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Traditionally, mechanically steered dishes or analog phased array beamforming systems have been used
for radio frequency receivers, where strong directivity and high performance were much more important
than low-cost requirements. Real-time controlled digital phased array beamforming could not be realized
due to the high computational requirements and the implementation costs. Today, digital hardware has
become powerful enough to perform the massive number of operations required for real-time digital
beamforming. With the continuously decreasing price per transistor, high performance signal processing
has become available by using multi-processor architectures. More and more applications are using
beamforming to improve the spatial utilization of communication channels, resulting in many dedicated
digital architectures for specific applications. By using a reconfigurable architecture, a single hardware
platform can be used for different applications with different processing needs.

In this article, we show how a reconfigurable multi-processor system-on-chip based architecture can
be used for phased array processing, including an advanced tracking mechanism to continuously receive
signals with a mobile satellite receiver. An adaptive beamformer for DVB-S satellite reception is pre-
sented that uses an Extended Constant Modulus Algorithm to track satellites. The receiver consists of
8 antennas and is mapped on three reconfigurable MONTIUM TP processors. With a scenario based on a
phased array antenna mounted on the roof of a car, we show that the adaptive steering algorithm is
robust in dynamic scenarios and correctly demodulates the received signal.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Satellite reception requires accurate pointing of the receiving
antenna. For home installations, this can be done relatively easy
with a dish antenna that is mounted to a fixed plane like a wall
or roof. In mobile situations, there is no fixed plane to mount the
dish on, hence a complex actuator mechanism is required to con-
tinuously point a dish antenna towards the transmitter. A solution
is to use an electronically steerable antenna, referred to as a ‘virtual
satellite dish’. To control such an antenna, advanced Digital Signal
Processing (DSP) algorithms are required to compensate for the
movement of the antenna and optimize the quality of the received
signal. Typically, these algorithms require a vast amount of
processing power and should be executed quickly to keep the
receiver pointed at the transmitter.
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Phased array beamforming techniques have been used in radar
systems for many years already. The design of these systems is
mainly driven by functional requirements (e.g., resolution, sensi-
tivity, response time) where non-functional requirements (e.g.,
costs, power consumption) are of secondary concern [1]. For that
reason, no low-cost, low-power phased array systems are available
yet. However, in areas like Software Defined Radio (SDR) and satel-
lite receivers, phased array antennas show great promise but their
large scale introduction has been obstructed by the high costs in-
volved. Our goal is to develop a low-cost, low-power phased array
receiver platform. This can be realized by using a scalable architec-
ture that is flexible enough to support multiple applications, such
that the same architecture can be reused. Reconfigurable Multi-
Processor System-on-Chip (MPSoC) based architectures seem to
be promising, as they offer high performance (by enabling parallel
processing through multiple processors) and are flexible within a
certain application domain (reconfiguration enables efficient reuse
of hardware by reconfiguring parts of the hardware or the applica-
tion). Conventional phased array receivers typically use a large
amount of dedicated central processing hardware, making the sys-
tem neither scalable nor power efficient [2]. This article presents
the implementation of an adaptive beam steering algorithm onto
a reconfigurable multi-processor based architecture. We show
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how such an architecture can be utilized for efficient execution of
beamforming, adaptive beam steering and symbol demodulation.

After an introduction to phased array systems and their different
applications in Section 2, we will provide a more thorough discus-
sion on the required processing and its complexity in Section 3. The
target reconfigurable multi-processor architecture is introduced in
Section 4 and the mapping of the processing blocks onto the recon-
figurable processors in this platform is presented in Section 5. Final-
ly, the scheduling of the entire application on the multi-processor
architecture is discussed in Section 6, together with an example
operation of the application to demonstrate the performance.
Fig. 1. Wavefront received by multiple antennas in a phased array.
2. Mobile satellite signal reception

Digital television broadcasts are transmitted by many different
satellites in different frequency ranges. The most commonly used
range is the Ku band (11.7–12.7 GHz in The Americas and Australia
and 10.7–12.75 GHz in Europe) where most systems use Digital Vi-
deo Broadcast for Satellite (DVB-S) for transmission [3]. The DVB-S
standard specifies a channel bandwidth of 36 MHz (effective band-
width used is 50 MHz due to pulse shaping filter roll-off), transmit-
ted within the 10.7–12.75 GHz frequency range. The modulation
technique used for individual DVB-S channels is Quadrature Phase
Shift Keying (QPSK). QPSK uses four different phases to represent
transmitted information, equally distributed on the unit circle of
the IQ plane. Each of these four phases represents a symbol, which
is represented by two data bits. Since the transmission of two sub-
sequent symbols requires instantaneous phase shifts in the trans-
mitted output signal, high frequency components are introduced.
A pulse shaping filter is used to decrease the effects these phase
shifts by spreading the signal into a slightly larger frequency band
such that the high frequency components are attenuated. For cor-
rect demodulation, QPSK requires a minimum Signal to Noise Ratio
(SNR) at the receiver of 16 dB.

2.1. Conventional satellite dish

Conventionally, DVB-S receivers use a parabolic dish antenna.
Such an antenna can be constructed easily and has a high effi-
ciency. A parabolic dish antenna focuses a wavefront incoming
from a single direction to one focal point. By mounting a Low Noise
Block (LNB) at the focal point, the Radio Frequency (RF) signal is
captured, amplified, downconverted to an Intermediate Frequency
(IF) and transmitted to the remote modem that applies channel
selection and demodulation of the IF signal. This construction re-
quires the parabolic dish antenna to be tightly aligned with the
transmitter, otherwise the wavefront is not efficiently focused
and the LNB cannot successfully capture the transmitted signal.

