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Abstract—Security policy alignment concerns the matching of
security policies specified at different levels in socio-technical
systems, and delegated to different agents, technical and human.
For example, the policy that sales data should not leave an
organization is refined into policies on door locks, firewalls and
employee behavior, and this refinement should be correct with
respect to the original policy. Although alignment of security
policies in socio-technical systems has been discussed in the liter-
ature, especially in relation to business goals, there has been no
formal treatment of this topic so far in terms of consistency and
completeness of policies. Wherever formal approaches are used
in policy alignment, these are applied to well-defined technical
access control scenarios instead. Therefore, we aim at formalizing
security policy alignment for complex socio-technical systems in
this paper, and our formalization is based on predicates over
sequences of actions. We discuss how this formalization provides
the foundations for existing and future methods for finding
security weaknesses induced by misalignment of policies in socio-
technical systems.

Index Terms—Attack trees, security logics, security policies,
security policy alignment, security policy refinement, socio-
technical systems, system models.

I. Introduction

COMPLEXITY in socio-technical systems is increasing.
Systems composed of information, physical properties

and human behavior have always been sophisticated, but recent
developments make a real difference. Outsourcing and service
composition cause dissolution of boundaries between organi-
zations. The proliferation of mobile devices causes dissolution
of boundaries between the private and the public sphere,
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between work and home. Convergence of access control
mechanisms, as well convergence of bio-, nano- and info-
technologies cause dissolution of boundaries between different
technologies. These trends lead to an explosion of the number
of possible interactions.

When considering the security of information in such socio-
technical systems, developments such as working from home,
bring-your-own-device, and cloud computing lead to increas-
ingly complicated information security problems. One has
to deal with propagation of access rights in complex attack
scenarios: attackers may exploit vulnerabilities at different
levels, and attacks may include physical access and social
engineering. This is already the case even in relatively simple
scenarios. For example, in the road apple attack, an attacker
will leave infected dongles around the organization’s premises.
When an employee picks up a dongle and plugs it into a
company computer, malware will send out all the information
that it can find. The possibilities for such multistep attacks
in increasingly complex systems come with the important
questions of how to manage information security policies in
complex situations, and how to check whether the security
policies in place are adequate.

The question of adequacy of security policies (i.e., whether
existing policies provide sufficient protection against the tar-
geted threats) can be addressed from the perspective of se-
curity policy alignment. Security policies may be stated at
different levels of abstraction, where higher-level policies are
refined into lower-level policies. For example, the policy that
sales data should not leave the organization is refined into
policies on door locks, firewalls, and employee behavior. In
security policy alignment, security policies are tested against
each other, and against business goals, to determine whether
they match the associated constraints. Informal approaches to
assess security policy alignment already exist (e.g., [1]–[4]).
However, as in many other socio-technical aspects of infor-
mation security, a formalization of the concepts lacks. On the
other hand, where formal approaches are used, these are often
limited to fairly simple logical access control problems [5]–[8].
In these frameworks, permission is discussed in terms of single
actions, but not sequences of actions. This reduces the value
of the notion of policy alignment in inspiring formal analysis
of information security in complex systems, where multistep
attack scenarios are typical. Also, the relation between policy
alignment, security logics, and model checking approaches
remains unclear.

Solhaug and Stølen [9] do discuss policies in terms of
sequences of actions. Their framework allows refinement of
both systems and policies, based on UML specifications.
However, they do not explicitly address security, and therefore
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do not support essential concepts in this field. In particular, we
need notions of completeness of policies, and attacks in the
case of incompleteness, and the notion of policies on system
states rather than traces.

To resolve this situation, and make the connection between
the different approaches explicit and precise, we provide a
formalization of security policy alignment in arbitrary types
of (socio-technical) systems, by providing mathematical def-
initions of the central concepts, and the relations between
those. This can be seen as an effort complementary to the
formalization of attack trees by Mauw and Oostdijk [10]
and attack-defense trees by Kordy, Mauw, Radomirović, and
Schweitzer [11]. Whereas attack trees represent possible un-
desirable behaviors, they do not contain an explicit notion of
policy or permitted behavior. This extension of our formal un-
derstanding is necessary to reason about the matching between
different policies in a system, and the relation between policy
mismatches and attack scenarios.

Our approach focuses on the expression of security policies
at different levels of abstraction, specifying whether behaviors
are permitted or forbidden, and the consistency and complete-
ness of such policies with respect to policies at other levels.
We define policies on traces (sequences of actions) rather than
individual actions such that both high-level policies (sales data
should not leave the organization) and low-level policies (this
door can only be opened with a specific key) can be expressed
in the same framework. We make a distinction between local
and global constraints on traces (see Section IV). Traces are
generated from a system model, which we leave implicit until
Section VI. Existing socio-technical system models can be
plugged in for this purpose [12]–[14].

We make no distinction between descriptive and normative
policies (e.g., “the door can only be opened with the key”
versus “it should only be allowed to open the door with
the key”), as this is only a matter of abstraction: what is
normative on a high level is implemented by descriptive
policies at a lower level, and when these lower level policies
are further refined, they become normative in turn. This
allows us to express policies in a relatively simple framework.
Similarly, security mechanisms are seen as low-level security
policies, and, indeed, such low-level policies can enforce
multiple high-level policies, and there may be several possible
low-level policies that enforce the same high-level policy
[15].

Although the main aim of this paper is theoretical, in the
sense that we provide formal foundations for policy alignment,
it has substantial practical implications in terms of connect-
ing existing methods for security analysis, and in providing
opportunities for future applied research in this area.

In Section II, we introduce the concepts involved in security
policy alignment, and a running example. In Section III, we
provide the basic formal definitions, including consistency of
policies, completeness and soundness of policies, and their
relations. In Section IV, we distinguish between different types
of policies, which has practical consequences for methods of
analysis. Model checking consistency and completeness is dis-
cussed in Section V, with procedures to generate attacks from
mismatches between global policies and local ones highlighted

in Section VI. In Section VII, we discuss possible applications
of the framework, followed by related work (Section VIII) and
conclusion (Section IX).

II. Security Policy Alignment

Organizations protect sensitive information by means of
describing and implementing security policies. Policies can be
defined at different levels of abstraction. High-level policies
describe the assets of the organization, as well as desirable
and undesirable states of such assets (e.g., in the hands of
competitors). Human resources (HR), physical security, and
IT departments refine these policies into implementable, low-
level policies [16], which are enforced via physical and digital
security mechanisms and training of the employees. These
policies describe the desired behavior of the employees (social
domain), the physical security of the premises where the
employees work (physical domain), and the IT security of the
stored and processed information (digital domain) [17] such
that these refinements together realize the high-level policies.

During the refinement and enforcement of the policies, mis-
takes may occur. These mistakes could be exploited by both
external parties and insiders [18] to achieve a malicious goal.
Therefore, management needs assurance that both refinement
and enforcement are done correctly. This assurance is achieved
in two steps: auditing and penetration testing. During the
auditing process, auditors assess whether the security policies
produced by the departments are correct with respect to the
policies defined by the management. After the policies from
the departments have been audited, penetration testers test
whether the security mechanisms correctly enforce the policies
from the departments.

