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a b s t r a c t

We consider a new model of a TU game endowed with both coalition and two-level
communication structures that applies to various network situations. The approach to the
value is close to that of both Myerson (1977) and Aumann and Drèze (1974): it is based on
ideas of component efficiency and of one or another deletion link property, and it treats an
a priori union as a self-contained unit; moreover, our approach incorporates also the idea
of the Owen’s quotient game property (1977). The axiomatically introduced values possess
an explicit formula representation and in many cases can be quite simply computed. The
results obtained are applied to the problem of sharing an international river, possibly with
a delta or multiple sources, among multiple users without international firms.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The study of TU games with coalition structures was initiated first by Aumann and Drèze [2], then Owen [12]. Another
model of a game with limited cooperation presented by means of a communication graph was introduced in Myerson [11].
Various studies in both directions were done during the last three decades but mostly either within one model or another.
The generalization of the Owen and Myerson values, applied to the combination of both models that resulted in a TU game
with both independent coalition and communication structures, was investigated by Vázquez-Brage et al. [16].

In the paper we study TU games endowed with both coalition and communication structures. Different from [16], in our
case a communication structure is a two-level communication structure that relates fundamentally to the given coalition
structure. It is assumed that communication (via bilateral agreements among participants) is only possible either among the
entire coalitions of a coalition structure, called a priori unions, or among single players within a priori unions. No communi-
cation and therefore no cooperation is allowed between proper subcoalitions, in particular single players, of different a priori
unions. This approach allows tomodel different network situations, in particular, telecommunication problems, distribution
of goods among different cities (countries) along highway networks connecting the cities and local road networks within
the cities, or sharing an international river with multiple users but without international firms, i.e., when no cooperation is
possible among single users located at different levels along the river, and so on. A two-level communication structure is in-
troduced bymeans of graphs of two types, first, presenting links between a priori unions of a coalition structure and second,
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Fig. 1. (a) A model of the paper; (b) a model of Vázquez-Brage et al.; (c) a case of coincidence of both models.

presenting links between players within each a priori union. We consider communication structures given by combinations
of graphs of different types both undirected—arbitrary graphs and cycle-free graphs, and directed—line-graphswith linearly
ordered players, rooted forests and sink forests. Fig. 1(a) illustrates one of the possible situations within the model while
Fig. 1(b) provides an example of a possible situation within the model of Vázquez-Brage et al. with the same set of players,
the same coalition structure, and even the same links connecting players within a priori unions. In general, the introduced
model of a game with two-level communication structure cannot be reduced to the model of Vázquez-Brage et al. Con-
sider for example negotiations between two countries held on the level of prime ministers who in turn are citizens of their
countries. The communication link between countries can be replaced neither by communication link connecting the prime
ministers as single persons and therefore presenting only their personal interests, nor by all communication links connecting
citizens of one country with citizens of another country that also present links only on the personal level. The two models
coincide only if a communication graph between a priori unions in ourmodel is empty and components of a communication
graph in themodel of Vázquez-Brage et al. are subsets of a priori unions. An example illustrating this situationwith the same
player set, the same coalition structure, and the same graphs within a priori unions, as on Fig. 1(a) is given on Fig. 1(c).

Our main concern is to provide a theoretical justification of solution concepts reflecting the two-stage distribution
procedure and also to reveal the conditions when such a procedure is feasible. It is assumed that at first, a priori unions
through upper level bargaining based only on cumulative interests of all members of each involved entire a priori union
when nobody’s personal interests are taken into account collect their total shares. Thereafter, via bargaining within a priori
unions based only on personal interests of participants, the collected shares are distributed to single players. As a bargaining
output on both levels one or another value for games with communication structures, in other terms graph games, can be
applied. FollowingMyerson [11]we assume that cooperation possible only among connected players or connected groups of
players and, therefore, we concentrate on component efficient values. Different component efficient values for graph games
with graphs of various types, both undirected and directed, are known in the literature. We introduce a unified approach to
a number of component efficient values for graph games that allows application of various combinations of known solution
concepts, first at the level of entire a priori unions and then at the level within a priori unions, within a single framework.
Our approach to values for games with two-level graph structures is close to that of both Myerson [11] and Aumann and
Drèze [2]: it is based on ideas of component efficiency and one or another deletion link property, and it treats an a priori union
as a self-contained unit. Moreover, to link both communication levels between and within a priori unions we incorporate
the idea of the Owen’s quotient game property [12]. This approach generates two-stage solution concepts that provide
consistent application of values for graph games on both levels. The incorporation of different solutions for graph games
aims not only to enrich the solution concept for games with two-level graph structures. It also opens a broad diversity of
applications impossible otherwise because there exists no universal solution concept for graph games that is applicable to
the full variety of possible undirected and directed graph structures. Furthermore, it allows to chose, depending on types
of graph structures under scrutiny, the most preferable, in particular, the most computationally efficient combination of
values among others suitable. The idea of a two-stage solution concept is not new. The well known example is the Owen
value [12] for games with coalition structures that can be equivalently defined by applying the Shapley value [13] twice,
first, the Shapley value is employed at the level of a priori unions to define a new gamewithin each one of them and then, the
Shapley value is applied to these newgames. As a practical applicationwe consider the problemof sharing of an international
river, possibly with a delta or multiple sources, among multiple users without international firms.

The paper has the following structure. Basic definitions and notation alongwith the formal definition of a gamewith two-
level communication structure and its core are introduced in Section 2. Section 3 provides the uniform approach to several
known component efficient values for games with communication structures. In Section 4 we introduce values for games
with two-level communication structures axiomatically and present an explicit formula representation, we also investigate
stability and distribution of Harsanyi dividends. Section 5 discusses application to the water distribution problem of an
international river among multiple users.

2. Preliminaries

2.1. TU games and values

Recall some definitions and notation. A cooperative game with transferable utility (TU game) is a pair ⟨N, v⟩, where N ⊂ N

is a finite set of n ≥ 2 players and v: 2N
→ R is a characteristic function, defined on the power set of N such that v(∅) = 0.
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A subset S ⊆ N (or S ∈ 2N ) of s players is called a coalition, and the associated real number v(S) presents theworth of S. The
set of all games with fixed N we denote by GN . For simplicity of notation and if no ambiguity appears, we write v instead
of ⟨N, v⟩ when refer to a game. A value is a mapping that assigns for every N ⊂ N and every v ∈ GN a vector ξ(v) ∈ RN ;
the real number ξi(v) represents the payoff to player i in v. A subgame of v with a player set T ⊆ N, T ≠ ∅, is a game v|T
defined as v|T (S) = v(S), for all S ⊆ T . A game v is superadditive, if v(S ∪ T ) ≥ v(S) + v(T ), for all S, T ⊆ N , such that
S ∩ T = ∅. A game v is convex, if v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ), for all S, T ⊆ N . In what follows for all x ∈ RN and
S ⊆ N , we use standard notation x(S) =


i∈S xi. The cardinality of a given set A we denote by |A| along with lower case

letters like n = |N|, m = |M|, nk = |Nk|, and so on.
It is well known (cf. Shapley [13]) that unanimity games {uT } T⊆N

T≠∅

, defined as uT (S) = 1, if T ⊆ S, and uT (S) = 0

otherwise, create a basis in GN , i.e., every v ∈ GN can be uniquely presented in the linear form v =


T⊆N,T≠∅
λvT uT ,

where λvT =


S⊆T (−1)t−s v(S), for all T ⊆ N, T ≠ ∅. Following Harsanyi [6] the coefficient λvT is referred to as a dividend
of coalition T in game v.

The core (cf. Gilles [5]) of v ∈ GN is defined as

C(v) = {x ∈ R
N

| x(N) = v(N), x(S) ≥ v(S), for all S ⊆ N}.

A value ξ is stable, if for any v ∈ GN with nonempty core C(v), ξ(v) ∈ C(v).

2.2. Games with coalition structures

A coalition structure, or in other terms a system of a priori unions, on N ⊂ N is given by a partitionP = {N1, . . . ,Nm} of N ,
i.e.,N1∪· · ·∪Nm = N andNk∩Nl = ∅ for k ≠ l. LetPN denote the set of all coalition structures onN , and letGP

N = GN ×PN .
A pair ⟨v,P ⟩ ∈ GP

N constitutes a game with coalition structure, or simply P-game, on N . A P-value is a mapping that assigns
for every N ⊂ N and every ⟨v,P ⟩ ∈ GP

N a payoff vector ξ(v,P ) ∈ RN . Given ⟨v,P ⟩ ∈ GP
N , Owen [12] defines a game vP ,

called a quotient game, onM = {1, . . . ,m} in which each a priori union Nk acts as a player:

vP (Q ) = v


k∈Q

Nk


, for all Q ⊆ M.

Note that ⟨v, {N}⟩ represents the same situation as v itself. In what follows by ⟨N⟩ we denote the coalition structure
composed by singletons, i.e., ⟨N⟩ = {{1}, . . . , {n}}. Furthermore, for every i ∈ N , let k(i) be defined by the relation i ∈ Nk(i),
and for any x ∈ RN , let xP

=

x(Nk)


k∈M ∈ RM be the corresponding vector of total payoffs to a priori unions.

