits as the key, guarantees
that the first bits between the corresponding codeword and
AD are always equal while the remaining bits will be random.
Hence, the expected bit difference is equal to .

VI. DECODABILITY ATTACK RESILIENCE WITH

BIT-PERMUTATION RANDOMIZATION

We have shown that cross-matching is possible by using the
decodability attack. However, if the system is designed as such
that it is balanced, namely , the cross-matching per-
formance is always worse than the system performance, but still
having a discriminating power. Ideally, it is preferred that the
cross-matching performance is as close as possible to random.

In this section, we introduce a randomization module within
the FCS construction rendering the cross-matching performance
close to random. As illustrated in Fig. 11, prior to the XOR oper-
ation of the binary vector and the codeword, we randomize

Fig. 11. Code-offset system with randomization.

by multiplying it with a bit-permutation matrix , ob-
taining , where is a matrix derived by
randomly permuting the rows of the identity matrix and is the
set of all possible permutation matrices. Because is an or-
thogonal matrix, its inverse is equal to its transpose, .
At each enrolment, a new randomly generated bit-permutation
matrix is used and stored as auxiliary data AD and is consid-
ered as public. It is important to note that in the current ap-
proach the randomization matrix is not considered to be se-
cret, which is in contrast to earlier methods such as [13].

The XOR of the auxiliary data AD can now be rewritten as

(12)

with
being the number of errors after permutation instead of

when no permutation has been applied.
Because of the randomization process it is likely that at genuine
comparisons more errors are introduced, namely ,
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Fig. 12. The pmf of � � � � � � from (13) at genuine comparisons
for settings of � � ������ ��������� and � � ������� compared with
a binomial distribution � �� �� � ���	 (a) � � �� (b) � � ��.

hence decreasing the probability that AD is decodable, which
significantly decreases when (see Fig. 6). As discussed
in Section III, under the assumption of having independent bits
with bit-error probability between genuine comparisons,
the pmf of can be modeled by a binomial distribution with
dimension and , namely . How-
ever, the pmf of will depend on both the pmf of and on
the effect of the permutation, which we will analyze further.
When the weight of the binary vectors and are and

, respectively, the probability of number of errors after
randomizing them is thus equal to as
discussed in Section II-C. Hence, the expected probability of
irrespective of the weights is the average of

across all possible weights. The possible
combinations of and depend on the number of errors

between and . If and are known, then the
probability of is determined by ,
because the error pattern can be considered as another binary
vector of weight . With the probability of randomly se-
lecting a binary vector of weight equal to ,
we obtain

(13)

Fig. 12 portrays the pmf of at genuine comparisons obtained
with (13) for different settings of and

. As a reference, we use the case where is
a random binary vector with the pmf of its weight defined by
the binomial pmf . The figures show that the ex-
pected pmf of is very close to the case of being random, if
either and increases the difference becomes smaller. If

, the pmf of is equal to the case of being random.
Experimental results of the effects of the permutation ran-

domization process, based on the same experimental setup from
Section V, are shown in Fig. 13. We observe that the pmf of

at genuine comparisons is close, however not equal, to the
pmf at imposter comparisons, implying that it is difficult to dis-
tinguish a genuine comparison from an imposter comparison.
These results confirm the theoretical expectations presented in

Fig. 13. The pmf of � � � � � � at both the genuine (Gen) and
imposter (Imp) comparisons for (a) � � �� and (b) � � �� settings.

Fig. 14. (a) The pmf of � and (b) the cross-matching ROC curve on loga-
rithmic axes for � � �������, and the comparison of � against � �
� � � � for (c) � � �� and (d) � � ��, (a) � pmf. (b) ROC
curves (c) � � ��, 	 � �
, (d) � � ��, 	 � �.

Fig. 12. Note that due to the fewer number of genuine compar-
isons than imposter comparisons, the pmf for the genuine case
is more noisy.