The current work focuses on the auditing of security policies
by comparing formalized security policies in socio-technical
systems (e.g., organizations) and systematically checking the
refinement of high-level into low-level policies. We use the
informal description of policy alignment, as presented by
Abrams, Olson, and Bailey [19], [20] as a basis. The defini-
tions in this section provide informal intuitions for the reader’s
convenience; formal definitions will be provided in the next
section.

Definition 1: Security policy alignment is the process of
adjusting to each other different security policies for a system.

When considering a single level of abstraction, consistency
of the policies for a system is the most important concern
in policy alignment. When considering multiple levels, we
speak of policy refinement.

Definition 2: Security policy refinement is the process of
defining policies with a greater level of detail to support a
given general security policy.

This definition does not say anything about whether the
refinement is correct; requirements for correctness will be
discussed and formalized in the following.

The refinement step should be repeated for each level of
abstraction, starting from the policies defined on the highest
level of abstraction, toward policies on a lower level of
abstraction [19]. In refinement, completeness of lower-level
policies with respect to the original policy is an important con-
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cern. Moreover, lower-level policies should again be mutually
consistent. To simplify the presentation, we use just two levels
of abstraction for the policies, which we call high-level and
low-level policies. High-level policies are focused on security
goals with respect to the assets of the organization (“sales
data should not leave the organization”), and low-level policies
constrain individual actions of actors (“this door can only be
opened with a specific key”).

We do not focus on the problem of translating policies
from natural language into formal languages. The examples are
intuitive enough for explanation purposes, and the translation
of policies from natural to formal languages is a research topic
by itself [21]. An example of the interpretation problems that
can occur is provided in [4, ch. 5]. To what extent such a
process can be automated remains to be seen. In the framework
presented in this paper, most policies are relatively simple
access relations (should not have access to..., will grant access
to...), and therefore we believe the translation problems are
manageable.

Policies are specified in terms of permitted or forbidden
behaviors. A behavior is a sequence of actions, where an action
is a discrete event that cannot be broken up further. Policies
divide the space of possible behaviors into behaviors that are
permitted, behaviors that are forbidden, and behaviors that
are neither forbidden nor permitted. For high-level policies,
the set of behaviors may not even be specified yet, as high-
level policies are often stated in terms of all behaviors that
have an undesirable outcome. For example, a high-level policy
may state that all behaviors leading to the sales data ending
up outside the organization are forbidden, without specifying
what exactly these behaviors are. Depending on the refinement
of the system into components [22], [23], it will then become
possible to tell which behaviors actually lead to the undesirable
outcome.

When a system is specified in more detail, either by
designing the system or by empirically investigating it, the
policies will also reappear at lower levels. Such low-level
policies are policies that are delegated to system components,
such as doors, firewalls, and humans. Rather than specifying
what is permitted or forbidden depending on the outcomes
of a behavior, low-level policies typically permit or forbid
actions based on the executing agent, the location, and/or
the credentials. Also, low-level policies are typically more
exhaustive in the sense that more behaviors will be explicitly
forbidden or permitted than in the high-level policies. In this
way, the number of behaviors with unspecified permission will
be reduced. When low-level policies are specified in terms of
individual actions rather than complete behaviors, they still
apply to behaviors: a behavior is allowed by the low-level
policies if all the actions of which it consists are allowed by
the low-level policies, and a behavior is forbidden by the low-
level policies if at least one of its actions is forbidden by the
low-level policies.

In this paper, we assume actions to be atomic events on a
single level of abstraction. Although actions can be specified
at different levels when discussing system refinement, for
security policy alignment we are interested in the refinement of
the policies, not the actions. This refinement occurs primarily

in terms of different levels of policies, namely, policies that
refer to the actions themselves, and policies that refer to the
outcome of actions. In this context, stating that a certain
behavior or outcome is not permitted is equivalent to stating
that the corresponding sequences of actions are not permitted
on the chosen level of abstraction. The translation of actions
into a single level of abstraction will not be discussed further
here.

As an example of policy alignment, suppose that an or-
ganization has a high-level policy that enforces a behavior:
“aggregate sales data should be given to all shareholders.” With
the introduction of a policy that forbids a behavior, “sales data
should not leave the financial department,” the set of high-level
policies is no longer consistent. There is a conflict between
the two policies because the second policy forbids the sales
data leaving the financial department, while the first policy
requires some of the sales data to leave the organization. This
is an example of misalignment by inconsistency.

A high-level policy might also be refined into overly permis-
sive or overly restrictive low-level policies, which introduces
an opportunity for an adversary to violate the high-level policy
by means of an attack. We consider attacks as sequences of
actions that conform to a refined set of policies, while violating
the corresponding higher-level policy.

Example 1: As a running example, we consider a variant of
the road apple attack [24]. This attack consists of the following
sequence of actions.

1) The attacker prepares dongles with malware and com-
pany logo.

2) The attacker places dongles in a publicly accessible
location (say canteen).

3) The employee takes one dongle and plugs it into a
computer.

4) Autorun installs rootkit on the computer.
5) Rootkit acquires sales data.
6) Rootkit encrypts sales data.
7) Rootkit sends encrypted sales data out (firewall permits

encrypted egress traffic).
8) The attacker receives encrypted sales data.
A high-level policy of the organization states that sales data

should not leave the organization. If all of the above actions are
possible, they constitute a violation of the high-level policy.
In this example, overly permissive low-level policies, such
as allowing employees to bring storage devices to work and
allowing dongles to be plugged in the computer, allow the
violation of the high-level policy. Thus, there is a misalignment
of policies by incompleteness.

This general overview provides the most important intu-
itions for our approach to policy alignment. We will define
the associated notions of action, behavior, and policy more
precisely in the following.

III. Formal Definitions

In order to formalize policy alignment, we consider the con-
cepts of action, behavior, and policy. Then, we define policies
as first-order logic theories with permission predicates over
behaviors. We will define alignment in terms of consistency
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Fig. 1. Visualization of prefix closedness of the permission predicate. If a
policy would forbid Action2 in the context of a preceding Action1, it would
effectively forbid all behaviors with prefix (Action1, Action2). However,
Action2 might be permitted when, say, Action5 would precede it instead.

and completeness of policies. Our notation is similar to that
in [25].

Consider a set of abstract atomic actions E (for events). We
will call sequences of actions behaviors, with ε denoting the
empty behavior.1 The set of all possible behaviors is denoted
T = E∗ (for traces). For a behavior T ∈ T , we use the
predicate P(T ) to indicate that T is permitted.

Definition 3: A policy is a theory � in first-order logic,
with behaviors T ∈ T being the terms and P( ) a distin-
guished prefix closed predicate over behaviors.