A dish antenna could be used for reception of DVB-S signals in
mobile environments (for example, in a moving car or on a yacht),
but mechanical control is required to continuously steer the dish.
Moreover, since a dish antenna would cause considerable air resis-
tance when mounted on a car, it is not an efficient solution for mo-
bile satellite reception. Hybrid solutions are commercially
available, where the dish is reduced to multiple waveguide anten-
nas which are mechanically steered [4]. Such systems can be
embedded in a relatively compact housing, but still rely on
mechanical parts (which are sensitive to wear and possibly con-
sume much energy).

2.2. Virtual satellite dish

The virtual satellite dish discussed in this article is based on a
phased array antenna. Such an antenna is fully steered electroni-
cally, which means it does not rely on mechanical control. An
advantage of such an antenna is the possibility of receiving broad-
casts from multiple satellites simultaneously, by applying DSP
techniques. This is useful, when multiple users want to receive sig-
nals from different satellites simultaneously.

Phased array systems are based on the principle of interference
using multiple antennas in an array to make a transceiver direc-
tional (see Fig. 1). Interference is the pattern resulting from the
addition of two or more (partly) correlated waves. For in-phase sig-
nals, the waves add up constructively and for out-of-phase signals
the waves add up destructively.

Assume a single omni-directional wave source, emitting a
spherical waveform s in time and space:

sðt; lÞ ¼ A � cosðxt � klÞ ð1Þ

with A the amplitude, x the frequency, k the wave number, t time
and l the path length from the source. For a source in the far field
perpendicular to the array, the wavefront is considered planar and
the received signals add up constructively. From other directions,
the wavefront arrives at different times at the antennas. Typically,
the antennas are placed a distance d = k/2 apart (where k is the
wavelength of the received signal). If the wavefront arrives at an an-
gle h incident to the array, the wavefront travels a distance
Dl = d � sin (h) further to the next antenna, which results in a time
delay:

Dt ¼ Dl
c
¼ d � sinðhÞ

c
ð2Þ

where c is the propagation speed of radio waves. If the signal is a
narrowband signal, this time delay can be considered as a phase
shift:

Dw ¼ x � Dt ð3Þ

hence by applying the inverse phase shift, the time delay is cor-
rected. Therefore, such an antenna array is usually referred to as
‘phased array antenna’.

By correcting the phase, the direction of maximum sensitivity is
steered [1]. After the RF front end for each antenna, sampled sig-
nals are combined by the beamforming processing to create a
resulting signal with for example a maximum sensitivity in a direc-
tion of interest or a minimum sensitivity (a null) in the direction of
an interfering signal. Beam steering refers to changing the shape
and direction of the formed beam by changing the gain and phase
of complex multiplier stages, such that a certain angular sensitivity
is created.
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Note that the same antenna signals can be used to form multi-
ple beams in different directions simultaneously. Therefore, for
each beam, the antenna signals are combined with different cor-
rection parameters. This requires a dedicated instance of the beam-
former and beam control parts for each beam.

Antenna design is done based on a worst case signal reception.
For the mobile satellite receiver, the phased array is mounted hor-
izontally on the roof of a car. Therefore, the maximum angle h with
respect to the orthonormal of the horizontal plane (see Fig. 1) is
determined by the position of the car (its maximum tilt in either
direction, for example when driving up a mountain) and the eleva-
tion of the satellite currently received. In Europe, satellites are
positioned between 27� and 45� above the equator, so h is in the
range of 45–63�. To have similar performance as a dish antenna
(i.e. gain and directivity), the projected dimensions in the direction
of the satellite should be equal to the dish; this means the phased
array should be about 125 cm ⁄ 125 cm. Having k = 2.5 cm, this
means an array of about 100 ⁄ 100 elements is required.

In this article, a simplified array consisting of eight antenna ele-
ments is presented. Although there is a large difference with the
requirements for a real antenna, we use this simplified array to
show that an adaptive phased array can be implemented fairly effi-
ciently. Since the computational complexity scales linearly with
the number of elements, this also holds for the full-size array.
3. Digital signal processing

By replacing the conventional dish antenna in a DVB-S receiver
system by a phased array antenna, the DVB-S receiver can be used
in dynamic environments where the relative receiver location is
continuously changing. Fig. 2 shows the phased array processing
chain that is used for the DVB-S reception case. For each of the
blocks in the chain after the Analog-to-Digital Converter (ADC),
we will shortly describe its functionality and complexity.

3.1. Beamforming

The beamforming operation is defined as the inner product of
the current antenna snapshot ~x (the set of samples taken from
the different antennas at one time instant) and the steering vector
~/ that applies phase shifts to each of the antenna streams:

y ¼ ~/ �~x ¼
XN

i¼1

/ixi ð4Þ

where N denotes the number of antenna elements. Since both~x and
~/ consist of complex values, the beamforming operation consists of
N complex multiplications and additions. If multiple beams are
formed, the same antenna snapshot can be used for each beam
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Fig. 2. Structure of the DVB-
while each beam can be steered individually by using a separate
steering vector.
3.2. DVB-S baseband processing

As mentioned in Section 2, the QPSK modulated symbols are fil-
tered by a pulse shaping filter at the transmitter to suppress high
frequency components in the transmitted signal [3]. At the receiver
side, the beamformer output is filtered by a Matched Filter to re-
store the high frequency components, such that the original QPSK
symbols can be demodulated (see Fig. 3). A Root-Raised-Cosine
(RRC) filter is used as Matched Filter, and can be implemented by
a 25-tap Finite Impulse Response (FIR) filter [5].
3.3. Adaptive beam steering

Since the receiver might be continuously moving, an adaptive
beam steering algorithm is required to correct the beam direction.
There are three classes of adaptive beam steering algorithms [6].

