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study question: Is post-implantation embryonic development after blastocyst transfer affected by exposure to different assisted repro-
duction technology (ART) culture media?

summary answer: Fetal development and placental histology of ART embryos cultured in vitro in different ART media was not
impaired compared with embryos grown in vivo.

what is known already: The application of different in vitro culture (IVC) media for human ART has an effect on birthweight of new-
borns. In the mouse model, differences in blastocyst formation were reported after culture in different ART media. Moreover, abnormalities
in the liver and heart have been detected as a result of suboptimal IVC conditions.

study design, size, duration: Fertilized oocytes from inbred and outbred breeding schemes were retrieved and either immediately
transferred to foster mothers or incubated in control or human ART culture media up to the blastocyst stage prior to transfer. Placental and fetal
anatomy and particularly bone development were evaluated.

participants/materials, setting, methods: B6C3F1 female mice were used as oocyte donors after ovulation induction.
C57Bl/6 and CD1 males were used for mating and CD1 females as foster mothers for embryo transfer. Fertilized oocytes were recovered
from mated females and incubated in sequential human ART media (ISM1/ISM2 and HTF/Multiblast), in control media [KSOM(aa) and Whitten’s
medium] or grown in utero without IVC (zygote control). As in vivo, control B6C3F1 females were superovulated and left untreated. Fetuses and
placentae were isolated by Caesarean section and analysed at 18.5 days post-coitum (dpc) for placenta composition and at 15.5 dpc for body
weight, crown–rump length (CRL), fetal organ development, morphological development, total bone length and extent of bone ossification.

main results and the role of chance: No major differences in the number of implantation sites or in histological appearance of
the placentae were detected. CRL of KSOM(aa) fetuses was higher compared with zygote control and Whitten’s medium. Histological analysis of
tissue sections revealed no gross morphological differences compared with the in vitro groups or in vivo controls. Furthermore, no changes in
skeletal development and degree of ossification were observed. However, fibula and tibia of ISM1/ISM2 fetuses were longer than the
respective ones from in vivo fetuses.

limitations, reasons for caution: Findings in the mouse embryo and fetus maynot be fully transferable to humans. In addition to
skeletal development and placentation, there may be other parameters, e.g. on the molecular level which respond to IVC in ART media. Some
comparisons have limited statistical power.

wider implications of the findings: Our data suggest that once implantation is achieved, subsequent post-implantation
development unfolds normally, resulting in healthy fetuses. With mouse models, we gather information for the safety of human ART culture
media. Our mouse study is reassuring for the safety of ART conditions on human embryonic development, given the lack of bold detrimental
effects observed in the mouse model.
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Introduction
Assisted reproductive technologies (ART) such as IVF and ICSI have
been developed to treat infertile couples. Treatments such as hormone
administration, gamete retrieval and in vitro culture (IVC) have been
developed and introduced to facilitate ART. IVF and ICSI are widely
applied nowadays and no severe risks for the couples or the offspring
have been noted. In consequence, a continuous increase in the number
of ART cycles has been observed globally (Ferraretti et al., 2012).
However, only a small share of embryos transferred in utero develop
into an infant (Kovalevsky and Patrizio, 2005). Human embryos are
selected for embryo transfer via morphological criteria. In addition, ad-
equate timing of developmental stages is considered to point to the
embryo with the highest implantation potential (reviewed by Reijo
Pera, 2011). However, evenmorphologically normal and timely develop-
ing ART embryos show high rates of developmental and implantation
failure. Factors, which could be responsible for developmental failure,
could be heterogeneity of oocytes, pre-existing problems associated
with the subfertility of the couple or possibly IVC conditions.

Recent studies indicated that the use of different IVC media for human
embryos can affect the birthweight of newborns (Dumoulin et al., 2010)
irrespective of whether embryos were cryopreserved or not (Nelissen
et al., 2012). Differences became evident at an early gestational stage
(Nelissen et al., 2013). However, others did not find differences
between naturally conceived or ART children regarding embryo devel-
opment, birthweight or preterm delivery (Romundstad et al., 2008; Lin
et al., 2013).

Evidence exists that human embryos cultured in different media show
different kinetics of cleavage, compaction, blastulation and hatching. In
addition, higher implantation rates for Day 3 embryos but not for Days
5 and 6 embryos were described (Van Langendonckt et al., 2001).
Similar effects are also seen when mouse embryos were cultured in
human ART media. Murine blastocysts show differences in blastocyst
formation or hatching after culture in various single step or sequential
ART culture media (Schiewe et al., 1999; Schwarzer et al., 2012). The
mean cell numbers of the inner cell mass (ICM) differed significantly
when embryos were exposed to two different culture media.
However, the ratio of cells representing the ICM and trophectoderm
(TE) cells was similar (Perin et al., 2008).

In the mouse, the impact of IVC is detectable by alterations in gene ex-
pression (Lonergan et al., 2003) or altered DNA methylation patterns in
2-cell embryos (Shi and Haaf, 2002). Furthermore, a loss of imprinting
was observed when in vitro cultured and in vivo-derived embryos were
compared (Market-Velker et al., 2010).