2.3. Games with communication structures

A communication structure on N is specified by a graph 0, undirected or directed. An undirected/directed graph is a
collection of unordered/ordered pairs of nodes (players) 0 ⊆ 0c

N = { {i, j} | i, j ∈ N, i ≠ j} or 0 ⊆ 0̄c
N = {(i, j) | i, j ∈

N, i ≠ j} respectively, where an unordered pair {i, j} or correspondingly ordered pair (i, j) presents a undirected/directed link
between i, j ∈ N . Let GN denote the set of all communication structures on N , and let GΓN = GN × GN . A pair ⟨v,0⟩ ∈ GΓN
constitutes a game with graph (communication) structure, or simply graph game or Γ -game, on N . A Γ -value is a mapping
that assigns for every N ⊂ N and every ⟨v,0⟩ ∈ GΓN a payoff vector ξ(v,0) ∈ RN .

In a graph 0 a sequence of different nodes (i1, . . . , ir), r ≥ 2, is a path in 0 from node i1 to node ir if for h = 1, . . . , r − 1
it holds that {ih, ih+1} ∈ 0 when 0 is undirected and {(ih, ih+1), (ih+1, ih)} ∩ 0 ≠ ∅ when 0 is directed. In a directed graph
(digraph) 0 a path (i1, . . . , ir) is a directed path from node i1 to node ir if for all h = 1, . . . , r − 1 it holds that (ih, ih+1) ∈ 0.
In a digraph 0, j ≠ i is a successor of i and i is a predecessor of j if there exists a directed path from i to j, and j is a immediate
successor of i and i is a immediate predecessor of j if (i, j) ∈ 0. Given a digraph 0 on N and i ∈ N , the sets of all predecessors,
all immediate predecessors, all immediate successors, and all successors of i in 0 we denote by P0(i),O0(i), F0(i), and S0(i)
correspondingly; moreover, P̄0(i) = P0(i) ∪ {i} and S̄0(i) = S0(i) ∪ {i}.

Given a graph 0 on N , two nodes i and j in N are connected if there exists a path from node i to node j. Graph 0 on N
is connected if any two nodes in N are connected. For a graph 0 on N and a coalition S ⊆ N , the subgraph of 0 on S is the
graph 0|S = {{i, j} ∈ 0 | i, j ∈ S} on S when 0 is undirected and the digraph 0|S = {(i, j) ∈ 0 | i, j ∈ S} on S when 0
is directed. Given a graph 0 on N , a coalition S ⊆ N is connected if the subgraph 0|S is connected. For a graph 0 on N and
coalition S ⊆ N, C0(S) is the set of all connected subcoalitions of S, S/0 is the set of maximally connected subcoalitions of
S, called the components of S, and (S/0)i is the component of S containing player i ∈ S. Notice that S/0 is a partition of S.
Besides, for any coalition structure P , the graph 0c(P ) =


P∈P 0

c
P , splits into completely connected components P ∈ P ,

and N/0c(P ) = P . For any ⟨v,0⟩ ∈ GΓN , a payoff vector x ∈ RN is component efficient if x(C) = v(C), for every C ∈ N/0.
Later on when for avoiding confusion it is necessary to specify the set of nodes N in a graph 0, we write 0N instead of 0.

Following Myerson [11], we assume that for ⟨v,0⟩ ∈ GΓN cooperation is possible only between connected players and
consider a restricted game v0 ∈ GN defined as

v0(S) =


C∈S/0

v(C), for all S ⊆ N. (1)
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The core C(v,0) of ⟨v,0⟩ ∈ GΓN is defined as a set of component efficient payoff vectors that are not dominated by any
connected coalition, i.e.,

C(v,0) = {x ∈ R
N

| x(C) = v(C), ∀C ∈ N/0, and x(T ) ≥ v(T ), ∀T ∈ C0(N)}. (2)
It is easy to see that C(v,0) = C(v0).

Below along with communication structures given by arbitrary undirected graphs we consider also those given by cycle-
free undirected graphs and by directed graphs—line-graphs with linearly ordered players, rooted and sink forests. In an
undirected graph 0 a path (i1, . . . , ir), r ≥ 3, is a cycle in 0 if {ir , i1} ∈ 0. An undirected graph is cycle-free if it contains no
cycles. A directed graph 0 is a rooted tree if there is one node in N , called a root, having no predecessors in 0 and there
is a unique directed path in 0 from this node to any other node in N . A directed graph 0 is a sink tree if the directed
graph composed by the same set of links as 0 but with the opposite orientation is a rooted tree; in this case the root of
a tree changes its meaning to the absorbing sink. A directed graph is a rooted/sink forest if it is composed by a number of
disjoint rooted/sink trees. A line-graph is a directed graph that contains links only between subsequent nodes. Without loss
of generalitywemay assume that in a line-graph nodes are ordered according to the natural order from1 to n, i.e., line-graph
0 ⊆ {(i, i + 1) | i = 1, . . . , n − 1}.

2.4. Games with two-level communication structures

We now consider situations in which the players are partitioned into a coalition structure P and are linked to each other
by communication graphs. First, there is a communication graph 0M between the a priori unions M in the partition P .
Second, for each a priori union Nk, k ∈ M , there is a communication graph 0k between the players in Nk. Given a player set
N ⊂ N and a coalition structure P ∈ PN , a two-level graph (communication) structure on N is a tuple 0P = ⟨0M , {0Nk}k∈M⟩.
For every N ⊂ N and P ∈ PN by GP

N we denote the set of all two-level graph structures on N with fixed P . Let
GP

N =


P∈PN
GP

N be the set of all two-level graph structures onN , and letGPΓ
N = GN ×GP

N . A pair ⟨v,0P ⟩ ∈ GPΓ
N constitutes

a game with two-level graph (communication) structure, or simply two-level graph game or PΓ -game, on N . A PΓ -value is a
mapping that assigns for every N ⊂ N and every ⟨v,0P ⟩ ∈ GPΓ

N a payoff vector ξ(v,0P ) ∈ RN .
Observe that PΓ -games ⟨v,0⟨N⟩⟩ and ⟨v,0{N}⟩with trivial coalition structures reduce toΓ -game ⟨v,0N⟩. Inwhat follows

for simplicity of notation and when it causes no ambiguity we denote graphs 0Nk within a priori unions Nk, k ∈ M , by 0k.
Given ⟨v,0P ⟩ ∈ GPΓ

N , one can consider Γ -games within a priori unions ⟨vk,0k⟩ ∈ GΓNk
with vk = v|Nk , k ∈ M , that model

the bargaining within a priori unions for distribution of their total shares among their members taking also into account
a limited cooperation within each union Nk given by the communication graph 0k. Moreover, since every two-level graph
structure 0P assumes a coalition structure P to be given, it is natural to consider a quotient game between a priori unions
that models the upper level bargaining between a priori unions for their shares in the total payoff. When at least two a priori
unions are negotiating for their shares, then similar to the classical quotient game of Owen, only the cumulative interests
of each entire a priori union are taken into account. In such situations the information about limited cooperation within
different a priori unions is not relevant and simply might be not known between the unions. But at the same time each a
priori union knowing its own interior limited cooperation ability is able to re-evaluate its real individual capacity. So, for
any ⟨v,0P ⟩ ∈ GPΓ

N we define a quotient game v0P ∈ GM as

v0P (Q ) =


v
0k
k (Nk), Q = {k}, k ∈ M

v


k∈Q

Nk


, |Q | > 1,

for all Q ⊆ M. (3)

Observe that for a PΓ -game for which all graphs 0k, k ∈ M , are connected, the quotient game v0P coincides with the Owen
quotient game vP . Next recall that when unions negotiate for their shares, their cooperation possibilities are restricted by
the communication graph 0M on the level of the unions. So, one can consider a quotient Γ -game ⟨v0P ,0M⟩ ∈ GΓM .

Furthermore, given a Γ -value φ, for any ⟨v,0P ⟩ ∈ GPΓ
N with a graph structure 0M on the level of a priori unions suitable

for application of φ to the corresponding quotient Γ -game ⟨v0P ,0M⟩,1 along with a subgame vk within a priori union
Nk, k ∈ M , one can also consider a φk-game vφk defined as

v
φ

k (S) =


φk(v0P ,0M), S = Nk,
v(S), S ≠ Nk,

for all S ⊆ Nk, (4)

where φk(v0P ,0M) is the payoff to Nk given by φ in ⟨v0P ,0M⟩. In particular, for any x ∈ RM , a xk-game vxk within Nk, k ∈ M ,
is defined by

vxk(S) =


xk, S = Nk,
v(S), S ≠ Nk,

for all S ⊆ Nk.

In this context it is natural to consider Γ -games ⟨v
φ

k ,0k⟩, k ∈ M , as well.