� Spatial beamforming algorithms use correlation between the
data streams received by individual antennas. This requires a
considerable amount of processing, as the correlation may be
done over long data streams and over multiple antennas.
� Algorithms of the temporal beamforming class rely on correla-

tion between the received data stream and a known reference
stream. For example, pilot symbols or streams of symbols are
added as a reference to determine the channel input response.
� If structural or statistical properties of the received signal are

known, the beam direction can be corrected by algorithms in
the class of blind beamforming.

Because fast adaptive beam steering is desired with low compu-
tational complexity, the most suitable class is the blind beamform-
ing class. As required for such adaptive steering algorithms, QPSK
modulation adds both structural and statistical properties to the
transmitted signal. This will be shown in the next subsection.

In the initial situation where the wanted satellite has not been
detected yet, a search action has to be done to find its location. This
can be done with a Direction of Arrival (DOA) estimation algo-
rithm. Since there is no reference signal available in the initial sit-
uation, only a spatial beamforming algorithm can be used for DOA
estimation. Examples of suitable DOA algorithms are ESPRIT [7]
and MUSIC [8]. The disadvantage of these algorithms is their high
complexity of O(N4) due to the correlation operations calculated
for all possible antenna pairs. Therefore, a real-time implementa-
tion of such algorithms is very computational intensive and should
be avoided. Since DOA estimation is outside the scope of this arti-
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Fig. 3. Effects of pulse shaping applied to the transmitted signal to filter high
frequency components.
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cle, for the remainder of this article we will assume that initial
locations of transmitters are known.

3.3.1. Tracking algorithm
Once the initial locations of the satellites are known, a tracking

algorithm is enabled. As mentioned in the previous section, QPSK
is used for transmitting DVB-S symbols. This modulation technique
has well-defined structural and statistical properties. The signal is
modulated in phase only, which is a strict structural property. The
highest utilization of the channel can be reached when the usage
of all constellation points is uniformly distributed, so transmitted
symbols have a clear statistical property. Since the gain is assumed
to be constant, a Constant Modulus Algorithm (CMA) can be used
efficiently [9]. Xu proposed an extension to CMA that allows for cor-
rection of phase deviations [10]. Extended CMA uses both the an-
tenna samples~x as well as the output of the beamformer y ¼ ~/ �~x
to adjust the current steering vector ~/ such that the modulus error
of the beamformer output with respect to the expected modulus
used by QPSK is minimized. The deviation of the current beamform-
er output with respect to the expected QPSK modulation points is
defined by the cost function J [10], which is given by Eq. (5):

Jð~/Þ ¼ E jyð j2 � 1Þ2 þ Eðsin2ð2\yÞÞ ð5Þ

where \y denotes the angle of y (in radians) and E(p) denotes the
expected value of p.

The optimal steering vector in terms of J is found when the cost
function is minimized. This can be done by applying an iterative
gradient descent method, such that Eq. (5) can be rewritten to
Eq. (6):

~/½nþ 1� ¼ ~/½n� � lr~/J ¼ ~/½n� � l � 8jðjyj4 � jyj2Þ þ 4 sinð4\yÞ
4j � y �~x

ð6Þ

where l indicates the update stepsize (typically, l = 0.005 for stable
operation [10]) and r~/J indicates the gradient of J.

After optimization, we get:

~/½nþ 1� ¼ ~/½n� � l � 2ðjyj
4 � jyj2Þ � j sinð4\yÞ

y
�~x ð7Þ

A block diagram of the computations involved in Eq. (7) is
shown in Fig. 4. As can be seen, the calculation of
l � 2ðjyj4�jyj2Þ�j sinð4\yÞ

y only consists of scalar operations and therefore
has a fixed computational complexity. Because the calculation of
~/ consists of a multiplication of two vectors of length N, the com-
plexity of the entire Extended CMA algorithm scales linearly with
the number of antennas N. Using the steering vector ~/, the beam
pattern tracks the transmitter while interferers are automatically
suppressed. Multiple transmitters can be tracked by adding a
beamformer and an Extended CMA algorithm for each transmitter.

3.3.2. Downsampling
Although the computational complexity of blind beamforming

algorithms is much lower than the complexity of the spatial and
temporal beamforming classes, the Extended CMA algorithm is
too computationally intensive to operate on each new antenna
snapshot. Moreover, since antenna snapshots are sampled at a rate
that is orders of magnitude higher than the rate of movement of
the transmitter, operating the Extended CMA algorithm once every
few antenna snapshots considerably saves in processing require-
ments. Typically, the update rate of the Extended CMA algorithm
can be in the order of hundreds times lower than the sample rate
[11]. For each Extended CMA update, only one snapshot is used
and the remaining snapshots are not used.
4. Reconfigurable tiled architectures

The goal is to execute the Extended CMA algorithm on a recon-
figurable tiled architecture. In this section, we describe the tar-
geted architecture in more detail.

Phased array processing can be characterized as a streaming
application with high data rates and processing requirements,
but a regular processing structure. Because a scalable and regular
solution is needed, a reconfigurable multi-processor architecture
is proposed [12]. Such a reconfigurable processing architecture
provides flexibility and has a number of advantages. For example,
we can use only part of the antenna array or create multiple sub-
arrays to save energy or increase the lifetime. Moreover, graceful
degradation can be provided since individual tiles in a reconfigura-
ble architecture might fail due to aging. Reconfigurability inher-
ently leads to an adaptable system, that can be adapted to
changing environments while maintaining the quality of service.

In this article, we use the reconfigurable System-on-Chip (SoC)
as shown in Fig. 5. This SoC is based on 3 reconfigurable MONTIUM

Tile Processor (TPs) that are used for data processing and a LEON2
processor [13] for general purpose control tasks. The MONTIUM TP
processors are connected to a circuit-switched Network-on-Chip
(NoC), that provides configurable dedicated interconnect between
the processors and external interfaces. As a result, high communi-
cation bandwidth between the processors is available with a fixed
latency. The LEON2 processor controls the MONTIUM TPs, NoC con-
figuration and external interfacing with the USB and serial ports.
Once the interfaces have been initialized, the LEON2 processor con-
figures the NoC and suspends until the MONTIUM TPs have finished
processing or other I/O actions are required. Since the LEON2 is
not responsible for the phased array processing, its performance
and overhead are not discussed in this article.