The formula P(T ) means that behavior T is permitted or
possible; ¬P(T ) means that a behavior T is forbidden or
impossible. If neither P(T ) nor ¬P(T ) can be derived from a
policy, then the permissibility of T is undecided. For example,
the policy {¬P(Action1, Action2)} would forbid all behaviors
beginning with Action1 followed by Action2. More complex
formulae and sentences can be built using standard first-order
logic constructs. A policy is a theory and thus consists of a
set of sentences.

With prefix closed, we mean that for every behavior T and
action e, P(Te) → P(T ), with Te representing the behavior T

extended with action e. If a policy forbids a behavior, it should
also forbid any behaviors that extend this behavior. Similarly,
if a policy allows a behavior, it should also allow its prefixes
(see also Fig. 1). Prefix closedness implies that certain types
of theories will not be policies. For example, for any behavior
T and action e, the theory {P(Te), ¬P(T )} will not be possible
with a prefix closed predicate P , and cannot serve as a policy.
Thus, a theory that allows an employee to enter a room and
then pick up a dongle, but forbids the said employee to enter
the said room, is not a policy.

We say that a policy is consistent if no contradictory
formulae can be derived from it.

Definition 4: A policy � is consistent iff there is no formula
φ such that S � φ and S � ¬φ.

A new policy can be formed from the union of a set of
policies, that is �′ =

⋃n
i=1 �i. When the new policy �′ is

consistent, we say that �1...�n are mutually consistent.
Policies can be represented in Venn diagrams of the space of

behaviors, where for each behavior T it is indicated whether
T is permitted, forbidden, or undecided. When representing
multiple policies in the same diagram, one can visualize pos-
sible contradictions. For mutually consistent sets of policies,
the space can be divided into permitted, not permitted, and

1Although [10] use multisets of actions, we consider order important here,
which will become clear when discussing the notion of local policies. We may
wish to generalize sequences to partially ordered multisets in future work [26].

Fig. 2. Venn diagram of a mutually inconsistent pair of policies. The
behaviors covered by both policies are the ones that are both permitted and
forbidden.

Fig. 3. Venn diagram of a mutually consistent pair of policies. The union of
the two policies is an exhaustive policy, as there is no behavior that is neither
permitted nor forbidden.

unspecified. A mutually inconsistent pair of policies is shown
in Fig. 2.2

Next to consistency, we can also speak of exhaustiveness of
policies, when there is no behavior that is neither permitted
nor forbidden. Exhaustive policies cover all possible behaviors,
and requiring a policy to be exhaustive makes sure that any
possible behavior will be considered (Fig. 3).

Definition 5: A policy � is exhaustive iff for every behavior
T ∈ T , � � P(T ) or � � ¬P(T ).

In the area of security, problems with policies typically
enable what we call attacks. Using the above definitions, we
can define the notion of attack in terms of policies.

Definition 6: An attack on policy �1 enabled by policy �2

is a behavior that conforms to �2, but violates �1.
Typically, �2 is an incorrect refinement of �1. This refine-

ment may have been explicitly designed as such, or it may be
a policy implicitly defined by the technology and people in an
organization.

2See also [27] for an earlier example of using Venn diagrams in security
assertions.
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To be able to speak about the notion that a policy is a correct
refinement of another policy, we need notions of soundness
and completeness. Intuitively, soundness means that a refined
policy does not break any requirements of the high-level
policy, and completeness means that a refined policy covers
everything that the high-level policy covers. These notions are
defined purely on the syntactic level here, and thus do not have
the usual interpretation in logic of soundness and completeness
of theories with respect to models.

Definition 7: A policy �2 is complete with respect to a pol-
icy �1 iff for each formula φ such that �1 � φ, also �2 � φ.

This basic logical framework gives rise to some simple
theorems, which we present here to provide a complete
picture.

Theorem 1: If a policy �2 is complete with respect to a
policy �1 that is inconsistent, then �2 is also inconsistent.

Proof: If �1 is inconsistent, then according to Definition
4 there is a formula φ such that �1 � φ and �1 � ¬φ. As �2

is complete with respect to �1, this will mean according to
Definition 6 that also (1) �2 � φ and (2) �2 � ¬φ. Therefore
�2 is also inconsistent.

We call a policy sound with respect to another policy, if it
does not violate the constraints of this other policy (allows a
behavior forbidden by the other, or forbids a behavior allowed
by the other).

Definition 8: A policy �2 is sound with respect to a policy
�1 iff the policy �1 ∪ �2 is consistent, i.e., if �1 and �2 are
mutually consistent.

When refining policies, soundness thus expresses that the
refinement does not go against the higher-level policy, whereas
completeness expresses that everything of the higher-level
policy is covered. Note that the soundness relation is symmet-
ric. This may seem counterintuitive, but as long as policies
are mutually consistent, they are sound refinements of each
other in the sense that they do not contradict each other’s
requirements (although they are usually not complete). This
signals something important. Although soundness seems to
be an important property to express when refining policies,
it is actually implied by the combination of consistency and
completeness. Intuitively, this can be understood by the idea
that if completeness holds for one policy with respect to
another, then the permitted or forbidden conditions on behav-
iors must match for the behaviors that are covered by both
policies, and conflicts between the policies can only occur if
at least one of the policies is inconsistent. This is formalized in
Theorem 2.

Theorem 2: If a policy �2 is complete with respect to a
consistent policy �1, and �2 is consistent itself, then �2 is
also sound with respect to �1.

Proof: We prove the inverted statement: if a policy �2 is
not sound with respect to a consistent policy �1, then either
�2 is not complete with respect to �1, or �2 is inconsistent.
If a policy �2 is unsound with respect to a policy �1, then
there exists φ such that �1 ∪ �2 � φ and �1 ∪ �2 � ¬φ.
If �2 is not inconsistent itself, then there must be a ψ such
that �1 � ψ, �2 ∪ ψ is inconsistent, and �2 � ψ. Thus, there
is a formula ψ that is derivable from �1 but not from �2.
Therefore, �2 is not complete with respect to �1.

Definition 9: A policy �2 is a proper refinement of a policy
�1, if �2 is consistent, and �2 is complete with respect
to �1.

It follows that a proper refinement is also sound. In prin-
ciple, this definition allows us to judge whether a policy
refinement is correct, using standard logic tools. However,
such an analysis would often be unnecessarily complex, as
many policies are stated in a limited number of formats.

IV. Types of Policies

In many cases, we do not need the full power of first-
order logic to express policies. This also means that we can
avoid problems of indecidability. The most limited policies are
conjunctions of permitted or forbidden behaviors.

Definition 10: A simple policy is a set of sentences � of
the form P(T ) or ¬P(T ).

A simple policy can be understood as assigning to each
behavior a value: 1) don’t care; 2) permitted; 3) forbidden; or
4) contradiction.

Many policies allowing certain behavior, however, require
that a certain result can be achieved in relation to a business
goal. Often, it is not of essential importance how this result is
achieved. For example, there should be at least one possible
way to change the configuration of the e-mail server. This
means that security policies can forbid all but one of the
concerned behaviors, as long as this one behavior remains
possible. We can thus have a situation where out of a set of
behaviors at least one should be possible.