However, not only preimplantation development may be impaired
after IVC, but fetal development may be affected also. Suboptimal IVC
during preimplantation development was shown to cause anatomical

and functional abnormalities. In mice, increased weight of the heart
and hepatic steatosis was observed (Fernandez-Gonzalez et al., 2004).
In cattle, a condition known as ‘large offspring syndrome’ has been
described in which epigenetic alterations correlated with larger offspring
size when compared with naturally conceived offspring (reviewed in
Young et al., 1998; Sinclair et al., 2000). Accountable for this condition
are the supplementation of serum to the culture medium and also the
IVC as such. Besides the impact of IVC on fetal development, alterations
in placental development and morphology have been reported (Mann
et al., 2004; Farin et al., 2006). Placentae of IVF mice are larger (Delle
Piane et al., 2010) and placental gene expression alterations were
detected. Impaired steroid metabolism was seen in mice and placenta
previa in humans (Feil et al., 2006; Romundstad et al., 2006; Collier
et al., 2009; Fauque et al., 2010). The findings of abnormal proteomic
profiles of ART placentae argue for the translation of abnormal gene
expression profiles into actual phenotypes (Zhang et al., 2008).

Although the data are conflicting, there is consensus that differences in
preimplantation development from the zygote to the blastocyst stage
may be influenced by different human ART culture media or the addition
of agents such as serum components (Khosla et al., 2001a,b). Currently,
the only comprehensive assay for testing the qualityof ART culture media
prior to clinical use is the mouse embryo assay (MEA). In this toxicity
assay, 1- or 2-cell embryos are cultured up to the blastocyst stage
in vitro (Gardner et al., 2005). Culture media pass the test if at least
70–80% of the embryos develop to the blastocyst stage. The test is
not standardized as every company uses different mouse strains which
differ in their developmental potential (Tucker and Jansen, 2002). In add-
ition, the follow-up of the concepti after implantation with respect to, for
instance, health status has not been performed yet.

The aim of our study was to analyse whether suboptimal IVC affects
the quality of ART-derived fetuses after implantation. We tested the hy-
pothesis that ART culture media influence the selection of embryos
during preimplantation development in vitro but do not affect the
embryo after implantation.

Materials and Methods

Mice
Animals were housed in the animal facility at the Max Planck Institute for Mo-
lecular Biomedicine (MPI) in Münster and used according to the ethical
permit issued by the Landesamt für Natur-, Umwelt- und Verbraucherschutz
(LANUV) of the state of North Rhine-Westphalia (animal protocol G160/
2010, LANUV reference number 87-51.04.2010.A160). We used B6C3F1
females, a strain commonly used for reproduction studies, and C57Bl/6
(inbred cross) as well as CD-1 females as foster mothers and CD-1 males
(outbred cross) for mating. Embryos were transferred to CD-1 foster
mothers.
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Culture media
ISM1/ISM2 (Origio, Berlin, Germany) and HTF/Multiblast (Irvine Scientific,
MTG, Bruckberg, Germany) were chosen as in our previous study (Schwar-
zer et al., 2012). HTF and Multiblast are fully defined media with known com-
position; ISM1 and ISM2 are proprietary media with little information on the
exact composition. Both media types are sequential media but exhibit differ-
ences regarding their chemical contents. Multiblast contains additional amino

acids, while the energy sources like glucose, lactate or pyruvate are compar-
able in both media; ISM1 and ISM2 media basically switch the main energy
source from high glucose (ISM1) to low glucose/EDTA (ISM2). Whitten’s
medium was prepared according to Whitten (1970; for recipe, see
Gwatkin, 1972 with modifications from Boiani et al., 2005), KSOM(aa) was
used as previously described (Summers et al., 2000; Schwarzer et al.,
2012) (for exact content, see Supplementary data, Table SI).

Figure 1 Experimental design of the project regarding measurements of (A) the placenta and (B) fetal retrieval and development. For more details,
see text. IU, International Units; CRL, crown–rump length; d, days, h, hours).
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Embryo collection, embryo culture and
embryo transfer
Five- to 6-week-old female B6C3F1 mice were primed with 10 IU
pregnant mare’s serum gonadotrophin (PMSG, Intergonan 6000, Inter-
vet, Unterschleißheim, Germany) and 10 IU human chorionic gonado-
trophin (hCG, Ovogest 300, Unterschleißheim, Germany) in a volume
of 300 ml injected intraperitoneally 48 h apart, except in one group,
the in vivo control for normal morphological development, where
injections were performed 72 h apart from the PMSG injection
(for detailed experimental setting, see Fig. 1A and B). This treatment
regime is a prerequisite to reduce the negative effect of gonadotropic
stimulation on endometrial receptivity (Ertzeid and Storeng, 2001). By
allowing more time between PMSG and hCG injections, the negative
effects of PMSG on the endometrium are reduced while the hCG in-
jection is still sufficiently close to induce efficient ovulation induction.
The oocyte yield declines when hCG injections are performed after
72 h, but this modified hormonal scheme supports efficient implant-
ation into the mouse uterus. B6C3F1 females were mated with
C57Bl/6 males overnight to obtain inbred fetuses. An exception was
made in the experiment examining paternal influence when females
were mated to CD1 males to obtain outbred fetuses (see Fig. 1 for
details on the experimental design for retrieval of 15.5 dpc fetuses).
Superovulated and mated females which were left untreated until Cae-
sarean section at 15.5 dpc served as in vivo controls. For all other
groups, zygotes (0.5 dpc) were flushed from plugged females with
Hepes-buffered CZB medium (HCZB; 5.56 mM glucose; 20 mM
Hepes; 5 mM sodium bicarbonate; 0.1% PVP) after cervical dislocation
(according to the EU-Directive 2010/63/EU). Cumulus cells surround-
ing the zygote were removed by hyaluronidase treatment (50 IU/mL
for 15 min; Calbiochem, Darmstadt, Germany) before embryos were
directly transferred (zygote control) or allocated to the different
culture media.