The SoC shown in Fig. 5 is prototyped on a Xilinx Virtex 4 LX200
FPGA. In this prototype platform, the LEON2 processor and NoC
operate at 45 MHz and the 3 MONTIUM TP processors are clocked
at 15 MHz. A similar architecture consisting of an ARM-926 proces-
sor and 4 MONTIUM TPs was implemented in 130 nm CMOS technol-
ogy [14,15].

4.1. Network-on-chip

For the communication between the MONTIUM TP processors, a
predictable circuit-switched NoC was used [16] that interconnects



Fig. 4. Block diagram of the Extended CMA adaptive beam steering algorithm.
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the three MONTIUM TP cores. Circuit switching has been chosen as it
simplifies the Network Interface (NI) of the connected processors,
because it allows for a simplistic network protocol that does not
require to include the routing information inside sent packets. This
is an advantage for both the sender and receiver, since there is no
overhead during the communication for packaging of data (assem-
bly or re-assembly of packets). In the case of streaming applica-
tions, it was expected that the mapping would be rather static
with fixed information streams. Due to the semi-static behavior
of streaming applications, the connections for the input data and
output data remain open during their execution. The connections
in the NoC, i.e. the routers’ configuration, are controlled via the Ad-
vanced High-performance Bus (AHB) bridge. Routing of communi-
cation channels is done by dedicated router configuration
interfaces, which are included in the memory map of the bridge.
Each network link between a router and another router or proces-
sor (see Fig. 5) consists of 4 parallel 16-bit lanes that can be used
simultaneously. The routers in the LEON2 SoC operate at
47.52 MHz, resulting in a gross bandwidth of about 380 MByte/s
per link.
4.2. Montium Tile Processor

The MONTIUM TP is an example of a coarse-grained reconfigura-
ble processor [17] developed by Recore Systems.1 The MONTIUM TP
targets the DSP algorithm domain. Several core operations (called
kernels) used in DSP applications like baseband processing and
channel decoding in wireless communications receivers have been
efficiently mapped on the MONTIUM TP architecture [18,19]. Its tem-
plate based design allows for customization of architectural proper-
ties like data path width (16-bit by default), targeted clock frequency
(100 MHz for 90 nm technology) and processing capacity (5 parallel
Arithmetic Logic Unit (ALUs) for the reference design). This reference

http://www.recoresystems.com
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design has a silicon area of approximately 2 mm2 and a power con-
sumption of approximately 550 l W/MHz. The MONTIUM TP is config-
ured by the Communication and Configuration Unit (CCU) [20],
which is implemented in the Network Interface shown in Fig. 6.

4.2.1. Program control
Inside the MONTIUM TP, shown in Fig. 6, three regions can be

identified. The lower region consists of a sequencer in which the
kernel is stored. It contains a programmable Static Random Access
Memory (SRAM) to store the kernel instructions. A program coun-
ter is used for the program flow. It is directly connected to the
SRAM to select the next instruction to be executed. Hence, an
instruction can be fetched immediately as it is not affected by typ-
ical memory access delays as encountered in conventional
architectures.

4.2.2. Configuration memory
The instruction selected by the sequencer is decoded by a num-

ber of decoders. A memory decoder decodes the instruction that is
used to generate the address patterns for the memories in the data
path. The interconnect decoder decodes the part of the instruction
required to control the crossbar and local buses around the ALUs
and the memories. The instruction that selects ALU operands
stored in the register files is generated by the register decoder
and the ALU instruction itself is decoded using the ALU decoder.
Such decoding enables efficient storage of the kernel, as similar
parts of two instructions can be stored at the same decoder ad-
dress, thus resulting in lower memory area requirements. More-
over, since only few wires are required to control the decoders,
only a few bit-flips occur in the control wires when a new instruc-
tion is selected. Hence, the energy consumption is decreased.

4.2.3. Processing part array
The decompressed instructions that are generated by the

decoders are sent to the upper region, the Processing Part Array
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(PPA). It consists of 5 identical ALU together with a local intercon-
nect and a large crossbar consisting of 10 global buses that pro-
vides a high bandwidth to 10 memory units. Each ALU can be
connected to two of the memories via a local interconnect or to
the 8 other memories via the global buses. The operands for the
ALU are stored in 4 register files which can be read simultaneously.
In addition, each ALU can receive an intermediate value from its
right neighbor ALU via an east–west connection. Using these 5 in-
puts, multiple operations can be executed simultaneously and
from each ALU at most 3 results can be generated (one to the west
output and two to the bottom outputs, which are connected to the
interconnect). Fig. 7 shows the internal structure of one ALU.

The upper part, level 1, contains 4 function units, each of which
can execute bitwise and logic operations or simple arithmetic oper-
ations. Each function unit generates status flags to indicate the
occurrence of overflow, a negative result or whether its result equals
zero. These status flags may be used by the sequencer, for example
for conditional jumps. In the second level a Multiply Accumulate
(MAC) operation can be executed. Its multiplier operates on either
the outputs of the first level, named Z1A and Z1B, or the register files
A to D. Next, the operands for the adder can be selected from the re-
sult of the multiplication, the register files A to D, the outputs of le-
vel 1, or the east input. In addition, depending on the value of the
status bit (SB), the right operand for the adder can be dynamically
selected from inputs B, D. Z1A and Z1B. The output of the adder is
made available to the next ALU at the left side through the west out-
put and can be used in the butterfly unit located in the lower part of
the ALU. Two results can be returned via outputs o1 and o2.

