
Abstract. It is proved that Young’s [4] axiomatization for the Shapley value
by marginalism, efficiency, and symmetry is still valid for the Shapley value
defined on the class of nonnegative constant-sum games with nonzero worth
of grand coalition and on the entire class of constant-sum games as well.
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Among single-valued solutions usually called values the most famous and the
most appealing is the Shapley value [2]. Different axiomatizations for the
Shapley value defined on the entire space of games with fixed set of players are
known. Twomain of them are the classical one given by Shapley [2] and that of
Young [4]. The original Shapley’s axiomatization exploits the additivity axiom
that being a very beautiful mathematical statement does not express any fair-
ness property. The axiomatization of Young that characterizes the Shapley
value by marginalism, efficiency, and symmetry appears to be more attractive
since all the axioms present different reasonable properties of fair division.
However, not always we consider the entire space of games. Sometimes due to
different reasons we restrict consideration to some subclass of games, e.g. to
nonnegative or positive games, to simple games, to convex games, to constant-
sum games, etc. And a reasonable question arises— is Young’s axiomatization
for the Shapley value on the subclass of games under scrutiny still valid? In
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general, the answer is negative. For instance, Young’s axiomatization for the
Shapley value considered on the subclass of all simple games (the Shapley-
Shubik power index) is not correct. Indeed, in a simple game with three players
the normalized Banzhaf power index presents a counterexample. In a simple
game with three players the Shapley-Shubik and normalized Banzhaf indices
agreewith each other, except in the casewhere the Shapley-Shubik index assigns
to one player the value 2/3 and to each of the other players 1/6; in this case the
Banzhaf index assigns to these players the values 3/5 and 1/5 respectively. Yet in
the case of simple games with three players the normalized Banzhaf index
appears to satisfy the conditions of Young (marginalism, efficiency, and sym-
metry).1 In this note we prove that Young’s axiomatization is valid for the
Shapley value defined on the class of nonnegative constant-sum games with
nonzeroworth of grand coalition and on the entire class of constant-sum games
as well. Onemight argue that constant-sum games are not that appealing except
for their nice mathematical properties. On the other hand, there are indeed
relevant classes of nonnegative TUgames satisfying the constant sum condition
from outset, for example classes of simple majority games. In the literature,
other solutions have also been related to the particular class of constant-sum
games, for example in [3] it is shown that for this class of games the modified
nucleolus coincides with the prenucleolus. The class of nonnegative constant-
sum games with nonzero worth of grand coalition and in particular the Shapley
value defined on this class appear in the study of semiproportional values in [1].

Now we recall some definitions and notation. A cooperative game with
transferable utility (TU game) is a pair hN ; vi, where N ¼ f1; . . . ; ng is a finite
set of n � 2 players and v : 2N ! R is a characteristic function, defined on the
power set of N , satisfying vð;Þ ¼ 0. A subset S � N (or S 2 2N ) of s players is
called a coalition, and the associated real number vðSÞ presents the worth of
the coalition S. The set of all games with a fixed player set N we denote GN .
For simplicity of notation and if no ambiguity appears, we write v instead of
hN ; vi when refer to a game. For any set of games G � GN , a value on G is a
mapping n : G! Rn that associates with each game v 2 G a vector nðvÞ 2 Rn,
where the real number niðvÞ represents the payoff to player i in the game v.

A value n is marginalist if, for all v 2 G, for every i 2 N , niðvÞ depends only
upon the ith marginal utility vector fvðS [ iÞ � vðSÞgS�Nni, i.e.,

niðvÞ ¼ /iðfvðS [ iÞ � vðSÞgS�NniÞ;

where /i : R2n�1 ! R1.
A value n is efficient if, for all v 2 G,

X

i2N

niðvÞ ¼ vðNÞ:

A value n is symmetric if, for all v 2 G, for any permutation p : N ! N , and
for all i 2 N ,

npðiÞðvpÞ ¼ niðvÞ;
where vpðSÞ ¼ vðpðSÞÞ for all S � N , S 6¼ ;.

1This counterexample is due to Moshe’ Machover.
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Throughout the remainder of the paper we restrict our consideration to
nonnegative constant-sum games of the class

Gþc
N ¼ fv 2 GN jvðNÞ 6¼ 0; vðSÞ � 0; vðSÞ þ vðNnSÞ ¼ vðNÞ; for all S � Ng:

We prove below that the Shapley value defined on Gþc
N can be characterized

by three Young’s axioms of marginalism, efficiency, and symmetry. Our proof
strategy by induction is similar to that in Young. The proof of Young is not
applicable directly to the considered case since an important moment in his
proof is an expansion of a game v 2 GN via unanimity basis fuT gT�N

T 6¼;
defined as

uT ðSÞ ¼
1; T � S;
0; T 6� S; for all S � N ,

�

but unanimity games uT , for all nonempty and non-singleton coalitions
T � N , do not belong to Gþc

N .