Similarly, it would often be required that for an attack to
be prevented, at least one of the constituting atomic behaviors
(actions) should be disabled. Thus, a negative policy demand-
ing exactly this would require at least one behavior in a set of
behaviors to be impossible. We call such at least one policies
extended policies.

Definition 11: An extended policy � is a set of sentences
of the form φ1 ∨ φ2 ∨ ... ∨ φn, where each φi is of the form
P(T ) or of the form ¬P(T ) with T a behavior.

Note that extended policies are only extended with respect
to simple policies, not with respect to the general notion of
policy defined in Definition 3. Extended policies are a subset of
general policies, and simple policies are a subset of extended
policies.

These types of policies are thus included in the general
notion of policy, specified on traces. However, many real-life
policies are not stated in terms of complete behaviors. Often,
we see policies that are rather defined on:

1) the permissibility of actions given the preceding trace
(“only people with a key should be able to open this
room”);

2) on the states of the system caused by the traces (“sales
data should not end up outside of the organization”).

This gives rise to two different kinds of policies that are not
contained in the general notion. A local policy is a policy that
specifies when a particular action can take place, based on the
preceding sequence of actions. A state policy is a policy that
specifies which states should be or should not be reachable.
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Definition 12: A local policy is a theory � in first-order
logic, with behaviors T ∈ T and actions e ∈ E being the
terms and L( , ) a distinguished predicate over T × E .

A local policy L(T, e) thus expresses that action e is
permitted following trace T .3

To specify policies on states, we need to augment the
sequences of actions with an underlying system state rep-
resentation, which we call a system model. Note that we
only introduce the state representation at this point in this
paper, and we still stick with our original interpretation of
policies in terms of behaviors. However, in practice, policies
are often specified on states, and to allow a translation from
such policies to behaviors, we need to define their relation.

Definition 13: A system model M = (S, S0, E, →) consists
of a state space S, an initial state S0, a set of events E , and a
state transition function →: S × E → S.

We write Si
e−→ Sj if there is a transition from state Si to

state Sj upon action e. We write Si
T−→ Sk if there is a behavior

T = e0...en that leads from state Si to Sk by multiple transitions
upon e0...en, respectively.

Definition 14: A state policy is a theory � in first-order
logic, with states S ∈ S being the terms and G( ) a
distinguished predicate over S.

In terms of our original definition of policy, a state policy
would permit one of the behaviors leading to the specified
state, or forbid all of the behaviors leading to the specified
state. Thus, it describes reachability of the state in the system
model.

Example 2: In the road apple example, there is a state
policy forbidding all states in which sales data is outside the
organization. In terms of behaviors, the policy means that such
states should not be reachable. In the existing version of the
organization, there are no local policies preventing behaviors
that lead to such states. The challenge here is to define local
policies that will do exactly this, for example, a local policy
forbidding the connection of noncompany devices to company
computers (potentially enforced by physical disabling). Even
though this would not prevent the behavior of bringing devices
to work (T ), it would not allow the action of connecting them
(e).

In the following sections, we will outline how the different
types of policies can be compared against each other.

V. Checking Consistency and Completeness

As will be detailed in the related work (Section VIII),
formalization of completeness of policies at different levels is
one of our major contributions. In the following, we discuss
how to assess consistency and completeness for the different
types of policies that we distinguished. Our interpretation of
policies in terms of behaviors is essential here, and enables a
model-checking approach to finding mistakes.

Completeness of simple policies can be verified by checking
if all permitted and forbidden behaviors of a high-level policy
are also permitted and forbidden in the low-level policy. Don’t
cares in the high-level policy may be assigned any value in the

3In [25], this is referred to as action e being enabled for trace T .

low-level policy (although the value contradiction would make
the low-level policy inconsistent, but not incomplete). Thus,
checking consistency and completeness for simple policies is
easy.

For extended policies, checking consistency requires the
construction of a simple policy matching the criteria imposed
by the extended policy. Verifying completeness of extended
policies requires checking whether for each sentence in the
high-level policy, there is a corresponding sentence in the low-
level policy of which the disjunctive elements are a subset
of those of the sentence in the high-level policy. Thus, the
low-level policy should be more restrictive in terms of the
set of behaviors of which at least one should be permitted or
forbidden.

The most interesting case, however, is checking consistency
and completeness of local policies against state policies. Local
policies (usually delegated to agents within the system) enable
or disable single actions, depending on the credentials, and
thereby enable or disable particular traces on global system
levels. A local policy can, for example, state that only persons
with a key can enter a door. To check these for consistency and
completeness against higher-level policies, possible sequences
of actions need to be generated from the local policies to
obtain global policies that can be compared against state
policies, for example, stating that sales data should not leave
the organization.

Definition 15: An implied global policy of a local policy �

is a policy � such that for each behavior T and action e.

1) � � P(ε).
2) � � P(Te) iff � � P(T ) and � � L(T, e).
3) � � ¬P(Te) iff � � ¬P(T ) or � � ¬L(T, e).

Note that the predicate P of the implied global policy
will be prefix closed (if � � P(Te) then also � � P(T )).
Intuitively, part 2 of the definition states that if an action is
locally permitted following trace T , then either it should be
globally permitted following trace T , or trace T should not be
permitted at all. Thus, either the situation in which the action is
allowed will not occur, or the action is enabled in that situation.
Part 3 states that if an action is locally forbidden following
trace T , then it should be globally forbidden following trace
T . In the latter case, it does not matter whether T is globally
permitted or forbidden, as Te should be globally forbidden in
both cases.

Moreover, state policies also imply policies on sequences
of actions, namely, those that lead to the specified states.

Definition 16: An implied global policy of a state policy �

in system model M = (S, S0, E, →) is a policy � such that
for each behavior T :

1) if � � G(S), then there exists a behavior T such that
� � P(T ) and S0

T−→ S;
2) if � � ¬G(S), then for all behaviors T such that S0

T−→
S, � � ¬P(T ).

Note that the former clause can also be represented as an
extended policy (see Definition 11), where at least one of the
behaviors leading to the state should be permitted.

Example 3: For the road apple example, the implied global
policy of the state policy “sales data should not leave the
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organization” prohibits all behaviors that lead to such states.
The local policy that forbids connection of external devices to
company computers implies a global policy that prohibits all
behaviors that contain such actions. In this local policy, there
is no constraint on the preceding trace, such as when a key is
required to open a door.