Since the ALU is not pipelined, the entire operation from the
register file inputs to the ALU outputs can be done within one clock
cycle. Almost all arithmetic operations in the ALUs can be executed
in either integer modus (i.e., they operate on the 16 rightmost bits)
or in 1.15 fixed point modus (i.e. the leftmost bit is used as sign bit
whereas the other bits contain the fixed point fraction). In order to
avoid overflow, the intermediate values can be saturated.
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Many DSP applications are based on vector or matrix opera-
tions. Hence, the memory addressing can be done in a regular
way. Typically, these addressing patterns consist of linear address-
ing, stride-by-n (i.e., the address is incremented by n after each
read or write operation), bit reversing (an output reordering tech-
nique that is typically used for Fast Fourier Transform (FFT) algo-
rithms) and modulo counting (e.g. for creating circular buffers).
By supporting these operations in hardware, the address calcula-
tion can be done separately from other ALU operations such that
the ALU performance is optimized. Per memory, the MONTIUM TP
contains an Address Generation Unit (AGU) that provides the hard-
ware support for memory addressing.
Fig. 8. Mapping of the beamforming operation performed by 3 MONTIUM ALUs.
4.2.4. NoC network interface
The MONTIUM TP connects to the NoC via a local NI. Each of the 4

NoC lanes can be connected to any Global Bus (GB) of the MONTIUM

TP and vice versa. This NI is implemented by the Communication
and Configuration Unit (CCU), which is responsible for control,
memory initialization, synchronization and NoC protocol conver-
sion. The CCU provides two mechanisms for communication be-
tween the MONTIUM TP and other processors: block mode and
streaming mode communication. In the block mode, the input
samples are stored in the memories by means of a DMA transfer
by the CCU. The execution of the configured algorithm is enabled
by using a start command. When the execution has finished, the
CCU retrieves the results from the memories with another DMA
transfer. The streaming mode operation requires less explicit
control overhead by the CCU. In this mode, a program configured
in the MONTIUM TP can generate a read request for reading data from
any input NoC lane or generate a write request for writing data to
any output NoC lane. These requests are executed by CCU, or the
MONTIUM TP is temporarily halted if the NoC lanes cannot be ac-
cessed (for example, when no input data is available or when the
output buffer is full). Simultaneously with generating read and
write requests, the MONTIUM TP can continue its computation. This
enables the overlap of communication and computation, avoiding
costly wait cycles during the computation. Due to the data driven
behavior of streaming mode applications, the communication re-
quests can be embedded within the program itself such that com-
munication and computation are automatically synchronized.
5. Mapping kernels to the MONTIUM TP

The receiver chain for a phased array based DVB-S receiver was
presented in Section 3. In this section, we present the implementa-
tion of the beamforming, adaptive beam steering and DVB-S
demodulation. For the adaptive beam steering algorithm, we as-
sume that the initial positions of transmitters are known.

First, the digital beam steering and beamforming are mapped to
an MPSoC architecture based on the MONTIUM TP architecture as
presented in Section 4. Then, the processing requirements are de-
rived for a DVB-S receiver using N = 8 antennas. Each antenna is
equipped with a 1.5 MHz IQ ADC, resulting in 1.5 Msamples/s com-
plex data.

5.1. Beamforming

The beamforming operation is the operation with the highest
computational complexity, because it combines the samples from
all antennas with a vector multiplication. Therefore, the number
of (complex) operations scales linearly with the number of anten-
nas. To minimize the processing latency, the beamforming opera-
tion defined in Eq. (4) is partitioned in smaller operations, as
given in Eq. (8):

y ¼
X4

i¼1

~/i �~xi þ
X8

i¼5

~/i �~xi ð8Þ

Here, two MONTIUM TPs each perform the partial multiply-sum
operations on four antenna samples and the third MONTIUM TP sums
the results of the other two processors, resulting in the mapping
shown in Fig. 8. With this partitioning, both partial sums are calcu-
lated in 4 clock cycles and the results are added in a single clock
cycle.
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5.2. Baseband processing

The RRC Matched Filter is implemented using two 25-taps FIR
filters for the I and Q parts of the beamformer output. An N-taps
FIR filter can be mapped on the MONTIUM TP in N/5 clock cycles
[18]. Hence, each of the two filters can be executed by a MONTIUM

TP in 25/5 = 5 clock cycles.

5.3. Beam steering

A schematic overview of the Extended CMA algorithm is given
in Fig. 4. All blocks in Fig. 4 can be mapped on the MONTIUM TP ALUs
directly, except for the coordinate transform operations (juj and
\u) and the sine calculations, which do not directly fit. These oper-
ations are explained in the following sections.

5.3.1. Transforming Cartesian coordinates to polar coordinates
The conversion from Cartesian coordinates (x,y) to polar coordi-

nates (r,h) and back requires some goniometric operations.2 These
could be implemented by a large Lookup Table (LUT), at the conse-
quence of limited accuracy. A more accurate approach is the COordi-
nate Rotation DIgital Computer (CORDIC) algorithm. It was originally
proposed by Volder [21] as an iterative approach based on shift and
add operations to apply coordinate transformations, which heavily
rely on trigonometric functions. Extensions were proposed by Wal-
ther [22] to implement other operations like division, square root,
Fourier transforms and many others. We mapped the algorithm, as
described in [23], to the MONTIUM TP. For the conversion from Carte-
sian to polar coordinates, the vectoring mode is used. The equations
for the vectoring mode are:

xiþ1 ¼ xi � yi � di � 2�i ð9Þ
yiþ1 ¼ yi þ xi � di � 2�i ð10Þ
ziþ1 ¼ zi � di � tan�1ð2�iÞ ð11Þ