1 In general, Γ -values can be applied only to Γ -games determined by graphs of certain types; for more detailed discussion see Section 3.
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The core C(v,0P ) of ⟨v,0P ⟩ ∈ GPΓ
N is the set of payoff vectors that are

(i) component efficient both in the quotient Γ -game ⟨v0P ,0M⟩ and in all graph games within a priori unions ⟨vk,0k⟩, k ∈

M , containing more than one player,
(ii) not dominated by any connected coalition:

C(v,0P ) =


x ∈ R

N
|


xP (K) = v0P (K), ∀K ∈ M/0M


and


xP (Q ) ≥ v0P (Q ), ∀Q ∈ C0M (M)


and

 
x(C) = v(C), ∀C ∈ Nk/0k, C ≠ Nk


and


x(S) ≥ v(S), ∀S ∈ C0k(Nk)


,∀k ∈ M


. (5)

Remark 1. In the above definition of the core the condition of component efficiency on components equal to the entire a
priori unions at the level within a priori unions is excluded. The reason is the following. By definition of a quotient game, for
any k ∈ M, v0P ({k}) = v

0k
k (Nk). If Nk ∈ Nk/0k, i.e., if 0k is connected, v

0k
k (Nk) = v(Nk), and therefore, v0P ({k}) = v(Nk).

Besides by definition, xP ({k}) = xP
k = x(Nk), for all k ∈ M . Furthermore, singleton coalitions are always connected, i.e.,

{k} ∈ C0M (M), for all k ∈ M . Thus, in case Nk ∈ Nk/0k and {k} ∉ M/0M , the presence of a stronger condition x(Nk) = v(Nk)
at the level within a priori unions may conflict with a weaker condition xP ({k}) ≥ v0P ({k})which in this case at the level of
a priori unions is the same as x(Nk) ≥ v(Nk); as a result this can lead to the emptiness of the core. Observe also that in case
{k} ∈ M/0M and Nk ∈ Nk/0k, the component efficiency condition xP ({k}) = v0P ({k}) on the level between a priori unions
is simply the same as component efficiency condition x(Nk) = v(Nk) at the level within a priori unions.

The next statement easily follows from the latter definition.

Proposition 1. For any ⟨v,0P ⟩ ∈ GPΓ
N and x ∈ RN ,

x ∈ C(v,0P ) ⇐⇒

xP

∈ C(v0P ,0M)


and

xNk ∈ C(vx

P

k ,0k), ∀k ∈ M: nk > 1

.

Remark 2. The claim xNk ∈ C(vx
P

k ,0k), k ∈ M , is vital only if Nk ∈ Nk/0k, i.e., if 0k is connected; when 0k is disconnected,
it can be replaced by xNk ∈ C(vk,0k), as well.

3. Uniform approach to component efficient Γ -values

We show now that a number of known component efficient Γ -values for games with communication structures given
by undirected and directed graphs of different types can be approached within the single framework. This unified approach
will be employed later in Section 4 for the construction of PΓ -values reflecting the two-stage distribution procedure.

A Γ -value ξ is component efficient (CE) if, for any Γ -game ⟨v,0⟩ ∈ GΓN , for all C ∈ N/0,
i∈C

ξi(v,0) = v(C).

3.1. CE values for undirected graph games

3.1.1. The Myerson value
TheMyerson value [11] is defined for any Γ -game ⟨v,0⟩ ∈ GΓN with arbitrary undirected graph 0 as the Shapley value of

the restricted game v0:

µi(v,0) = Shi(v
0), for all i ∈ N.

The Myerson value is characterized by two axioms of component efficiency and fairness.
A Γ -value ξ is fair (F) if, for any Γ -game ⟨v,0⟩ ∈ GΓN , for every link {i, j} ∈ 0, it holds that

ξi(v,0)− ξi(v,0 \ {i, j}) = ξj(v,0)− ξj(v,0 \ {i, j}).

3.1.2. The position value
The position value introduced in Meessen [10] and developed in Borm et al. [3] is defined for any Γ -game ⟨v,0⟩ ∈ GΓN

with arbitrary undirected graph 0. The position value in ⟨v,0⟩ assigns to each player the sum of his individual value v(i)
and half of the value of each link he is involved in, where the value of a link is defined as the Shapley payoff to this link in
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the associated link game on links of 0:

πi(v,0) = v(i)+
1
2


l∈0i

Shl(0, v
0
0), for all i ∈ N,

where 0i = {l ∈ 0|l ∋ i}, v0 is the zero-normalization of v, i.e., for all S ⊆ N , v0(S) = v(S) −


i∈S v(i), and for any
zero-normalized game v ∈ GN and a graph 0, the associated link game ⟨0, v0⟩ between links in 0 is defined as

v0(0
′) = v0

′

(N), for all 0′
∈ 20.

Slikker [14] characterizes the position value on the class of all graph games via component efficiency and balanced link
contributions.

A Γ -value ξ meets balanced link contributions (BLC) if for any Γ -game ⟨v,0⟩ ∈ GΓN and i, j ∈ N , it holds that
h|{i,h}∈0


ξj(v,0)− ξj(v,0 \ {i, h})


=


h|{j,h}∈0


ξi(v,0)− ξi(v,0 \ {j, h})


.

3.1.3. The average tree solution
The average tree solution (AT solution) for undirected cycle-free Γ -games introduced in Herings et al. [7] in any Γ -game

⟨v,0⟩ ∈ GΓN with cycle-free undirected graph0 assigns to any player i ∈ N the average of his tree value payoffs in all rooted
spanning trees2 in the subgraph ⟨(N/0)i,0|(N/0)i⟩:

ATi(v,0) =
1

|(N/0)i|


j∈(N/0)i

ti(v, T (j)), for all i ∈ N,

where T (j), j ∈ (N/0)i, is a rooted tree on (N/0)i with j as root and composed of all links of undirected cycle-free subgraph
⟨(N/0)i,0|(N/0)i⟩ with orientation directed away from the root and t is the tree value that in any digraph game ⟨v,0⟩ on N
with 0 being a rooted forest (in particular, in Γ -game ⟨v, T (j)⟩ with rooted-tree digraph T (j) on the player set (N/0)i as in
the formula above) assigns to each player his contribution to all his successors in 0 when he joins them, i.e.,

ti(v,0) = v(S̄0(i))−


h∈F0(i)

v(S̄0(h)), for all i ∈ N. (6)

Remark that the AT solution is very attractive from the algorithmic point of view because the order of its computational
complexity is equal to n while the order of computational complexity of the Myerson value is n!.

In Herings et al. [7] it is shown that the AT solution defined on the class of superadditive cycle-free graph games is stable
and on the entire class of cycle-free graph games it is characterized via two axioms of component efficiency and component
fairness.

A Γ -value ξ is component fair (CF) if, for any cycle-free Γ -game ⟨v,0⟩ ∈ GΓN , for every link {i, j} ∈ 0, it holds that

1
|(N/0 \ {i, j})i|


t∈(N/0\{i,j})i


ξt(v,0)− ξt(v,0 \ {i, j})


=

1
|(N/0 \ {i, j})j|


t∈(N/0\{i,j})j


ξt(v,0)− ξt(v,0 \ {i, j})


.

3.2. CE values for directed graph games

3.2.1. Values for line-graph games
The following three values for line-graph Γ -games are studied in van den Brink et al. [15], namely, the upper equivalent

solution given by

ξUEi (v,0) = v0({1, . . . , i − 1, i})− v0({1, . . . , i − 1}), for all i ∈ N,

the lower equivalent solution given by

ξ LEi (v,0) = v0({i, i + 1, . . . , n})− v0({i + 1, . . . , n}), for all i ∈ N

and the equal loss solution given for all i ∈ N by

ξ ELi (v,0) =


v0({1, . . . , i})− v0({1, . . . , i − 1})


+

v0({i, . . . , n})− v0({i + 1, . . . , n})


2

.

2 Given an undirected graph 0 on N , a rooted tree 0′ on N is a spanning tree of 0 if for every (i, j) ∈ 0′ it holds that {i, j} ∈ 0.
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All these three solutions for superadditive line-graph Γ -games appear to be stable. Moreover, on the entire class of line-
graph games each one of them is characterized via component efficiency and one of the axioms of upper equivalence, lower
equivalence, and equal loss correspondingly.

AΓ -value ξ isupper equivalent (UE) if, for any line-graphΓ -game ⟨v,0⟩ ∈ GΓN , for any i = 1, . . . , n−1, for all j = 1, . . . , i,
it holds that

ξj(v,0 \ {i, i + 1}) = ξj(v,0).

A Γ -value ξ is lower equivalent (LE) if, for any line-graph Γ -game ⟨v,0⟩ ∈ GΓN , for any i = 1, . . . , n − 1, for all
j = i + 1, . . . , n, it holds that

ξj(v,0 \ {i, i + 1}) = ξj(v,0).

A Γ -value ξ possesses the equal loss property (EL) if, for any line-graph Γ -game ⟨v,0⟩ ∈ GΓN , for any i = 1, . . . , n − 1, it
holds that

i
j=1


ξj(v,0)− ξj(v,0 \ {i, i + 1})


=

n
j=i+1


ξj(v,0)− ξj(v,0 \ {i, i + 1})


.