To test completeness of local policies with respect to state
policies, the policies need to be translated to standard policies
in terms of behaviors. To do this, we need to determine
whether composite behaviors are permitted or forbidden based
on the regulation of individual actions by the low-level poli-
cies. The local (low-level) policies are used to generate the
traces that they allow, and the states that are reachable. For
example, if a laptop is located in a room, and I cannot access
the room without the key, then the sequence of accessing
the room and removing the laptop is not permitted. However,
the sequence of asking someone the key, accessing the room,
and removing the laptop might be possible (permitted). If the
initial policies are only defined locally, this will not lead to
inconsistencies. Next, the permitted and forbidden traces and
states are tested against the state (high-level) policies, which
may or may not prove completeness. The policies are complete
if all permitted states are reachable, and all forbidden states
are unreachable. If a violation of the state policy forbidding
certain states can occur, this corresponds to a behavior that
satisfies the local policies, but violates the state policies,
proving incompleteness, and suggesting an attack.

The question is which methods are most appropriate for
such an analysis. When all implied global policies would be
determined, consistency and completeness could be assessed
with standard logic tools. However, the explicit generation of
all behaviors that would be needed to specify the implied
global policies is very inefficient, as the possibilities for
interaction typically grow exponentially with the number of
entities in a system. Even in relatively simple systems, the size
of the behavior space would therefore become prohibitively
large, and cyclic behaviors would require methods to cut
infinite traces.

Therefore, a first step is a simplification of the trace repre-
sentation. Then, it would still be possible to use existing tool
support, but we concluded earlier from a small experiment
that smarter solutions are needed for specific cases [4, ch. 4].
In the following, we present a solution for the most typical
case, i.e., comparing local policies against state policies (only
people with a key can open this door versus sales data should
not end up outside the organization). Although this is not a
fully general solution, it covers a typical security scenario:
behaviors that lead to a state in which security is violated
should not be possible. Therefore, this is a case that is of
particular interest to the security community.

Furthermore, the proposed approach closely links up with
existing methods in the field, such as attack trees. As the
translation of local policies to global ones will generate par-
ticular enabled traces, notably ones that conflict with existing
global policies, the procedure is exactly the same as procedures
that are used for generating attack scenarios from system
models with local policies. The only difference here is that
we make the notions of global and local policies explicit,

providing a sound conceptual and formal framework for ex-
isting approaches to attack generation. Thereby, we explain
how existing methods of analysis for finding attacks can be
expressed in terms of policy alignment.

VI. Attack Generation

A. Definitions

System models for attack generation can be understood
as completeness checkers for policies. They will compare
local decisions (local policies) against global requirements
(state policies). Typically, a system model underlying attack
generation methods is specified as a graph and the local
policies are assigned to nodes in the graph [12]–[14]. The
edges, which represent access relations between entities, then
represent the system state. For example, an edge between a
person and a room would indicate that the person has access
to the room. In the case the local policies assigned to the
nodes are dynamic, they are also part of the state. Such system
models thus allow the representation of both local policies
assigned to agents, as well as state policies on the state of
the system as a whole. Based on the model and the above
definitions, they can be translated to regular policies.

To enable a completeness analysis, the system infrastructure
is represented with the imposed (local) policies. As said, these
are usually formulated in terms of credentials, locations, and
identities required for an action e. Possession of the required
items can be derived from the preceding trace. For example, a
door connects two rooms (infrastructure), and a key is needed
to open the door (policy). Whether the agent will have the
key will depend on the preceding trace. The state of the
infrastructure can thus change over time, for example, if agents
obtain keys. To connect the state policies and the local policies,
we specify system model states in terms of attributes [28],
i.e., edges representing access relations between nodes in the
graph. State policies can then refer to the attributes of the
states considered (e.g., sales data not being outside of the
organization), and local policies can refer to the attributes as a
means to represent the preceding trace (e.g., a person being in
possession of a key). An action now consists of the satisfaction
of an attribute, or the addition of an edge to the graph.

The system’s local policies are represented as preconditions
of attributes in terms of other attributes. To enable the
connection of different attributes in a trace or behavior, the
attributes are annotated with the preconditions that can lead
to the attribute being satisfied. For example, the attribute
representing that I have access to a room has the preconditions
that I have access to the hall, and that I have access to the key.

Definition 17: An attribute a is a pair (name, precondition).
The precondition is specified as a set of sets of other attributes,
corresponding to a disjunctive normal form (disjunction of
conjunctions). A state is expressed as a predicate S on at-
tributes. An action consists of the transition of the predicate
value of one attribute from ⊥ to 
. If the precondition is 
,
the attribute is satisfied in the initial state.

The set of attributes for a particular system is denoted as A.
We often write only the name to refer to an attribute, omitting
the precondition for brevity.
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The state representation thus consists of a representation
of whether attributes are satisfied (whether edges exist in the
graph). State policies can often be understood as predicates
over attributes, either: 1) some attribute should be satisfiable
(being part of an essential business process), or 2) it should
be unsatisfiable (being a security threat). High-level policies
then state that either: 1) at least one behavior leading to the
satisfaction of the attribute should be permitted, or 2) all
behaviors leading to the satisfaction of the attribute should
not be permitted.

As in [28], it is assumed that satisfied attributes remain
satisfied forever. This is called the monotonicity assumption,
and it is a useful heuristic to prevent state explosion and
infinite loops. Only in cases where an agent has to go back
to a previous location, this assumption would not find the
real traces, and actions for going back would have to be
added by an additional procedure. Monotonicity leads to an
overapproximation, finding traces that cannot occur in practice,
when an agent is not able to go back. In such cases, the
procedure will conclude that certain traces are allowed by the
low-level policies, whereas they are actually not. If such a
trace is forbidden by the high-level policy, the procedure will
conclude that the low-level policies are not complete with
respect to the high-level policy. Conversely, when a certain
trace should be possible according to the high-level policies,
it may be found that the low-level policies are complete (they
seem to permit the behavior), whereas they are actually not.
However, such cases are very rare in practice. They would be
relevant, though, when focusing on systems that attempt to
prevent an intruder from escaping with his catch. Here, we
are primarily interested in testing whether gaining access is
possible.

Attributes thus express properties of the world that
may become satisfied over time. To make attributes
workable, they have to be generalized beyond individ-
ual objects. For example, the attribute (Steve−in−room,

{{Steve−in−hall, key−in−hall}}) states that Steve can enter
the room when he is in the hall and the key is in the hall.
(Remember that the precondition is a set of sets of attributes
corresponding to a disjunctive normal form.) It should be gen-
eralized to express (in−room(x), {{in−hall(x), in−hall(key)}}),
with x a variable. This is then an attribute template that covers
many individual instances.

When expressed in logic, this can also be written as
∀x : in−hall(x) ∧ in−hall(key) → in−room(x). In this case,
state transitions are replaced by derivation steps. We can even
generalize one level higher, and then obtain ∀x : in(x, hall) ∧
in(key, hall) → in(x, room).

If we have the “in” relation relating entities to groups of
entities as the only relation, we can represent the attributes by
a hypergraph, as in the ANKH system model [14]. Attributes
then represent which new group memberships are possible
based on which existing group memberships. The ANKH
model, in addition, constrains the policies by requiring that in
order for a new group membership to be possible based on an
existing group membership, there must exist an entity that is a
member of both groups already, and this entity must explicitly
allow the new membership based on specified preconditions.