where di = + 1 if yi < 0, � 1 otherwise. When the number of itera-
tions n is increased, the final values will approximate to:

xn ¼ An

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 þ y2
0

q
ð12Þ

yn ¼ 0 ð13Þ

zn ¼ z0 þ tan�1 y0

x0

� �
ð14Þ

An ¼
Y

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2i

q
ð15Þ

such that r ¼ xn
An

and h = zn.
The mapping of these equations is shown in Fig. 9. The decision

variable di, which depends on the sign of yi, is generated using the
status bits of the function units. Then, based on the status bit the
new values of xi+1, yi+1 and zi+1 can be calculated. For the calculation
of xi+1, the value of yi � 2�i is calculated by shifting yi over i bits to
the right. The calculation of xi+1, yi+1 and zi+1 depends on the sign
of yi. For xi+1, di is a by-product of the yi� i operation. For yi+1

and zi+1, di is determined explicitly by the sign of yi. Both the posi-
tive and negative values are calculated for the left operand. For
example, for calculating xi+1 the value of yi � 2�i and its negative va-
lue are both calculated and based on the decision variable di one of

them is subtracted from xi. The values for tan�1 y0
x0

� �
are calculated

offline and stored in a read-only memory. During the calculation of
the CORDIC equations, an AGU reads the memory and writes the
value to the register file for ALU 3. Hence, reading these constants
does not require any additional clock cycles. Using this mapping, a
2 Note that in this section, the symbols x and y are used differently from the rest of
the article.
single CORDIC iteration consisting of the three equations can be
calculated in a single clock cycle.

The results of the implemented algorithm are shown in Fig. 10,
which gives the accuracy of the result as a function of the iteration
number. As can be seen, each iteration yields approximately one
additional bit of precision. Due to the bitshift operations and the
limited word-width of the MONTIUM TP, the smallest possible error
is reached after 14 iterations. The CORDIC equations (Eqs. (9)–
(11)) are only valid for rotation angles between � p

2 and p
2 [21,23].

For larger angles, an initial rotation over � p
2 should be applied,

which can be realized with a set of equations that is slightly differ-
ent from Eqs. (9)–(11). The MONTIUM TP implementation of the ini-
tial equations is comparable to the mapping presented for the
regular CORDIC operations. Hence, the calculation of the initial
equations can be done in one additional iteration.

5.3.2. Sine calculation
The sine function could be calculated very accurately using

CORDIC. However, this requires an additional CORDIC operation
which is expensive in terms of clock cycles. Instead, we chose to
map the sine function to a LUT which is stored inside one of the
memories. The upper 10 bits of the 16-bit fixed point angle are
used as address for the lookup.3 Such a lookup only requires 2 clock
cycles, which is much less compared to the 14 cycles required for
running a complete CORDIC operation.

5.3.3. Complex division
In processor architectures where multiplications are scarce (i.e.,

if no multiplier is available or when the latency of a multiplier is
very high), the complex division could be implemented by 2 COR-
DIC operations, one real division and 2 multiplications [24]. The
MONTIUM TP, however, contains multipliers and therefore, more effi-
cient implementations of the complex division can be made. As-
sume a division between the complex numbers X = a + jb and
Y = c + jd. The division can be rewritten as follows:

aþ jb
c þ jd

¼ aþ jb
c þ jd

� c � jd
c � jd

¼ ac þ bd

c2 þ d2 þ j
bc � ad

c2 þ d2 ð16Þ

Now define e ¼ 1
c2þd2. After substitution in Eq. (16), we get:

aþ jb
c þ jd

¼ � � � ¼ ac þ bdð Þ � eþ jðbc � adÞ � e ð17Þ

which can be implemented by 6 multiplications, 2 additions and the
costs for the calculation of e.

Note that e ¼ 1
c2þd2 ¼ 1

jYj2
. For the division used in Eq. (7), X corre-

sponds with the nominator and Y corresponds with the denomina-
tor which is y, so e ¼ 1

jyj2
. As can be seen in Fig. 4, the calculation of

jyj2 is already done. An option is to calculate its inverse by using a
LUT, similar to the sine calculation. However, the values of 1

jyj2
with

jyj2 2 [0, . . . ,1i are in the range of h1, . . . ,1i, which cannot be repre-
sented in a 1.15 fixed point notation. A straight-forward LUT based
implementation is therefore not useful. In order to solve this prob-
lem, the multiplication by a step factor l (see Fig. 4) is included in
the LUT. Typically, l = 0.005 is used for the best tracking results.
So, instead of using a LUT containing values 1

jyj2
, the LUT consists

of values l
jyj2

which contains unsaturated values for all l 6 jyj2 < 1

(see Fig. 11). We use a LUT with 512 entries to calculate l
jyj2

. For

such a LUT, the first 3 entries are saturated (since 0...2
512 < l). How-

ever, since the Extended CMA algorithm is used to normalize jyj2
Since the output of the coordinate transform operation is squared due to the juj
blocks in Fig. 4, the quantization noise caused by a 10-bit lookup operation is
amplified considerably. The output of the sine calculation, however, is hardly
amplified by further operations in Fig. 4.



Fig. 9. Mapping of CORDIC equations on 3 MONTIUM TP ALUs.
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to 1, the probability of a lookup of one of these saturated values is
very low. Hence, in total the calculation of a complex division re-
quires 6 multiplications, 2 additions and 2 clock cycles for one
lookup operation.

5.3.4. Pipelining
Several operations mentioned in the previous sections can be

executed simultaneously or in a pipelined fashion. For example,
while performing the sine lookup operation, calculating the

denominator of the complex division e ¼ 1
jyj2

� �
can be done already.