3.2.2. Tree-type values for forest-graph games
The tree value defined by (6) and the sink value

si(v,0) = v(P̄0(i))−


j∈O0(i)

v(P̄0(j)), for all i ∈ N,

respectively for rooted-/sink-forest digraph games are studied in Khmelnitskaya [9]. Both tree and sink values are stable on
the subclass of superadditive games. Moreover, the tree and sink values on the entire class of rooted-/sink-forest Γ -games
can be characterized via component efficiency and successor/predecessor equivalence correspondingly.

A Γ -value ξ is successor equivalent (SE) if for any rooted forest Γ -game ⟨v,0⟩ ∈ GΓN , for every link {i, j} ∈ 0, for all
k ∈ S̄0(j), it holds that

ξk(v,0 \ {i, j}) = ξk(v,0).

A Γ -value ξ is predecessor equivalent (PE) if for any sink forest Γ -game ⟨v,0⟩ ∈ GΓN , for every link {i, j} ∈ 0, for all
k ∈ P̄0(i), it holds that

ξk(v,0 \ {i, j}) = ξk(v,0).

3.3. Uniform framework

Notice that each one of the considered above Γ -values for Γ -games with suitable graph structures is characterized by
two axioms, CE and one or another deletion link (DL) property, reflecting the relevant reaction of a Γ -value on deletion of a
link in the communication graph, i.e.,

CE + F for all undirected Γ -games ⇐⇒ µ(v,0),

CE + BLC for all undirected Γ -games ⇐⇒ π(v,0),

CE + CF for undirected cycle-free Γ -games ⇐⇒ AT (v,0),
CE + UE for line-graph Γ -games ⇐⇒ UE(v,0),
CE + LE for line-graph Γ -games ⇐⇒ LE(v,0),
CE + EL for line-graph Γ -games ⇐⇒ EL(v,0),
CE + SE for rooted forest Γ -games ⇐⇒ t(v,0),
CE + PE for sink forest Γ -games ⇐⇒ s(v,0).

In the sequel for the unification of presentation and simplicity of notation, we identify each one of mentioned above Γ -
values with the corresponding DL axiom. For a given DL, let GDL

N ⊆ GΓN be a set of all ⟨v,0⟩ ∈ GΓN with 0 suitable for DL
application. To summarize,

CE + DL on GDL
N ⇐⇒ DL(v,0),

where DL is one of the axioms F, BLC, CF, LE, UE, EL, SE, or PE. Whence, F(v,0) = µ(v,0) and BLC(v,0) = π(v,0) for
all undirected Γ -games, CF(v,0) = AT (v,0) for all undirected cycle-free Γ -games, UE(v,0), LE(v,0), and EL(v,0) are
UE, LE, and EL solutions correspondingly for all line-graph Γ -games, SE(v,0) = t(v,0) for all rooted forest Γ -games, and
PE(v,0) = s(v,0) for all sink forest Γ -games.
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4. Two-level graph game values

4.1. Component efficient PΓ -values

Henceforth we focus on PΓ -values that reflect a two-stage distribution procedure when at first the quotient Γ -game
⟨v0P ,0M⟩ is played between a priori unions Nk, k ∈ M , and then the total payoffs yk obtained by a priori unions are
distributed among their members by playing Γ -games ⟨v

y
k,0k⟩. As solutions on both steps the component efficient Γ -

values are applied, might be different for the upper level between a priori unions and the lower level within a priori unions
and also possibly different for different a priori unions.

We start with adaptation the notions of component efficiency and discussed above deletion link properties to PΓ -values
and show that similar to component efficientΓ -values, the deletion link properties uniquely define component efficient PΓ -
values on a class of admissible PΓ -games. The involvement of different deletion link properties, depending on the considered
graph structure, allows to pick the most favorable among the others appropriate combinations of Γ -values applied on both
levels between andwithin a priori unions.Moreover, the consideration of only one specific combination ofΓ -values restricts
the variability of applications since Γ -values developed for Γ -games defined by undirected graphs are not applicable for
Γ -games with, for example, directed rooted forest graph structures, and vice versa.

Firstwe introduce two new axioms of component efficiencywith respect to PΓ -values that inherit the idea of component
efficiency for Γ -values and also incorporate the quotient game property3 of the Owen value [12] in a sense that the vector
of total payoffs to a priori unions coincides with the payoff vector in the quotient game.

A PΓ -value ξ is component efficient in quotient (CEQ) if, for any ⟨v,0P ⟩ ∈ GPΓ
N , for each K ∈ M/0M ,

k∈K


i∈Nk

ξi(v,0P ) = v0P (K).

A PΓ -value ξ is component efficient within a priori unions (CEU) if, for any ⟨v,0P ⟩ ∈ GPΓ
N , for every k ∈ M and all

C ∈ Nk/0k, C ≠ Nk,
i∈C

ξi(v,0P ) = v(C).

Remark that CEU becomes redundant if considered on the subclass PΓ -games for which all graphs 0k, k ∈ M , are
connected.

Next we reconsider the deletion link properties, now with respect to PΓ -values. Recall that every PΓ -value is defined
as a mapping ξ :GPΓ

N → RN assigning a payoff vector to any PΓ -game on the player set N . A mapping ξ = {ξi}i∈N generates
on the domain of PΓ -games on N a mapping ξP :GPΓ

N → RM , ξP
= {ξP

k }k∈M , with ξP
k =


i∈Nk

ξi, k ∈ M , that assigns
to every PΓ -game on N a vector of total payoffs to all a priori unions and m mappings ξNk :G

PΓ
N → RNk , ξNk = {ξi}i∈Nk ,

k ∈ M , assigning payoffs to players within a priori unions. Since there are many PΓ -games ⟨v,ΓP ⟩ with the same quotient
Γ -game ⟨v0P ,0M⟩, there exists a variety of mappings ψP :GΓM → GPΓ

N assigning to any Γ -game ⟨u,0⟩ ∈ GΓM on the player
set M some PΓ -game ⟨v,0P ⟩ ∈ GPΓ

N on the player set N such that v0P = u and 0M = 0. Notice that in general, it is not
necessarily that ψP (v0P ,0M) = ⟨v,0P ⟩. However, for some fixed PΓ -game ⟨v∗,0∗

P ∗⟩ one can always choose a mapping
ψ∗

P such thatψ∗
P (v

∗
0P
,0∗

M) = ⟨v∗,0∗

P ∗⟩. Every mapping ξP
◦ψP :GΓM → RM by definition is a Γ -value on the player setM

that, in particular, can be applied to the quotient Γ -game ⟨v0P ,0M⟩ ∈ GΓM of some PΓ -game ⟨v,0P ⟩ ∈ GPΓ
N . Similarly, for a

given Γ -value φ:GΓM → RM assigning a payoff vector to any PΓ -game on the player setM , in particular to the quotient Γ -
game ⟨v0P ,0M⟩ ∈ GΓM of some PΓ -game ⟨v,0P ⟩ ∈ GPΓ

N , for every k ∈ M there exists a variety of mappingsψφ

k :G
Γ
Nk

→ GPΓ
N

assigning to any Γ -game ⟨u,0⟩ ∈ GΓNk
on Nk some PΓ -game ⟨v,0P ⟩ ∈ GPΓ

N on N such that vφk = u and 0k = 0. Every

mapping ξNk ◦ ψ
φ

k :G
Γ
Nk

→ RNk , k ∈ M , by definition is a Γ -value on the player set Nk that, in particular, can be applied to

Γ -games ⟨v
φ

k ,0k⟩ ∈ GΓNk
of some PΓ -game ⟨v,0P ⟩ ∈ GPΓ

N and a Γ -value φ chosen to be applied on the upper level to the
quotient Γ -game ⟨v0P ,0M⟩.

Each PΓ -value under scrutiny determines a two-stage distribution procedure in which the distribution of the total
payoffs to a priori unions and the following after redistribution of these payoffs among the unions’ members are due to
the Γ -values generated respectively on the quotient level and on the level of a priori unions. So, it makes sense to introduce
axioms presenting the properties of PΓ -values not only in terms of the PΓ -values but also in terms of the generated on both
levels Γ -values. While the efficiency properties combining the distribution results of both stages we formulate in terms of a

3 A P-value ξ satisfies the quotient game property, if for any ⟨v,P ⟩ ∈ GP
N , for all k ∈ M ,

ξk(vP , {M}) = ξk(vP , ⟨M⟩) =


i∈Nk

ξi(v,P ).
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PΓ -value itself, the deletion link properties that determine the type of the distribution procedures on each level we present
in terms of the corresponding Γ -values.

For a given (m + 1)-tuple of deletion link axioms ⟨DLP , {DLk}k∈M⟩ consider a set of PΓ -games G
DLP ,{DLk}k∈M
N ⊆ GPΓ

N

composed of PΓ -games ⟨v,0P ⟩ with graph structures 0P = ⟨0M , {0k}k∈M⟩ such that ⟨v0P ,0M⟩ ∈ GDLP
M and ⟨vDL

P

k ,0k⟩ ∈

GDLk
Nk
, k ∈ M .