Finally, the cross-matching performance with the random-
ization process is estimated based on the score from
(11) and the results are shown in Fig. 14. Fig. 14(a) depicts
the pmf of at genuine (Gen) and imposter comparisons
(Imp) for the settings. In contrast to the results
in Fig. 9, we also include the scores larger than . Both the
genuine and imposter pmfs are very similar, hence no distin-
guishing performance can be extracted by the adversary. The
cross-matching ROC curve for the settings are
shown in Fig. 14(b). As expected, the ROC curves are close to
the one of a random classifier whose ROC curve is defined by

. Because of the limited genuine comparisons, the
ROC curve for the case looks to be a bit worse than the
random classifier. Furthermore, the comparison between
and are portrayed in Fig. 14(c) and (d)
for the and case, respectively. Due to
the bit-permutation randomization process, the relationship
between and (the straight line in the lower left
quadrant), as observed in Fig. 10, no longer exists.
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A. Inverting the Randomization Process

The randomization process and the bit-permutation matrix
stored as auxiliary data AD are considered as public.

Hence, the adversary could apply the inverse on AD , namely
AD with , before applying the decodability

attack on AD . With the inverse process AD becomes

(14)

with . Note that due to the inverse operation, addi-
tional errors may be introduced by the fact that both codewords
are permuted by two different bit-permutation matrices, namely

. The additional errors guarantee that
the cross-matching performance will be worse than the system
performance. The only case where no errors are introduced is
when . We will show that this prob-
ability is very small, and thus there is a high probability that
the cross-matching performance after taking the inverse is still
worse than the system performance.

We will analyze this problem in two steps. First, given the
codebook we estimate the probability of obtaining a binary
vector of weight from , defined as

. Hereafter, we estimate the probability that this
binary vector is indeed a codeword, namely .

With defined as the set of possible weights of the code-
words from and the function returning the number of
codewords with weight with

, the probability is equal to

(15)

where we take the sum, across all possible weights and of
codewords and , of the product of
from (1) which is the probability that the XOR of two random bi-
nary vectors of weights and will lead to a binary vector of
weight , and which is the probability of
randomly selecting two codewords of weights and from

. Fig. 15 illustrates for different and
settings of the BCH ECC, compared with a binomial distri-
bution . Note that is very similar to
the binomial probability except at weights zero and , where
the difference increases when increases. The weight,

is zero when both and are zero
or , or equal to when one of the codewords has weight

Fig. 15. Probability of obtaining a binary vector of weight� � �� �� � �
given by � ��� �� from (15) for different � and � settings compared to a
binomial distribution � �� �� � �	��. (a) � � ��. (b) � � �	.

TABLE V
PROBABILITY � ��� AND � ������ � �� FOR DIFFERENT SETTINGS OF

� AND 

 � � �

of zero and the other one . Both cases have the probability
.

With , we can estimate the probability of
the occurrence where no additional errors are introduced when
the adversary applies the inverse, namely

(16)

where is the probability that the binary vector
of weight is a codeword. Some examples of for
different and settings are given in Table V. At
smaller settings, is close to , which is the
probability of only selecting codewords of either weight zero
or . For those cases, no additional errors are introduced by

. The probability can be reduced
even further by removing these two codewords from the orig-
inal codebook, thus obtaining the codebook . The
probability is then given by and its value
for the same and settings are given in Table V. At
smaller values, is significantly smaller than

. Hence, in order to be more robust against the inverse
of the bit-permutation process prior to the decodability attack,
it is recommended not to use the codewords of weight zero or

. The drawback is that the key space is reduced to ,
which becomes negligible for larger values. However, at
larger values both and converge
to each other. From the results of Fig. 15, we observe that at
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Fig. 16. Cross-matching ROC curve when applying the decodability attack
after inverting the randomization process on logarithmic axes for the � �
���� ��� settings.

larger values it holds that ,
consequently (16) becomes

(17)

which is the probability of randomly guessing a codeword from
. Empirical results shown in Fig. 16 confirm that inverting the

randomization process prior to applying the decodability attack
does not give the adversary an advantage when using the decod-
ability attack, because the ROC curve is still close to random.