Theorem 1. The only efficient, symmetric, and marginalist value defined on Gþc
N

is the Shapley value.

Proof: Every game v 2 Gþc
N , being a constant-sum game, appears to be a self-

dual game, i.e., v ¼ v�, where for any v 2 GN , a dual game v� is defined as

v�ðSÞ ¼ vðNÞ � vðNnSÞ; for all S � N :

For any game v 2 GN presented via unanimity basis fuTgT�N
T 6¼;

,

v ¼
X

T�N
T 6¼;

kT uT ;

the dual game v� can be presented via dual unanimity basis fu�T gT�N
T 6¼;

with the
same set of coefficients kT , T � N , T 6¼ ;, i.e.,

v� ¼
X

T�N
T 6¼;

kT u�T ;

since it is easy to check that, for any two games v; v0 2 GN and any real a,

ðvþ v0Þ� ¼ v� þ v0�;

ðavÞ� ¼ av�:

Therefore, every constant-sum game v 2 Gþc
N being self-dual can be presented

as a linear combination

v ¼
X

T�N
T 6¼;

kT wT ð1Þ

of games wT , T � N , T 6¼ ;, where for all S � N ,

wT ðSÞ ¼
uT ðSÞ þ u�T ðSÞ

2
¼

1; T � S,
1=2; T \ S 6¼ ;; T 6� S,
0; T \ S ¼ ; .

8
<

:

For all T � N , T 6¼ ;, wT 2 Gþc
N . Similarly to unanimity game uT , in any game

wT , T � N , T 6¼ ;, every player i =2 T is a null-player, i.e., all of his marginal
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contributions are equal to zero. The Shapley values of both games wT and uT
coincide, i.e., for every i 2 N ,

ShiðwT Þ ¼ ShiðuT Þ ¼
1=t; i 2 T ,
0; i =2 T .

�

However, we cannot apply the induction procedure directly to the expansion
(1) since for a nonnegative constant-sum game v 2 Gþc

N , not all coefficients kT
in (1) are necessarily nonnegative (we can state only that at least one of them
is positive), and deletion of a term in (1) may lead out of the class Gþc

N .
To overcome the problem we consider another than (1) expansion of a

game v 2 Gþc
N via games wT , T � N , T 6¼ ;. For an expression (1) and each

t ¼ 1; . . . ; n, define

kt ¼ maxfmax
T :jT j¼t

kT ; 0g; and �kT ¼ kt � kT � 0:

Consider a symmetric game

u ¼
Xn

t¼1
kt

X

T�N
T 6¼;
jT j¼t

wT :

One can easily see that u 2 Gþc
N . Since (1),

v ¼ u�
X

T�N
T 6¼;

�kT wT : ð2Þ

Observe that deletion of any term under the summation sign in (2) does not
move out of Gþc

N since �kT � 0, T � N , T 6¼ ;. Let now the index I of a game
v 2 Gþc

N be the minimum number of terms under the summation in an
expression (2), i.e.,

v ¼ u�
XI

k¼1

�kTk wTk ;

where all kTk 6¼ 0. We proceed the remaining part of the proof by induction on
this index I .

Let n be an efficient, symmetric, and marginalist value on Gþc
N .

If I ¼ 0, then v ¼ u, and for symmetric game u the result follows directly
from efficiency and symmetry assumptions about both values n and the
Shapley value.

Assume now that nðvÞ is the Shapley value whenever the index of v 2 Gþc
N

is at most I , and consider some v 2 Gþc
N with the index equal to I þ 1. Let

T ¼ \Iþ1
k¼1Tk. For all i; j 2 T , symmetry implies that niðvÞ ¼ njðvÞ; the similar

statement is true for the Shapley value too. Hence, combined with the
requirement of efficiency (both payoff vectors nðvÞ and ShðvÞ sum up to vðNÞ)
it is sufficient to prove that niðvÞ ¼ ShiðvÞ when i =2 T . Define a game

vðiÞ ¼ u�
X

k:i2Tk

�kTk wTk :

Obviously, the index of vðiÞ is at most I and, therefore, by induction
hypothesis, nðvðiÞÞ ¼ ShðvðiÞÞ. To complete the proof notice that both ith
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marginal utility vectors relevant to the games v and vðiÞ coincide and, so, by
marginalism of both values n and the Shapley value, niðvÞ ¼ niðvðiÞÞ and
ShiðvÞ ¼ ShiðvðiÞÞ. h

To conclude with it is reasonable to note that Young’s axiomatization is
valid as well for the Shapley value defined on the entire class of constant-sum
games

Gc
N ¼ fv 2 GN j vðSÞ þ vðNnSÞ ¼ vðNÞ; for all S � Ng:

Indeed, the last statement can be proved by the same way as it was done for
the case of the subclass of nonnegative constant-sum games Gþc

N or one can
exploit the same proof as in Young but with replacement of unanimity games
uT , T � N , T 6¼ ;, via games wT , T � N , T 6¼ ;.
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