A PΓ -value ξ defined on G
DLP ,{DLk}k∈M
N satisfies (m + 1)-tuple of deletion link axioms ⟨DLP , {DLk}k∈M⟩ if every Γ -value

ξP
◦ ψP meets DLP axiom and every Γ -value ξNk ◦ ψDLP

k , k ∈ M , meets the corresponding DLk axiom.

Remark 3. It is worth to emphasize that a (m + 1)-tuple of deletion link axioms ⟨DLP , {DLk}k∈M⟩ imposed on a PΓ -
value ξ defined on G

DLP ,{DLk}k∈M
N in fact does not impose the deletion link properties directly on the PΓ -value ξ but on

the corresponding generated by ξ Γ -values defined on GDLP
M and GDLk

Nk
, k ∈ M .

Our goal is to show that component efficiency in quotient, component efficiency within a priori unions and a tuple
of deletion link axioms ⟨DLP , {DLk}k∈M⟩ uniquely define a PΓ -value. But before stating the main result we discuss the
limitations of the model. First observe that the consideration of PΓ -values satisfying both CEQ and CEU is possible only
for PΓ -games ⟨v,0P ⟩ meeting the condition:
(i) for all nonsingleton components on the quotient level K ∈ M/0M , |K | > 1, for which all 0k, k ∈ K , are disconnected,

i.e., Nk ∉ Nk/0k, it holds that
k∈K


C∈Nk/0k

v(C) = v


k∈K

Nk


.

Remark that if at least one graph 0k, k ∈ K , is connected, the condition (i) becomes redundant.
Next, it turns out that a two-stage distribution procedure that first applies the DLP -value as a solution for the quotient

game ⟨v0P ,0M⟩ and then distributes the payoffs DLP
k (v0P ,0M), k ∈ M , obtained by a priori unions among their members

using the corresponding DLk-values is applicable not for all PΓ -games of the class G
DLP ,{DLk}k∈M
N . Indeed, the two-stage

distribution procedure assumes the benefits of cooperation between a priori unions to be distributed fully among single
players, i.e., the solutions within all Γ -games ⟨vDL

P

k ,0k⟩, k ∈ M , need to provide an efficient distribution of the
corresponding amounts DLP

k (v0P ,0M). Since we concentrate on component efficient solutions, it is important to ensure
that the requirement of efficiency does not conflict with component efficiency which is equivalent to the claim that for
every k ∈ M ,

C∈Nk/0k

vDL
P

k (C) = DLP
k (v0P ,0M).

If 0k is connected, i.e. if Nk is the only element of Nk/0k, then the last equality holds automatically since by definition
vDL

P

k (Nk)
(4)
= DLP

k (v0P ,0M). Moreover, for every k ∈ M being a singleton component {k} ∈ M/0M , this equality holds
also true when 0k is disconnected. Indeed, if {k} ∈ M/0M , then due to the component efficiency of the DLP -value it
holds that DLP

k (v0P ,0M) = v0P ({k}). But by definition of the quotient game v0P and the Myerson restricted game,

v0P ({k})
(3)
= v

0k
k (Nk)

(1)
=


C∈Nk/0k
vk(C) =


C∈Nk/0k

v(C). However, in general we can apply the described above two-
stage procedure only to PΓ -games ⟨v,0P ⟩ meeting the condition:
(ii) for all k ∈ M such that

(a) {k} is not a singleton component on the quotient level, i.e., {k} ∉ M/0M ,
(b) 0k is disconnected, i.e., Nk ∉ Nk/0k,
it holds that

C∈Nk/0k

v(C) = DLP
k (v0P ,0M).

Denote by Ḡ
DLP ,{DLk}k∈M
N the set of all PΓ -games ⟨v,0P ⟩ ∈ G

DLP ,{DLk}k∈M
N meeting the conditions (i) and (ii).

Remark 4. In general, without restrictions on the characteristic function, class of PΓ -games Ḡ
DLP ,{DLk}k∈M
N is not closed

under the modification of a two-level graph structure. Indeed, for a nonadditive characteristic function it might happen
that the deletion of a link in one of the graphs 0M or 0k, k ∈ M , composing a two-level graph structure 0P , may lead the
resulting PΓ -game out of the class Ḡ

DLP ,{DLk}k∈M
N since for the resulting PΓ -game conditions (i) and (ii) might be violated.

Also for this reason we introduce a (m + 1)-tuple of deletion link axioms ⟨DLP , {DLk}k∈M⟩ not in terms of a PΓ -value
defined on Ḡ

DLP ,{DLk}k∈M
N but in terms of the generated on the upper and lower levels Γ -values. These Γ -values are defined

correspondingly on GDLP
M and GDLk

Nk
, k ∈ M , and do not face such problems.
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For applications involving disconnected graphs 0k in a priori unions forming nonsingleton components on the quotient
level, i.e., for k ∈ M such that |(M/0M)k| > 1, the requirements (i) and (ii) appear to be too demanding. But both conditions
(i) and (ii) are redundant when for all nonsingleton components C ∈ M/0M graphs 0k, k ∈ C , are connected. It is worth to
emphasize the following remark.

Remark 5. Every PΓ -game ⟨v,0P ⟩ ∈ G
DLP ,{DLk}k∈M
N for which for all nonsingleton components K ∈ M/0M graphs0k, k ∈ K ,

are connected, in particular, when all graphs 0k, k ∈ M , are connected, belongs to Ḡ
DLP ,{DLk}k∈M
N .

Theorem 1. There is a unique PΓ -value defined on Ḡ
DLP ,{DLk}k∈M
N that meets CEQ, CEU, and ⟨DLP , {DLk}k∈M⟩, and for any

⟨v,0P ⟩ ∈ Ḡ
DLP ,{DLk}k∈M
N it is given by

ξi(v,0P ) =


DLP

k(i)(v0P ,0M), Nk(i) = {i},
DLk(i)i (vDL

P

k(i) ,0k(i)), nk(i) > 1,
for all i ∈ N. (7)

From now on we refer to the PΓ -value ξ as to the ⟨DLP , {DLk}k∈M⟩-value.

Proof. I. First prove that the PΓ -value given by (7) is the unique one on Ḡ
DLP ,{DLk}k∈M
N that satisfies CEQ, CEU, and

⟨DLP , {DLk}k∈M⟩. Take a PΓ -value ξ on Ḡ
DLP ,{DLk}k∈M
N meeting CEQ, CEU, and ⟨DLP , {DLk}k∈M⟩. Let ⟨v∗,0∗

P ⟩ ∈ Ḡ
DLP ,{DLk}k∈M
N

with0∗
P = ⟨0∗

M , {0
∗

k }k∈M⟩, and let v∗
0P

denote its quotient game. Notice that by choice of ⟨v∗,0∗

P ∗⟩, it holds that ⟨v∗
0P
,0∗

M⟩ ∈

GDLP
M and ⟨(v∗)DL

P

k ,0∗

k ⟩ ∈ GDLk
Nk

for all k ∈ M .
Step 1. Level of a priori unions.
Consider the mapping ψ∗

P :GDLP
M → Ḡ

DLP ,{DLk}k∈M
N that assigns to any Γ -game ⟨u,0⟩ ∈ GDLP

M the PΓ -game ⟨v,0P ⟩ ∈

Ḡ
DLP ,{DLk}k∈M
N such that v0P = u and 0M = 0, and satisfies the condition ψ∗

P (v
∗
0P
,0∗

M) = ⟨v∗,0∗
P ⟩. By definition of ξP , for

any ⟨u,0⟩ ∈ GDLP
M and ⟨v,0P ⟩ = ψ∗

P (u,0) it holds that

(ξP
◦ ψ∗

P )k(u,0) =


i∈Nk

ξi(v,0P ), for all k ∈ M. (8)

Since ξ meets CEQ, for any ⟨v,0P ⟩ ∈ Ḡ
DLP ,{DLk}k∈M
N , for all K ∈ M/0M ,

k∈K


i∈Nk

ξi(v,0P ) = v0P (K).

Combining the last two equalities and taking into account that by definition of ψ∗
P , v0P = u and 0M = 0, we obtain that

for any ⟨u,0⟩ ∈ GDLP
M , for every K ∈ M/0,

k∈K

(ξP
◦ ψ∗

P )k(u,0) = u(K),

i.e., the Γ -value ξP
◦ψ∗

P on GDLP
M satisfies CE. From the characterization results for Γ -values, discussed above in Section 3,

it follows that CE and DLP together guarantee that for any ⟨u,0⟩ ∈ GDLP
M ,

(ξP
◦ ψ∗

P )k(u,0) = DLP
k (u,0), for all k ∈ M.

In particular, the last equality is valid for ⟨u,0⟩ = ⟨v∗
0P
,0∗

M⟩ ∈ GDLP
M , i.e.,

(ξP
◦ ψ∗

P )k(v
∗

0P
,0∗

M) = DLP
k (v

∗

0P
,0∗

M), for all k ∈ M

wherefrom, because of (8) and by choice of ψ∗
P ,

i∈Nk

ξi(v
∗,0∗

P ) = DLP
k (v

∗

0P
,0∗

M), for all k ∈ M.