In this way, different system models constrain the attributes
(and thus the associated preconditions) in different ways a
priori, typically based on some notion of proximity of entities
(actions cannot take place from a distance).

Attributes give rise to another type of policy, specifying
whether attributes are permitted or not.

Definition 18: An attribute policy is a theory � in first-
order logic, with attributes a ∈ A being the predicates.

Typically, state policies can be expressed more compactly
as attribute policies: if sales data should not leave the orga-
nization, we can prohibit all states in which the sales data is
outside, but we can write an equivalent attribute policy that
simply prohibits the attribute.

B. Method

With respect to the goal of describing attack generation
as policy completeness checking, we now know how state
representations with attributes in system models are related
to policies in our policy alignment framework: local policies
describe how attributes can change (which actions are pos-
sible), and attribute policies (state policies) describe which
attributes should or should not occur (which states are required
or forbidden).

By understanding actions as satisfaction of attributes, we
can now define a procedure for testing completeness of
local policies against state policies with system models
(Algorithm 1). Informally, the algorithm is as follows.

1) Assume that all attributes with precondition 
 are sat-
isfied.

2) Check which attributes now have their precondition
satisfied, and mark these as satisfied.

3) Repeat until no more attributes can be satisfied.
4) Check if the attribute policy is violated by the final set

of satisfied attributes.
5) If so, trace back attributes to its original preconditions,

and output possible attacks in terms of sequential satis-
faction of attributes.

When an attribute policy is input to the model that prohibits
certain attributes, the analysis will aim at finding a behavior
that is allowed by the local policies, but still leads to satis-
faction of the particular attribute (i.e., violates completeness).
In this case, we can easily check the completeness of local
policies with respect to such a policy by the above procedure.
We only have to judge whether the corresponding attribute is
satisfied after execution of the method. If we wish to know
what behaviors can lead to the satisfaction of the attribute,
we can backtrack the analysis following the preconditions of
the attributes, up to the point where all remaining attributes
have precondition 
 [4, p. 78]. It would be interesting to
investigate how such an analysis might work for other than
simple attribute policies.

By following the traces back from prohibited states toward
the initial state, one can build an attack tree [10], [29], in
which all the possibilities for violating the associated state
policy are visualized. In practice, because attributes can
occur in preconditions multiple times, the attack tree may not
actually be a tree in the mathematical sense, but rather a graph.
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Algorithm 1 Attack generation or completeness checking

Inputs:
• system model with attributes A;
• simple attribute policy �.

Outputs:
• violated policy sentences of the attribute policy, and

corresponding possible attacks.
Local variables:

• set of satisfied attributes A
;
• set of newly satisfied attributes Anew;
• set of attributes to be checked plus their relevant

precondition sentence Ach;
• iteration number i;
• tracking table M containing entries of the form (at-

tribute name, iteration number, satisfied conjunctive
clause);

• conflicting sentences in policy C;
• possible attacks T ;
• result, consisting of tuples (conflicting sentence, possi-

ble attacks) R.
Algorithm (pseudocode):

M ← ∅
A
 ← ∅
Anew ← {(n, 
) ∈ A}
i ← 0

repeat
A
 ← A
 ∪ Anew

Ach ← {(n, P, p) | (n, P) ∈ A\A
 ∧ p ∈ P ∧ p∩Anew �=
∅}
Anew ← ∅
for (n, P, p) ∈ Ach do

if p ⊆ A
 then
M ← M ∪ {(n, i, p)}
Anew ← Anew ∪ {(n, P)}

end if
end for
i ← i + 1

until Anew = ∅
A
 ← A
 ∪ {¬a | a ∈ A \ A
}
C ← {s ∈ � | A
 ∪ {s} � ⊥}
R ← ∅
for c ∈ C do

T ← {(n, i, p) ∈ M | (n, i, p) is a step contributing to the
final contradiction of c}4

R ← R ∪ {(c, T )}
end for
return R

However, as the notion of attack graph has a different meaning
in security analysis, we call the resulting structures attack trees
anyway.

4For additional details, see [4, Algorithm 2, p. 78]. For sentences consisting
of nonnegated attributes (stating that a certain attribute should be satisfiable), it
is not possible to generate scenarios explaining why the policy is not satisfied
(there is no concrete counterexample). It might be feasible to say something
about the closest possibility of satisfying the attribute, but that would be future
work, which the general structure of the algorithm allows.

Example 4: The state policy in our running example (the
road apple attack) forbids all sequences of actions that result
in the sales data being outside of the organization. This can
be expressed as an attribute policy (with states interpreted as
predicates over attributes)

� = {¬in(salesdata, outside)} (1)

which is equivalent to a state policy forbidding all states where
this attribute is satisfied

� = {∀S ∈ S :
S(in(salesdata, outside)) = 
 → ¬G(S)} (2)

which is again equivalent to a policy forbidding all behaviors
leading to such states

� = {∀T ∈ T , S ∈ S :

S(in(salesdata, outside)) = 
 ∧ (S0
T−→ S)

→ ¬P(T )}.
(3)

If all of the actions constituting one such behavior are
possible (permitted by the local policies), they constitute an
attack on the high-level policy. Using graph-based system
model analysis, such attacks can be determined by Algorithm
1. In the road apple example, the road apple attack is enabled
by the local policies, and will therefore be output by the
algorithm. Depending on the other entities represented in the
model, other attack scenarios might be possible as well. The
high-level and low-level policies are thus not properly aligned.
To achieve alignment, at least one of the actions constituting
the road-apple attack should be disabled by a local policy.
Thereby, other attacks containing this action are also disabled.
The analysis can be rerun with simulated countermeasures
to determine the overall effect of such measures on possible
attacks.

In Fig. 4, the possible behaviors violating the high-level
policy are represented in an attack tree for the road apple
example [14].

Similarly, it may be checked whether it would be possible to
send aggregate sales data to the tax office. Even with security
policies in place, high-level policies may state that there should
still be a way to do this. In this case, the analysis amounts to
checking whether something is possible rather than impossible.
In this case, the high-level policy actually states that at least
one behavior leading to the target situation should be possible,
i.e., it is an extended policy.

In case we wish to disable the road apple attack, at least one
of the constituting actions should be disabled, giving a negative
extended policy. When composing such policies (required to
disable attacks), the question of whether the policies are still
consistent becomes relevant.

C. Scalability

We have run experiments by comparing local policies
against attribute policies using the Portunes system model [4].
This analysis is aimed at finding a violation of a state or
attribute policy that is permitted by the local policies. With
standard model checking tools, experimental results show a
O(N6) complexity. N represents the number of nodes in the
model, and we assume that the number of local policies is



284 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 2, JUNE 2013

Fig. 4. Attack tree for the road apple example (adapted from [14]). The
attack tree represents the possible behaviors that violate the policy “no sales
data outside organization.” The grey boxes are attributes with precondition

 (initially satisfied attributes). Arrows point to attributes required by the
precondition of their originating attribute.

in the same order. With dedicated algorithms, with theoretical
worst-case complexity of O(N4), the experiments give O(N3.3)
and O(N1.7) for constructed examples with expected bad and
good scalability behaviors, respectively.