B. Ineffectiveness of the Noise-Addition Randomization
Method

We will show that not all randomization processes will work.
For example, taking the XOR of with a random bit pattern
, hence obtaining does not work, because this

randomization process is fully reversible. When taking the XOR

between AD and AD , we obtain

(18)

Hence, it is sufficient to take the XOR of the auxiliary data AD
with the publicly known bit pattern prior to applying the de-
codability attack, namely

(19)

because cancel each other out. Hence,
the adversary obtains the same error pattern

with which cross-matching is possible, as shown in
Section III.

C. Effect on the Exhaustive Search Attack

In Section III, we discussed both the decodability attack and
the attacks based on exhaustive searches. With the bit-permu-
tation process, we reduced the effectiveness of the decodability
attack, however, both exhaustive attack methods still exist.
With the bit-permutation process, the exhaustive search type of
Case 1, where both the auxiliary data AD and Pseudonymous
Identifier PI are available, remains unchanged. By guessing
the codeword from PI, the permuted binary vector can
be computed from which we can obtain by inverting
the bit-permutation process with . However, the exhaustive
search type of Case 2, where only the auxiliary data is available,
changes. The exhaustive search attack without the bit-permu-
tation process as discussed in Section III-A has to search for a
single codeword from the codebook leading to the smallest
distance score with an average
effort around . However, once the codeword was found
there was still an ambiguity about the binary vector of
possibilities. With the bit-permutation process, the XOR of the
inverse of the auxiliary data of (2) becomes

(20)

where the linear property of the ECC no longer holds as in (2).
Instead of searching the codebook only once, all combinations
of the permuted codewords with known bit-
permutation matrices has to be searched leading to the smallest
distance score .
Thus, the effort has significantly increased towards .
However, once the codewords and have been found, the
binary vector is fully known. Hence, there is a trade-off be-
tween the case where cross-matching with the effortless decod-
ability attack is possible with protection of the binary vectors or
the case where cross-matching is possible with a significantly
increased effort of but revealing the binary vectors at a
successful cross-match.

VII. CONCLUSIONS

We analyzed the cross-matching performance of the auxil-
iary data AD of the Fuzzy Commitment Scheme (FCS). We
showed two attacks based on an exhaustive search, resulting
in a significant attack effort, as well as a recently introduced
attack requiring only a single decoding operation of the ECC,
known as the decodability attack. Both attacks have the same
cross-matching performance. To the best of our knowledge,
the decodability attack was first presented in [14] and theoret-
ically analyzed in [15]. We extended this theoretical analysis
and showed the relationship between the balanced template
protection system where and the cross-matching
performance. The FMR at cross-matching is larger than the
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FMR of the system, where is the key size of the ECC. On
the contrary, the FNMR at cross-matching is smaller than the
FNMR of the system. However, the difference significantly de-
creases for larger values. When comparing both the FMR and
FNMR in an ROC curve, we showed that the cross-matching
performance is clearly worse than the system performance.
We empirically validated the presented theoretical analysis
using real biometric data from the MCYT fingerprint database.
Concluding, designing a balance template protection system
with guarantees that the cross-matching performance
is always worse than the system performance itself.

Ideally, the cross-matching performance should be close to
random. We provided a solution based on a bit-permutation
randomization process that reduces the cross-matching perfor-
mance of the decodability attack very close to random under the
assumption that independent samples are taken for each appli-
cation. During the enrolment phase, a random bit-permutation
matrix is generated and used to permute the binary vector prior
to creating the auxiliary data. We can consider the bit-permuta-
tion matrix of the randomization process to be publicly known
because we have shown that the cross-matching performance is
still close to random even when inverting the bit-permutation
randomization process.

We showed the following trade-off. Without the proposed
bit-permutation randomization process, the decodability cross-
matching attack is effortless, however, without revealing the
enrolled binary vectors. With the bit-permutation randomiza-
tion process, the decodability cross-matching attack is neutral-
ized, however, cross-matching based on exhaustive search is still
possible. The effort of the exhaustive search increased towards

, instead of , when the bit-permutation randomization
process is not applied. However, the effort increase is obtained
with a drawback, namely revealing the enrolled binary vectors
at a successful cross-match.
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