Hence, due to arbitrary choice of the PΓ -game ⟨v∗,0∗
P ⟩ it follows that for any ⟨v,0P ⟩ ∈ Ḡ

DLP ,{DLk}k∈M
N ,

i∈Nk

ξi(v,0P ) = DLP
k (v0P ,0M), for all k ∈ M. (9)

Notice that for k ∈ M such that Nk = {i}, equality (9) reduces to

ξi(v,0P ) = DLP
k(i)(v0P ,0M), for all i ∈ N s.t. Nk(i) = {i}. (10)
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Step 2. Level of single players within a priori unions.

Consider k′
∈ M for which nk′ > 1. Let the mapping ψ∗

k′ :G
DLk

′

Nk′
→ Ḡ

DLP ,{DLk}k∈M
N assign to ⟨u,0⟩ ∈ GDLk

′

Nk′
the PΓ -game

⟨v,0P ⟩ ∈ Ḡ
DLP ,{DLk}k∈M
N such that vDL

P

k′ = u and 0k′ = 0, and let ψ∗

k′ meet the condition ψ∗

k′((v
∗)DL

P

k′ ,0∗

k′) = ⟨v∗,0∗

P ∗⟩. By

definition of ξNk′
, for any ⟨u,0⟩ ∈ GDLk

′

Nk′
and ⟨v,0P ⟩ = ψ∗

k′(u,0) it holds that

(ξNk′
◦ ψ∗

k′)i(u,0) = ξi(v,0P ), for all i ∈ Nk′ . (11)

Since ξ meets CEU, for any ⟨v,0P ⟩ ∈ Ḡ
DLP ,{DLk}k∈M
N , for all C ∈ Nk′/0k′ , C ≠ Nk′ ,

i∈C

ξi(v,0P ) = v(C).

From (9) it follows, in particular, that for any ⟨v,0P ⟩ ∈ Ḡ
DLP ,{DLk}k∈M
N such that Nk′ ∈ Nk′/0k′ ,

i∈Nk′

ξi(v,0P ) = DLP
k′ (v0P ,0M).

Combining the last two equalities with (11) and recalling that by choice of ψ∗

k′ , v
DLP
k′ = u and 0k′ = 0, and therefore, for

any C ∈ Nk′/0, C ≠ Nk′ , it holds that v(C) = v|NK ′ (C) = vDL
P

k′ (C) = u(C), we obtain that for any ⟨u,0⟩ ∈ GDLk
′

Nk′
, for every

C ∈ Nk′/0,
i∈C

(ξNk′
◦ ψ∗

k′)i(u,0) =


DLP

k′ (v0P ,0M), C = Nk′ ,
u(C), C ≠ Nk′ ,

with ⟨v0P ,0M⟩ being the quotient Γ -game for ⟨v,0P ⟩ = ψ∗

k′(u,0). Whence, on a set of Γ -games GDLk
′

Nk′
(DLP

k′ ) defined as

GDLk
′

Nk′
(DLP

k′ ) =

⟨u,0⟩ ∈ GDLk

′

Nk′
| u(Nk′) = DLP

k′ (v0P ,0M) for ⟨v,0P ⟩ = ψ∗

k′(u,0)

,

the Γ -value ξNk′
◦ ψ∗

k′ meets CE. CE together with DLk
′

guarantee that for any ⟨u,0⟩ ∈ GDLk
′

Nk′
(DLP

k′ ),

(ξNk′
◦ ψ∗

k′)i(u,0) = DLk
′

i (u,0), for all i ∈ Nk′ .

Observe that by choice of ψ∗

k′ , ⟨(v
∗)DL

P

k′ ,0∗

k′⟩ ∈ GDLk
′

Nk′
(DLP

k′ ). Hence, in particular, the last equality holds on the Γ -game

⟨(v∗)DL
P

k′ ,0∗

k′⟩, i.e.,

(ξNk′
◦ ψ∗

k′)i((v
∗)DL

P

k′ ,0∗

k′) = DLk
′

i ((v
∗)DL

P

k′ ,0∗

k′), for all i ∈ Nk′

wherefrom, since (11) and by choice of ψ∗

k′ , we obtain that

ξi(v
∗,0∗

P ) = DLk
′

i ((v
∗)DL

P

k′ ,0∗

k′), for all i ∈ Nk′ .

Due to the arbitrary choice of both, ⟨v∗,0∗
P ⟩ and k′

∈ M for which nk′ > 1, it holds that for any ⟨v,0P ⟩ ∈ Ḡ
DLP ,{DLk}k∈M
N ,

ξi(v,0P ) = DLk(i)i (vDL
P

k(i) ,0k(i)), for all i ∈ N s.t. nk(i) > 1. (12)

Observe that the proof of equality (12) is based on equality (9) only when Nk ∈ Nk/0k, but (9) holds for all Nk, k ∈ M .
To exclude any conflict we show now that on Ḡ

DLP ,{DLk}k∈M
N (12) agrees with (9) when Nk ∉ Nk/0k as well. Let ⟨v,0P ⟩ ∈

Ḡ
DLP ,{DLk}k∈M
N be such that for some k′′

∈ M it holds that nk′′ > 1 and Nk′′ ∉ Nk′′/0k′′ . Then,
i∈Nk′′

ξi(v,0P ) =


C∈Nk′′ /0k′′


i∈C

ξi(v,0P )
(12)
=


C∈Nk′′ /0k′′


i∈C

DLk
′′

i (v
DLP
k′′ ,0k′′).

Whence, due to component efficiency of DLk
′′

-value and since for every C ∈ Nk′′/0k′′ , C $ Nk′′ , it holds that vDL
P

k′′ (C) =

vk′′(C) = v|Nk′′
(C) = v(C), we obtain

i∈Nk′′

ξi(v,0P ) =


C∈Nk′′ /0k′′

v(C).
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Since ⟨v,0P ⟩ ∈ Ḡ
DLP ,{DLk}k∈M
N , then by definition of the class Ḡ

DLP ,{DLk}k∈M
N it holds that

C∈Nk/0k

v(C) = DLP
k (v0P ,0M), for all k ∈ M:Nk ∉ Nk/0k. (13)

Combining the last two equalities we obtain that (9) holds for k′′ as well.
Notice now that (10) and (12) together produce formula (7).

II. To complete the proof we verify that the PΓ -value ξ on Ḡ
DLP ,{DLk}k∈M
N given by (7) meets all axioms CEQ, CEU, and

⟨DLP , {DLk}k∈M⟩. Consider arbitrary ⟨v,0P ⟩ ∈ Ḡ
DLP ,{DLk}k∈M
N . To simplify discussion and w.l.o.g. we assume that for all

k ∈ M, nk > 1. Consider some k ∈ M and let C ∈ Nk/0k. Because of component efficiency of DLk-value, from (7) it
follows that

i∈C

ξi(v,0P ) = vDL
P

k (C). (14)

If C ≠ Nk, then vDL
P

k (C) = vk(C) = v|Nk(C) = v(C). Hence, due to arbitrary choice of k, ξ satisfies CEU. Moreover, from (14)
and by definition of DLP

k -game vDL
P

k , it also follows that
i∈Nk

ξi(v,0P ) = DLP
k (v0P ,0M), for all k ∈ M:Nk ∈ Nk/0k.

Observe that due to validity of equality (13), the just proved CEU provides that on Ḡ
DLP ,{DLk}k∈M
N for all k ∈ M for which

Nk ∉ Nk/0k the last equality holds as well:
i∈Nk

ξi(v,0P ) =


C∈Nk/0k


i∈C

ξi(v,0P )
CEU
=


C∈Nk/0k

v(C)
(13)
= DLP

k (v0P ,0M).

Hence,
i∈Nk

ξi(v,0P ) = DLP
k (v0P ,0M), for all k ∈ M. (15)

Consider K ∈ M/0M .
k∈K


i∈Nk

ξi(v,0P )
(15)
=


k∈K

DLP
k (v0P ,0M).

Whence and due to component efficiency of DLP -value we obtain that ξ meets CEQ. Next, let a mapping ψP :GDLP
M →

Ḡ
DLP ,{DLk}k∈M
N assign to any ⟨u,0⟩ ∈ GDLP

M the PΓ -game ⟨v,0P ⟩ ∈ Ḡ
DLP ,{DLk}k∈M
N such that v0P = u and 0M = 0. Then, for

any ⟨u,0⟩ ∈ GDLP
M and ⟨v,0P ⟩ = ψ∗

P (u,0) by definition of ξP and due to (15) it holds

(ξP
◦ ψP )k(u,0) = ξP

k (v,0P ) =


i∈Nk

ξi(v,0P )
(15)
= DLP

k (v0P ,0M), for all k ∈ M.

Hence, (ξP
◦ψP )(u,0) = DLP (u,0), i.e.,Γ -value ξP

◦ψP meets DLP . Similarly we can show that for every k ∈ M,Γ -value
ξNk ◦ ψDLP

k satisfies DLk. �

A simple algorithm for computing the ⟨DLP , {DLk}k∈M⟩-value of a PΓ -game ⟨v,0P ⟩ ∈ Ḡ
DLP ,{DLk}k∈M
N follows from

Theorem 1:

– compute the DLP -value of ⟨v0P ,0M⟩;
– distribute the rewards DLP

k (v0P ,0M), k ∈ M , obtained by a priori unions among single players applying the DLk-values
to Γ -games ⟨vDL

P

k ,0k⟩ within a priori unions.