In these algorithms, the monotonicity assumption [28] sim-
plifies the calculations by requiring that edges (attributes)
can only be added to the graph of the system model, not
removed. This is adequate for most practical cases. Most
of the complexity lies in calculating all satisfiable attributes.
When this has been done, finding out which local policies are
responsible for the violation of a different state or attribute
policy is relatively cheap (O(N2)). For details, see [4, ch. 4].

VII. Applications

In summary, the framework of policy alignment provides a
formal foundation for the analyses for finding attack scenarios
in socio-technical systems. The present formalization provides
a theoretical foundation in terms of:

1) explicit definition of policies in terms of behaviors;
2) description of high-level and low-level policies in terms

of permitted and forbidden behaviors, thereby explicat-
ing the link between high- and low-level policies;

3) understanding of attack generation as generation of
behaviors that violate the high-level policies (typically
state or attribute policies).

Based on the above outline, different applications of our
formalization of policy alignment are possible, or will become
possible through further efforts.

A. Predicting Attacks by Misalignment Analysis

As outlined above, the completeness analysis of local poli-
cies against global policies can be used for predicting possible
attacks in socio-technical systems. Although such methods
were proposed before, we are the first to formalize this idea
in terms of incompleteness of policies. In addition to the
basic analysis, observed traces can be used to test whether
the system conforms to the policies (see [30]).

B. Attack Trees as Policies

Attack trees [29] are trees that show how an attacker can
reach a certain goal (root node). The tree splits when an
attacker has to execute multiple actions (AND node) or can
choose between actions (OR node) to achieve a goal. Mauw
and Oostdijk [10] provided a formal semantics for attack trees.
The semantics of an attack tree is a multiset of actions, namely,
those that lead to the target situation of the attack tree.

In our work on policy alignment, we are interested in
policies that separate between permitted/forbidden or possi-
ble/impossible behaviors. An attack tree can, therefore, also
be seen as a policy that allows exactly the behaviors of its
semantics. As a policy, it may be conflicting with a policy that
forbids such behaviors. In particular, higher-level policies will
typically prohibit behaviors that lead to a situation represented
as the goal of an attack. In this case, the behaviors described
by the attack tree will conflict with the higher-level policy.

Conversely, an attack tree may also be seen as a policy
forbidding the behaviors that constitute the tree, i.e., all the
behaviors that achieve the goal of the attack. The attack tree
then becomes a specification of defensive measures needed to
prevent the attack. Such a policy will be the union of a set of
extended policies, namely, for each behavior reaching the goal,
at least one of the constituting actions should be forbidden.

C. Representing Multilevel Authorizations

Normally, the formal study of authorizations is limited to
authorizations on one level: persons are mapped to roles,
and roles are mapped to access to objects (see [15]). Even
when refinement is discussed, as in [31], this refinement only
considers single actions and the associated authorizations.
However, in organizations one typically wants certain persons
or roles to achieve certain outcomes, but at the same time
one wants to prevent other results. Thus, when someone is
authorized to send aggregate sales data to shareholders, this
person should be permitted to execute all actions constituting
one of the possibilities to achieve this goal. In other words,
there is an alignment question here in terms of how to
define the low-level authorizations such that this high-level
authorization is effectuated. Moreover, one will often want
this to happen without giving low-level authorizations that can
lead to undesirable outcomes (insider attacks). This provides a
detailed account of how to implement least privilege by means
of policy alignment with multiple authorization levels.

D. Quantification

In addition to describing policies in terms of permitted
and forbidden, it would be interesting to look at quantitative
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values. These values would then represent the difficulty or
cost of a behavior [32]. Policies could specify a maximum
or minimum difficulty for sets of behaviors, where minimum
difficulty would correspond to a security requirement (things
that should not happen should be difficult), and maximum
difficulty would correspond to a usability requirement (things
that should happen should be easy). Fuzzy logic could be used
to support such policies.

Consistency and completeness will have different meanings
for quantified policies. Rather than binary values, they will
now also be quantitative values indicating goodness of poli-
cies. This will also require different definitions of consistency
and completeness.

These quantification efforts correspond to the labeling of
attack trees with different types of values (likelihood, effort,
cost, reward, etc.). However, they are now part of a model
of the socio-technical system infrastructure rather than of a
pre-defined attack tree. This means that attack trees will first
have to be generated from the system model to determine the
total difficulty of particular attacks. Heuristics may need to be
applied to keep the model checking manageable.

E. Policy Design

Ultimately, the goal of this paper is to allow system design-
ers to specify low-level policies based on high-level policies
defined on the management level in organizations. A full-
fledged method for achieving this goal will require further
research in the areas outlined above.

VIII. Related Work

A. Policy Alignment

Abrams and Bailey [20] discussed the refinement of security
policies across different levels of abstraction, where lower-
level policies are implementations of higher-level policies.
They discussed consistency and conformance of policies be-
tween levels. They did not formalize these relations, and
neither did they discuss the possibility that not all behaviors
will be categorized as permitted or forbidden at higher levels
of abstraction. Nunes Leal Franqueira and Van Eck [33]
discussed alignment of policies between different domains
(access control, network layout, and physical infrastructure)
based on the formalism of law-governed interactions. They
only focused on expressing policies from the different domains
in a single language, not on refinement and completeness of
policies.

B. Security Logics

Cholvy, Cuppens, and others [6], [7] focused on consistency
of security policies and the merging of policies based on
deontic security logics, using an operator for obligation (where
forbidding is expressed as obligation not to do something,
and permission is expressed as not being obliged not to do
something). They focused on logical access, and discussed
whether it is possible for situations to occur in which there
is a conflict. For example, if a user cannot downgrade a file,
but a system security officer (SSO) can, and it is at the same

time specified that a SSO is also a user, then if there exists an
agent with the role of SSO, and a file, then downgrading the
file by the SSO is both permitted and forbidden.

We are also interested in conflict situations, but: 1) we focus
on socio-technical systems, with multistep attacks, including
physical access and organizational policies, and 2) we relate
our work to model checking instead of theorem proving. In
addition, we do not discuss obligatory actions, as we are pri-
marily interested in the possibility or impossibility of attacks
through permitted and forbidden actions. We thus do not need
to use deontic logic, as we only consider whether actions are
permitted or forbidden at a specific level of abstraction. At a
high level, this has a normative meaning (“sales data should
not (cannot) leave the organization”); at a low level, this has a
descriptive meaning (“this door can only be opened with the
key”). This difference does not impact the analysis, as we only
focus on the alignment of the policies between the different
levels of abstraction.