As a result, the scalar part of the Extended CMA algorithm can be
executed in 21 clock cycles (see Table 1 for the allocation on the
5 ALUs). By distributing the scalar result to the other 2 MONTIUM

TPs, the new steering vector ~/ can be calculated by those proces-

sors simultaneously in 4 clock cycles (i.e., ~/1...4 calculated by one

MONTIUM TP while the other calculates ~/5...8).

6. System level implementation

The operations explained in Section 5 are scheduled onto the
platform presented in Section 4. The operations were partitioned
such that the available processing power would be used as much
as possible. Since the update frequency of all operations in a con-
trol loop depends on the processing delay caused by those opera-



Table 1
ALU mapping of the implemented Extended CMA algorithm.

ALU1 ALU2 ALU3 ALU4 ALU5

1 CORDIC CORDIC CORDIC CORDIC
2 CORDIC CORDIC CORDIC CORDIC

..

. ..
. ..

. ..
. ..

.

15 CORDIC CORDIC CORDIC CORDIC
16 CORDIC 
4
17 sin jyj2
18 l

jyj2
jyj4 � jyj2

19 
2
20 Cplx div Cplx div Cplx div Cplx div
21 Cplx div Cplx div Cplx div Cplx div

Table 2
Parameters for the moving car scenario.

Number of antenna elements N 8
Convergence rate l 0.005
AWGN channel SNR 16 dB
Vehicle speed 20 m/s
Vehicle angular velocity 100 Hz sine (80� peak to peak)
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tions, the processing should be optimized for low latency.
Therefore, all operations in the adaptive beam steering loop are
scheduled on the 3 MONTIUM TPs such that the overall latency is
as small as possible.
6.1. Multi-processor scheduling

The scheduling of the partitioned operations is depicted in
Fig. 12. The lighter shaded blocks indicate the processing in normal
operation (i.e., beamforming and Matched Filter operation, when
no adaptive steering is applied) and the darker shaded blocks
indicate the processing required for the adaptive beam steering
algorithm. Note that the Extended CMA operation can be started
after the first clock cycle of the Matched Filter. This is possible be-
cause the last 5 taps of the FIR filter are calculated first, such that
the filter output can be obtained after one clock cycle already. In
the remaining 4 cycles, the other 20 filter taps are processed.

Since the MONTIUM TPs communicate via the NoC which is
clocked at a 3 times higher frequency, the output of one MONTIUM

TP is already available at the next MONTIUM TP at the next clock
cycle. Therefore, communication does not introduce latency in
the schedule. Because the Extended CMA operation cannot be par-
allelized further (the iterative behavior of the CORDIC algorithm
requires a sequential implementation), its processing latency halts
the other two MONTIUM TPs. Processor utilization could be improved
by buffering antenna snapshots, such that the halted MONTIUM TPs
can continue with the beamforming and matched filtering until
the Extended CMA algorithm has finished.

In normal operation, where the Extended CMA algorithm is not
executed for each antenna snapshot, 10 clock cycles are required
for the beamforming and Matched Filter operations. Since the
MONTIUM TPs in the prototyping platform presented in Section 4
are operated at 15 MHz, this means that about 1.5 Msamples per
second can be processed.
6.2. Performance

To assess the performance of the implementation presented in
the previous section, a synthetic scenario was defined. Assume
the virtual satellite dish is mounted on the roof of a car, which
has a velocity of 20 m/s (72 km/h). While moving, the virtual satel-
lite dish is pointed at a specific satellite, receiving the broadcast
currently transmitted by the satellite. The channel is assumed to
be an Additive White Gaussian Noise (AWGN) channel, where
the SNR equals 16 dB. Then, at a sudden moment, the car driver de-
cides to change the driving direction such that the car gets an
angular velocity of 100 Hz (80� peak to peak).4 The pointing of
the virtual satellite dish should be updated as fast as possible to as-
4 Although a 80� peak to peak rotation at 100 Hz is extreme for car movement, such
a scenario is great to test the robustness of the adaptive steering algorithm.
sure correct reception of the broadcast stream. Table 2 presents the
relevant parameters for this scenario.

The performance of the steering algorithm is analyzed by using
the following three criteria:

� Extended CMA costs, as defined in Eq. (5).
� Antenna radiation pattern using the generated steering vector
~/.
� Demodulation at the output of the Matched Filter.

Fig. 13 shows the results of the first two criteria. The cost
function J during the scenario is shown in Fig. 13a. Here, the costs
are in the range of h0.08,0.20i, which means that the maximum
amplitude error equals

ffiffiffiffiffiffiffiffiffiffi
0:20
p

¼ 0:45 and the maximum phase er-
ror equals arcsinð

ffiffiffiffiffiffiffiffiffiffi
0:20
p

Þ ¼ �27	.5 Since different QPSK modulated
symbols have a phase difference of at least 90�, as can be seen in
Fig. 13b, with these maximum errors all symbols are still in the cor-
rect quadrant of the constellation diagram, leading to successful
demodulation of the received symbols in our experiments.

Another criterion to qualify the adaptive steering algorithm is
the radiation pattern of the virtual satellite dish, based on the cal-
culated steering vector ~/. The radiation pattern shows the direc-
tional sensitivity of the array antenna, as shown in Fig. 14. It can
be seen that the main sensitivity is accurately steered towards
the transmitter, while the sensitivity to signals impinging from
other directions is 15–20 dB lower. This resembles the channel
noise (16 dB) and the side-lobe suppression is enough for correct
demodulation of the QPSK symbols.

6.3. Scalability

The beamforming operation consists of a vector multiplication,
where a length of both vectors equals the number of antennas.
Therefore, the number computations required for the beamforming
operation scales linearly with the number of antennas.

Matched filtering is performed on the output of the beamformer;
the number of operations is independent of the number of antennas.
As a result, matched filtering has a fixed computational complexity.

The adaptive beam steering algorithm consists of a scalar part
that uses the beamformer output (and therefore, has constant com-
putational complexity) and a vector multiply–add operation of the
steering vector (linearly depending on the number of antennas).