Example 1. Consider a numerical example for the ⟨LE, CF , . . . , CF  
m

⟩-value ξ of a PΓ -game ⟨v,0P ⟩ with communication

structure 0P = ⟨0M , {0k}k∈M⟩ given by directed line-graph 0M and undirected cycle-free graphs 0k, k ∈ M . As we will see
below in Section 5, the ⟨LE, CF , . . . , CF  

m

⟩-value provides a reasonable solution for the river game with multiple users.
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Fig. 2.

Assume that N contains 6 players, a game v is defined as follows:

v({i}) = 0, for all i ∈ N;

v({2, 3}) = 1, v({4, 5}) = v({4, 6}) = 2.8, v({5, 6}) = 2.9,
otherwise v({i, j}) = 0, for all i, j ∈ N;

v({1, 2, 3}) = 2, v({1, 2, 3, i}) = 3, for i = 4, 5, 6; otherwise v(S) = |S|, if |S| ≥ 3;

and a two-level communication structure is depicted on Fig. 2.
In this case N = N1 ∪ N2 ∪ N3;

N1 = {1}, N2 = {2, 3}, N3 = {4, 5, 6}; 01 = ∅, 02 = {{2, 3}}, 03 = {{4, 5}, {5, 6}};
M = {1, 2, 3}; 0M = {(1, 2), (2, 3)};

the quotient game v0P is given by

v0P ({1}) = 0, v0P ({2}) = 1, v0P ({3}) = 3,
v0P ({1, 2}) = 2, v0P ({2, 3}) = 5, v0P ({1, 3}) = 4, v0P ({1, 2, 3}) = 6;

the restricted quotient game v0M0P
is

v
0M
0P
({1}) = 0, v

0M
0P
({2}) = 1, v

0M
0P
({3}) = 3,

v
0M
0P
({1, 2}) = 2, v

0M
0P
({2, 3}) = 5, v

0M
0P
({1, 3}) = v

0M
0P
({1})+ v

0M
0P
({3}) = 3,

v
0M
0P
({1, 2, 3}) = 6;

the games vk, k = 1, 2, 3, within a priori unions Nk are given respectively by

v1({1}) = 0;
v2({2}) = v2({3}) = 0, v2({2, 3}) = 1;
v3({4}) = v3({5}) = v3({6}) = 0, v3({4, 5}) = v3({4, 6}) = 2.8, v3({5, 6}) = 2.9,
v3({4, 5, 6}) = 3;

and the restricted games v0kk , k = 1, 2, 3, within a priori unions Nk are

v
01
1 ({1}) = 0;

v
02
2 ({2}) = v

02
2 ({3}) = 0, v

02
2 ({2, 3}) = 1;

v
03
3 ({4}) = v

03
3 ({5}) = v

03
3 ({6}) = 0, v

03
3 ({4, 5}) = 2.8, v

03
3 ({4, 6}) = 0,

v
03
3 ({5, 6}) = 2.9, v

03
3 ({4, 5, 6}) = 3.

Following the algorithm above, the PΓ -value ξ can be obtained by finding of the LE solution in the line-graph quotient game
⟨v0P ,0M⟩ and thereafter the total payoffs to the a priori unions LEk(v0P ,0M), k ∈ M , should be distributed according to
the AT solution applied to cycle-free graph LE-games within a priori unions, i.e., for all i ∈ N , ξi(v,0P ) = AT i(v

LE
k(i),0k(i)).

Simple computations show that

LE1(v0P ,0M) = v
0M
0P
({1, 2, 3})− v

0M
0P
({2, 3}) = 1,

LE2(v0P ,0M) = v
0M
0P
({2, 3})− v

0M
0P
({3}) = 2,

LE3(v0P ,0M) = v
0M
0P
({3}) = 3;

AT1(vLE1 ,01) = LE1 = 1,

AT2(vLE2 ,02) = [[LE2 − v2({3})] + v2({2})]/2 = (2 + 0)/2 = 1,

AT3(vLE2 ,02) = [v2({3})+ [LE2 − v2({2})]]/2 = (0 + 2)/2 = 1,

AT4(vLE3 ,03) = [[LE3 − v3({5, 6})] + v3({4})+ v3({4})]/3 = [(3 − 2.9)+ 0 + 0]/3 =
1
30
,
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AT5(vLE3 ,03) = [[v3({5, 6})− v3({6})] + [LE3 − v3({4})− v3({6})] + [v3({4, 5})− v3({4})]]/3

= (2.9 + 3 + 2.8)/3 = 2
27
30
,

AT6(vLE3 ,03) = [v3({6})+ v3({6})+ [LE3 − v3({4, 5})]]/3 = [0 + 0 + (3 − 2.8)]/3 =
2
30
.

Thus, ξ(v,0P ) = (1, 1, 1, 1
30 , 2

27
30 ,

2
30 ).

It was already mentioned before that the PΓ -games ⟨v,0⟨N⟩⟩ and ⟨v,0{N}⟩ reduce to the Γ -game ⟨v,0N⟩. Whence, any
⟨F , {DLk}k∈N⟩-value of ⟨v,0⟨N⟩⟩ and any ⟨DL, F⟩-value of ⟨v,0{N}⟩ coincide with the Myerson value of ⟨v,0N⟩; moreover,
if the graph 0N is complete, they coincide also with the Shapley value and the Owen value. Besides, note that in a PΓ -
game ⟨v,0P ⟩ with any coalition structure P , empty graph 0M , and complete graphs 0k, k ∈ M , any ⟨DLP , F , . . . , F  

m

⟩-value

coincideswith the Aumann–Drèze value of the P-game ⟨v,P ⟩. Moreover, in a PΓ -game ⟨v,0P ⟩with any coalition structure
P and complete graphs 0M and 0k, k ∈ M , the ⟨F , F , . . . , F  

m

⟩-value coincides with the two-step Shapley value introduced

in Kamijo [8] of the P-game ⟨v,P ⟩. However, the ⟨DLP , {DLk}k∈M⟩-value of a PΓ -game ⟨v,0P ⟩ with nontrivial coalition
structureP never coincideswith the Owen value (and thereforewith the value of Vázquez-Brage et al. [16], as well). Indeed,
in our model no cooperation is allowed between a proper subcoalition of any a priori union with members of other a priori
unions. On the contrary, the Owen model assumes that every subcoalition of any chosen a priori union may represent this
union in the negotiation procedure with other entire a priori unions.

4.2. Stability

Theorem 2. If the set of DL axioms is restricted to CF, LE, UE, EL, SE, and PE, then the ⟨DLP , {DLk}k∈M⟩-value of any superadditive
⟨v,0P ⟩ ∈ Ḡ

DLP ,{DLk}k∈M
N belongs to the core C(v,0P ).

Remark 6. Under the hypothesis of Theorem2 all ⟨DLP , {DLk}k∈M⟩-values are combinations of theAT solution for undirected
cycle-free Γ -games, the UE, LE, and EL solutions for line-graph Γ -games, and the tree/sink value for rooted/sink forest Γ -
games, that are stable on the class of superadditive Γ -games (cf. [7,15,4,9]).

Proof. For any superadditive PΓ -game ⟨v,0P ⟩ the quotient game v0P and games vk, k ∈ M , within a priori unions are
superadditive as well. Due to Remark 6, DL(v,0) ∈ C(v,0) for every superadditive Γ -game ⟨v,0⟩ ∈ GDL

N . Whence,

DLP (v0P ,0M) ∈ C(v0P ,0M), (16)

DLk(vk,0k) ∈ C(vk,0k), for all k ∈ M: nk > 1. (17)

From (16) and because every singleton coalition is connected it follows that

DLP
k (v0P ,0M) ≥ v0P ({k})

(3)
= v

0k
k (Nk), for all k ∈ M: nk > 1.

Observe that if Nk ∈ Nk/0k, the games v0kk and vk coincide. Therefore, because of the last inequality, the DLP
k -game vDL

P

k is
superadditive as well. Thus,

DLk(vDL
P

k ,0k) ∈ C(vDL
P

k ,0k), for all k ∈ M: nk > 1 and Nk ∈ Nk/0k. (18)

If Nk ∉ Nk/0k, then by definition C(vDL
P

k ,0k)
(2)
= C(vk,0k). Besides, by definition any of the following Γ -values: the

AT solution for undirected cycle-free Γ -games, the UE, LE, and EL solutions for line-graph Γ -games, and the tree/sink
values for rooted/sink forest Γ -games, is defined via the corresponding restricted game. Hence, if Nk ∉ Nk/0k, then
DLk(vDL

P

k ,0k) = DLk(vk,0k). Wherefrom together with the previous equality and because of (18) and (17) we arrive at

DLk(vDL
P

k ,0k) ∈ C(vDL
P

k ,0k), for all k ∈ M: nk > 1. (19)

As it is shown in part II of the proof of Theorem 1 (equality (15)), the vector

⟨DLP , {DLk}k∈M⟩
P (v,0P ) =


i∈Nk

⟨DLP , {DLk}k∈M⟩i(v,0P )


k∈M

is the DLP -value for the quotient Γ -game ⟨v0P ,0M⟩. Therefore, from (16) we obtain that

⟨DLP , {DLk}k∈M⟩
P (v,0P ) ∈ C(v0P ,0M). (20)
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Further,

⟨DLP , {DLk}k∈M⟩|Nk(v,0P )
(7)
= DLk(vDL

P

k ,0k), for all k ∈ M: nk > 1.