C. Security Policy Refinement

Several papers discussed policy refinement for specific
scenarios. For example, Craven et al. [31] discussed policy
refinement in a database setting, and Laborde, Barrère, and
Benzekri focused on policy refinement in networks [34].
Bonatti, De Capitani di Vimercati, and Samarati [5] focused
on the composition of multiple policies, where policies may be
underspecified. These approaches achieve major improvements
in the flexibility of reasoning on security policies, by providing
representations of policies at different levels of abstraction that
are specific to the context considered. Here, however, we are
interested in multistep scenarios in socio-technical systems,
and because of the complexity and the many different types
of actors involved, we need a more general formalization. In
particular, previous work discusses policies that are already
formulated in terms of subjects, objects, and individual actions,
but refines these following refinement of the subjects, objects
and actions. For policy alignment and refinement to work in
socio-technical system scenarios, we are interested in how to
refine policies that can be expressed in terms of more complex
behaviors (i.e., sequences of actions).

D. Consistency and Completeness

Checking consistency of security policies has been dis-
cussed in the literature from an intensional or theorem proving
point of view [6], [7]. From a model-checking point of view,
consistency of policies depends on the space of behaviors.
Therefore, the possible behaviors first need to be generated
to determine whether the policies imposed on the behaviors
are consistent. In practice, conflicts could, for example, occur
when particular policies apply in emergency situations, such
as doors that are automatically unlocked, whereas security
policies would require the doors to be closed (i.e., allow no
behaviors that involve opening the doors).

Checking completeness of security policies is less well
studied, because the notion of policies at different levels of
abstraction has not been taken into account. Where complete-
ness is mentioned, e.g., in [15] and [35], it refers to what we
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have called exhaustiveness. Formally, discussing completeness
of policies at different levels is therefore a major contribution.

E. System Models

System models [12]–[14], [36] are representations of an
organization’s technical and social infrastructure, aimed at
finding security vulnerabilities in the infrastructure. Attacks (or
attack trees) can be automatically generated from such models.
The models check a high-level policy (e.g., “sales data should
not leave the organization”) against low-level policies (e.g.,
“this door can only be opened with a special key”). Intuitively,
this can be understood as a form of policy alignment, and one
of our important contributions is a more precise definition of
this relation.

As we are interested in possible policy violations, or
(in)completeness of refined policies with respect to high-level
ones, we focus on an extensional interpretation of policies
here, i.e., in terms of the set of behaviors that they permit or
forbid. The extensional interpretation also makes it possible to
visualize the policies in Venn diagrams by showing policies in
terms of permitted and forbidden subsets of behaviors. It also
enables model checking for consistency and completeness by
systematically exploring the space of behaviors.

IX. Conclusion

In this paper, we formalized the notion of security policy
alignment. Policy alignment has been known as an approach
for assessment of organizational security policies, but a formal
foundation was lacking. This meant that the relation between
the areas of (informal) policy alignment, security logics, and
system models remained implicit. Our formalization provides
a formal foundation for model-checking approaches to finding
security weaknesses in complex socio-technical systems, based
on the up-to-now-informal notion of security policy alignment.

Our formalization of security policies is based on theories
in first-order logic, with a permission predicate over behaviors.
Security policies can then be checked for consistency and
completeness. We showed that soundness can be expressed as a
combination of these. Completeness of local policies delegated
to agents can be checked with system models, by comparing
the traces that they allow against global policies stated in terms
of states or attributes. This provides a clear foundation for
the relation between system models and security policies. To
allow other than black-or-white policies, which is typical when
policies are delegated to humans, we sketched possibilities to
transform the definitions and checks to a quantitative setting.

The model could further be extended with policies repre-
senting obligation (see [9]). This is especially relevant for local
policies, as these denote which next actions are permitted
given the preceding trace (expressed in the attributes of the
state). Based on the preceding trace, it could also be specified
that a particular action is compulsory. In the behavior, such
an action should then always be executed first, before any
other actions can take place. This would then, in turn, imply
a global policy, by preventing certain behaviors (namely those
that do have different actions before the compulsory one).
However, such an analysis is not completely trivial within the

proposed framework, especially in relation to the monotonicity
assumption that is introduced to keep the analysis scalable. If
attributes can only be added, but not removed, there would
not be any reason to execute actions in a particular order,
as the preconditions will never become false again after they
were true once. For obligation to be meaningful, the obligatory
action would have to disable others (such as when locking
a door), and therefore requires lifting of the monotonicity
assumption. Whether this keeps the analysis scalable remains
to be seen. Still, we showed that for many security problems,
focusing only on what is possible or permitted already pro-
vides valuable results.

Another topic for future work is the integration of the
present formalism of policy alignment with our previous work
on system refinement [23]. It would then become possible to
analyze whether an attack that would be possible or impos-
sible in a system would still be possible or impossible in a
refinement of that system.

We also hope to further develop quantitative models for
security analysis, based on the present formalization. Such
models would be able to assist companies in estimating the
likelihood, difficulty, and damage of attacks, as well as the
effectiveness of countermeasures in reducing the values of
these variables.

References

[1] M. Corpuz and P. Barnes, “Integrating information security policy
management with corporate risk management for strategic alignment,”
in Proc. 14th World Multi-Conf. Systemics Cybern. Informatics, 2010,
pp. 337–342.

[2] A. Creery and E. Byres, “Industrial cybersecurity for a power system
and SCADA networks: Be secure,” IEEE Ind. Appl. Mag., vol. 13, no. 4,
pp. 49–55, Jul. 2007.

[3] N. F. Doherty and H. Fulford, “Aligning the information security policy
with the strategic information systems plan,” Comput. Security, vol. 25,
no. 1, pp. 55–63, Feb. 2006.

[4] T. Dimkov, “Alignment of organizational security policies: Theory and
practice,” Ph.D. dissertation, Faculty Electr. Eng., Math. Comput. Sci.,
Univ. Twente, Enschede, The Netherlands, Feb. 2012.

[5] P. Bonatti, S. De Capitani di Vimercati, and P. Samarati, “An algebra for
composing access control policies,” ACM Trans. Inform. Syst. Security,
vol. 5, no. 1, pp. 1–35, Feb. 2002.

[6] L. Cholvy and F. Cuppens, “Analyzing consistency of security policies,”
in Proc. IEEE Symp. Security Privacy, May 1997, pp. 103–112.

[7] F. Cuppens, L. Cholvy, C. Saurel, and J. Carrere, “Merging security
policies: Analysis of a practical example,” in Proc. 11th IEEE Comput.
Security Found. Workshop, Jun. 1998, pp. 123–136.

[8] H. Hamed and E. Al-Shaer, “Taxonomy of conflicts in network se-
curity policies,” IEEE Commun. Mag., vol. 44, no. 3, pp. 134–141,
Mar. 2006.

[9] B. Solhaug and K. Stølen, “Preservation of policy adherence under
refinement,” Int. J. Software Informatics, vol. 5, nos. 1–2, pp. 139–157,
2011.

[10] S. Mauw and M. Oostdijk, “Foundations of attack trees,” in Proc. 8th
Annu. Int. Conf. ICISC’05, LNCS 3935. 2006, pp. 186–198.

[11] B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer, “Foundations of
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