Overall, it is safe to conclude that the processing requirements
of the DVB-S receiver scale linearly with the number of antennas.

7. Related work

Many reconfigurable beamforming architectures are based on
bit-level programmable Field Programmable Gate Array (FPGAs),
like [25,26], which perform very well as they can be optimized to
the application. However, configuration times are long (milli-
second to second scale), so no processing is possible during that
period. The reconfigurable tiled architecture approach used in this
article can be reconfigured much faster (nano-second to micro-sec-
5 In practice, both amplitude and phase errors contribute to the costs, hence the
maximum amplitude and phase errors are very likely to be lower than the figures
presented here.



Fig. 12. Scheduling of the processing blocks on 3 MONTIUM TPs.

Fig. 13. Results of adaptive beam steering during the moving car scenario. For representation purposes, all amplitudes in the constellation diagram were multiplied by 0.5.

Fig. 14. Visualization of the radiation pattern during the scenario.
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ond scale), where it is possible to reprogram individual processors
instead of the entire chip.

The RaPiD reconfigurable architecture [27] has some similari-
ties compared to the MONTIUM TP, but it is not designed as a tile pro-
cessor. The reconfigurable beamformer processor proposed by
Hwang [28] can be reconfigured in case processors become faulty.
However, they present no performance figures. The beamforming
architecture proposed by Sarrigeorgidis [29] shows some resem-
blance with Hwang’s architecture. Its performance normalized to
power is about 20 MOPS/mW. With its 5 large ALUs, the MONTIUM
TP can typically execute about 15 operations per clock cycle,
resulting in a normalized performance of about 30 MOPS/mW.
The CAlS architecture presented in [30] is a hybrid architecture
consisting of an FPGA and a Digital Signal Processor (DSP). The
execution times of the kernels presented are close to those of the
MONTIUM TP. However, an FPGA has a much higher energy dissipa-
tion than the MONTIUM TP [17]. Raytheon’s MONARCH processor
[31] was designed to focus on maximum achievable processing
power. It consists of a reconfigurable data path which is controlled
by 6 Reduced Instruction Set Computer (RISC) processors. If its pro-
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cessing power is insufficient, multiple MONARCH processors can
be connected to form a larger processing array. Although it is oper-
ated at a clock frequency several times higher than the MONTIUM TP,
the MONARCH’s normalized performance equals 3–6 MOPS/mW,
which is much lower than the MONTIUM TP.

In contrast to each of the multi-processor architectures
mentioned above, the architecture presented in this article was
developed as a generic stream processing platform that has been
used for consumer electronics applications. Therefore, it was not
optimized for the phased array processing application, which is
the case for each of the above architectures. By showing the effi-
ciency of our generic stream processing platform, its applicability
for a variety of algorithms is proven.
8. Conclusion

Phased array processing requires a high performance architec-
ture that is capable of combining many input data streams at high
data rates. In this article, we proposed a reconfigurable multi-
processor architecture consisting of 3 MONTIUM TP processors and
a LEON2 host processor, as a generic beamforming platform.

The modulation scheme used for Digital Video Broadcast for
Satellite (DVB-S) enables tracking of transmitters using a blind
beamforming algorithm. We used the Extended Constant Modulus
Algorithm (CMA) to create an adaptive beamforming application
that can be used for satellite tracking in mobile situations. The en-
tire digital processing chain (consisting of antenna processing,
beamforming and beam steering) was mapped to the generic
beamforming platform. On average, the beamforming operation
and matched filtering can be done in 10 clock cycles on the proto-
type platform, allowing for a symbol rate of 1.5 Msymbol/s. An
ASIC realization of the prototype could operate at a higher fre-
quency, increasing the maximum symbol rate considerably.

The processing requirements roughly scale linearly with the
number of antennas and the number of beams. Due to the use of
a Network-on-Chip, our reconfigurable multi-processor architec-
ture can be scaled to provide the processing required for either
applications using small number of antennas (e.g. wireless com-
munications) or large phased array architectures (e.g. next genera-
tion radar systems). With the scalable implementation presented
in this article, the goal to design a low-cost and low-power phased
array system has been met partially. Using identical chips as small
building blocks for our architecture, the production costs for indi-
vidual chips can be decreased due to large volumes. However, note
that the main costs for a phased array antenna are added due the
analog front-ends, each of which must have the same noise figure
as the single dish antenna front-end. Therefore, the low-cost
design goal for a phased array antenna cannot be shown without
considering the analog front-end.
9. Future research

The Extended CMA algorithm iteratively generates a steering
vector by minimizing the error in the received symbols after beam-
forming. If, however, it is desired to use a customized radiation
pattern, the current algorithm cannot be used. Other implementa-
tions of the CMA algorithm might be useful for this purpose.

Although the current implementation of the Extended CMA
algorithm proved to be not very computationally intensive, the
use of a COordinate Rotation DIgital Computer (CORDIC) imple-
mentation causes latency of the algorithm and therefore, two of
the three MONTIUM TPs are temporarily stalled during the calcula-
tion of the new steering vector. Future research will focus on
reducing the latency of the Extended CMA algorithm.
Modern satellite receivers are already supporting the DVB-S2
standard [32], which is backwards compatible with the DVB-S
standard used in this work. The maximum channel size was scaled
up to 86 Mbps, requiring advanced data compression and error
coding. It supports adaptive channel coding that depends on the
quality of the transmission channel. Therefore, next to Quadrature
Phase Shift Keying (QPSK) also 8PSK, 16APSK and 32APSK modula-
tion are used. Since these modulation techniques do not have the
same properties as QPSK does, Extended CMA cannot be used in
its current form. Further research is needed to determine if CMA
can also be used for the remaining modulation schemes of DVB-S2.
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