Whence together with (19) it follows that

⟨DLP , {DLk}k∈M⟩|Nk(v,0P ) ∈ C(vDL
P

k ,0k), for all k ∈ M: nk > 1. (21)

Due to Proposition 1, (20) and (21) ensure that

⟨DLP , {DLk}k∈M⟩(v,0P ) ∈ C(v,0P ). �

Return back to Example 1 and notice that it illustrates Theorem 2 aswell. Observe that v is superadditive and ξ(v,0P ) =

⟨LE, CF , CF , CF⟩(v,0P ) ∈ C(v,0P ). But φ(v,0P ) = ⟨F , F , F , F⟩(v,0P ) being the combination of the Myerson values, i.e.,
φi(v,0P ) = µi(v

µ

k(i),0k(i)), i ∈ N , does not belong to C(v,0P ). Indeed, φ(v,0P ) = (0.5, 1, 1, 2
3 , 2

7
60 ,

43
60 ). However, since

φ4 + φ5 = 2 47
60 < v

03
3 ({4, 5}) = 2.8 = 2 48

60 , φN3 ∉ C(vµ3 ,03). Whence, due to Proposition 1, φ(v,0P ) ∉ C(v,0P ).
Due to Proposition 1, every core selecting PΓ -value meets the weaker properties of CEQ and CEU together. Whence

together with Theorem 2 the next theorem follows.

Theorem 3. If the set of DL axioms is restricted to CF, UE, LE, EL, SE, and PE, then the ⟨DLP , {DLk}k∈M⟩-value of a superadditive
⟨v,0P ⟩ ∈ Ḡ

DLP ,{DLk}k∈M
N is the unique core selector that satisfies (m + 1)-tuple of axioms ⟨DLP , {DLk}k∈M⟩.

Now let ⟨v,0P ⟩ be a superadditive PΓ -game inwhich all graphs in0P = ⟨0M , {0k}k∈M⟩ are either undirected cycle-free,
or directed line-graphs or rooted/sink forests, and besides all 0k, k ∈ M , are connected. Then there exists a (m + 1)-tuple
of ⟨DLP , {DLk}k∈M⟩ axioms of types CF, UE, LE, EL, SE, or PE, for which the communication structure 0P = ⟨0M , {0k}k∈M⟩

is suitable. Due to Remark 5, ⟨v,0P ⟩ ∈ Ḡ
DLP ,{DLk}k∈M
N . Whence together with Theorem 2 we obtain the validity of the next

theorem.

Theorem 4. For every superadditive ⟨v,0P ⟩ ∈ Ḡ
DLP ,{DLk}k∈M
N for which all graphs in 0P = ⟨0M , {0k}k∈M⟩ are either undirected

cycle-free, or directed line-graphs or rooted/sink forests, and all graphs 0k, k ∈ M, are connected, it holds that C(v,0P ) ≠ ∅.

It is worth to remark that if among the graphs 0k, k ∈ M , at least one is disconnected, then it is impossible to guarantee
that ⟨v,0P ⟩ meets condition (ii) and therefore belongs to Ḡ

DLP ,{DLk}k∈M
N .

4.3. Harsanyi dividends

Consider now ⟨DLP , {DLk}k∈M⟩-values with respect to the distribution of Harsanyi dividends. Since for every v ∈ GN
and S ⊆ N it holds that v(S) =


T⊆S λ

v
T , where λvT is the dividend of T in v, the Harsanyi dividend of a coalition has a

natural interpretation as an extra revenue from cooperation among its players that they could not realize staying in proper
subcoalitions. How the value under scrutiny distributes the dividend of a coalition among the players provides the important
information concerning the interest of different players to form the coalition. This information is especially important for
games with limited cooperation when it might happen that one player (or some group of players) is responsible for forming
the coalition. In this case, if such a player obtains no quota from the dividend of the coalition, he may simply block at all the
coalition formation. This happens, for example, with some values for line-graph games (see discussion in Brink et al. [15]).

Because of Theorem 1, every ⟨DLP , {DLk}k∈M⟩-value is a combination of the DLP -value in the quotient Γ -game and DLk-
values, k ∈ M , for the corresponding Γ -games within a priori unions. Whence and by definition of a PΓ -game we obtain

Proposition 2. In any ⟨v,0P ⟩ ∈ GPΓ
N the only feasible coalitions are either S =


k∈Q Nk,Q ⊆ M, or S ⊂ Nk, k ∈ M. Every

⟨DLP , {DLk}k∈M⟩-value distributes λvS of S =


k∈Q Nk according to the DLP -value and of S ⊂ Nk according to the DLk-value.

5. Sharing a river with multiple users

Ambec and Sprumont [1] approach the problem of optimal water allocation for a given river with certain capacity over
the agents (countries) located along the river from the game theoretic point of view. Theirmodel assumes that between each
pair of neighboring agents there is an additional inflow of water. Each agent, in principle, can use all the inflow between
itself and its upstream neighbor, however, this allocation in general is not optimal in respect to total welfare. To obtainmore
profitable allocation it is allowed to allocatemorewater to downstreamagentswhich in turn can compensate the extrawater
obtained by side-payments to upstream ones. The problem of optimal water allocation is approached as the problem of
optimal welfare distribution. Brink et al. [15] show that the Ambec–Sprumont river gamemodel can be naturally embedded
into the framework of a line-graph Γ -game. In Khmelnitskaya [9]the line-graph river model is extended to the rooted-tree
and sink-tree digraph model of a river with a delta or with multiple sources respectively. All these models consider each



A. Khmelnitskaya / Discrete Applied Mathematics 166 (2014) 34–50 49

Fig. 3. A line-graph river.

Fig. 4. A river with delta.

Fig. 5. A river with multiple sources.

agent as a single unit. We extend the model to multiple agents assuming that each agent represents a community of users.
However, in our model no cooperation between single users or proper subgroups of users belonging to different agents is
allowed, i.e., the presence of international firms having branches at different levels along the river is excluded.

Let N =


k∈M Nk be a set players (users of water) composed of the communities of users Nk, k ∈ M , located along the
river and numbered successively from upstream to downstream. Let elk ≥ 0, k ∈ M, l is a predecessor of k, be the inflow of
water in front of the most upstream community(ies) (in this case l = 0) or the inflow of water entering the river between
neighboring communities in front of Nk. Moreover, we assume that each Nk is equipped by a connected pipe system binding
all its members. Without loss of generality we may assume that all graphs 0k, k ∈ M , presenting pipe systems within
communities Nk are cycle free; otherwise it is always possible to close some pipes responsible for cycles. Indeed, for a graph
with cycles there is a final set of cycle-free subgraphs with the same set of nodes as in the original graph. We always can
choose one of them thatminimizes the technological costs ofwater transportationwithin the community. Figs. 3–5 illustrate
the model.

Following Ambec and Sprumont [1] it is assumed that for each communityNk there is a quasi-linear utility function given
by uk(xk, tk) = bk(xk)+ tk, where xk is the total amount of water allocated to Nk, bk:R+ → R is a continuous nondecreasing
function determining the benefit bk(xk) of Nk through the consumption of the amount xk of water, and tk is a monetary
compensation to Nk. Moreover, in case of a river with a delta it is also assumed that if a splitting of the river into branches
occurs after a certain Nk, then this community takes, besides its own quota, also the responsibility to split the rest of the
water flow such as to guarantee the realization of the water distribution plan for the successors. Further, we assume that
if the total shares of water to all Nk, k ∈ M , are fixed, then for each Nk there exists a mechanism presented in terms of a
TU game vk that distributes optimally the obtained share of water among its members. We do not discuss how the games
vk, k ∈ M , are constructed and leave this open outside the scope of the paper.

In the model no cooperation is allowed among single users from different levels along the course of the river. Thus,
the problem of optimal water allocation fits the framework of the introduced above PΓ -game and as its solution we may
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consider a PΓ -value that in turn is a combination of solutions for a line-graph, rooted-tree, or sink-tree Γ -game among
Nk, k ∈ M , and cycle-free graph games within each Nk. In accordance with the results obtained in [1,15,9] the optimal
water distribution among Nk, k ∈ M , can be modeled as a line-graph, rooted-tree, or sink-tree superadditive river game.
If all games vk, k ∈ M , determining water distribution within communities are superadditive too, then the corresponding
PΓ -values appear to be selectors of the core of the river game with multiple users.
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