Zygotes were cultured in vitro until 3.5 dpc in KSOM(aa), Whitten’s
medium, ISM1 with a change on 2.5 dpc to ISM2 and HTF with a change
on 2.5 dpc to Multiblast. Embryo culture in human ART media was per-
formed according to manufacturer’s protocols and using 5.5% CO2 and
20% oxygen at 378C. As zygote control, an immediate embryo transfer
was performed within 1 h after flushing of the zygotes from the uteri. At
3.5 dpc, only morphologically normal blastocysts with an expanded cavity
were selected for embryo transfer into CD1 foster mothers (6–16 weeks
old, 25–30 g) that were pseudo-pregnant after mating to vasectomized
males. Caesarean sections were performed either at 15.5 dpc to retrieve
fetuses or on 18.5 dpc to retrieve placentae. Fetal retrievals were performed
at 15.5 dpc since this stage allowed best distinction of bone and skin develop-
ment. Placentae were retrieved at a later stage to detect changes in the fully
mature organ shortly before delivery.

Placental histology
18.5 dpc placentae (B6C3F1 X C57Bl/6 genetic background) retrieved by
Caesarean section (see Fig. 1A) were fixed in 4% paraformaldehyde (PFA),
processed by a spin tissue processor (Microm STP 120, Thermo Scientific,
Dreieich, Germany) [70% (v/v), 90% (v/v), 100% (v/v) ethanol (EtOH),
isopropanol (abs.) and xylol (abs.) for 30 min each] and solidified in para-
ffin. Largest cross-sections (5 mm thick) were rehydrated [100% (v/v),
96% (v/v) and 70% (v/v) isopropanol for 1 min each] and stained with
haematoxylin (Sigma-Aldrich, Taufkirchen, Germany) (5 min) and eosin
(Sigma-Aldrich) (0.01% (v/v), 3 min). Finally, the tissue slices were dehy-
drated, cleared [70% (v/v), 96% (v/v) and 100% (v/v) isopropanol, xylol
(abs.), for 3 min each] and imaged using a stereomicroscope (Leica
WILD M10) at a 20× magnification. For the analysis of acquired images
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of the placentae, spongiotrophoblast and labyrinth layer areas were mea-
sured using ImageJ (1.46j).

Determination of fetal morphological
developmental stage
Fetuses were retrieved from the uterus by Caesarean section on 15.5 dpc
(see Fig. 1B). Weight was determined and pictures were obtained for meas-
urement of the crown–rump length (CRL). Afterwards, fetuses were fixed in
Bouin’s solution [85% saturated picric acid solution, 10% filtered formalde-
hyde (37%), 5% acetic acid] overnight or 4% PFA for 48 h. Implantation
sites were fixed in Bouin’s solution overnight. The numbers of fetuses and im-
plantation sites were counted. The morphological developmental stage of
each fetus was determined after fixation and transfer into 70% EtOH. Devel-
opmental staging was performed according to the Theiler staging system
(Theiler, 1972).

Transparent preparation
Whole-mount transparent preparations with cartilage and bone staining of
15.5 dpc fetuses were performed according to the protocol by Park and
Kim (1984) (modified by Ehmcke and Clemen, 2000, Ehmcke and Clemen,
2003). Briefly, after fixation in 4% PFA, the whole fetus was washed in
running tap water for at least 9 h before transfer into tubes containing tap
water for a maximum of 2 days. Afterwards, the fetuses were dehydrated
in EtOH solutions (30%, 50% for 2 h each, 70% overnight). Cartilage was

stained with Alcian Blue 8GX (1.5 g/l Alcian Blue in 70% absolute EtOH
and 30% acetic acid) for 4–8 h. Excess dye was removed by washing with ab-
solute EtOH overnight until solution remained clear. Afterwards, the fetus
was transferred into sodium tetraborate buffer as follows: the object was
washed in solutions with decreasing EtOH concentration for 1–2 h (96,
85, 70, 50 and 30%). Subsequently, the fetus was washed twice with 30%
sodium tetraborate solution (30% saturated sodium tetraborate solution,
70% ddH2O v/v). Soft tissue was digested with 1% pancreatine in 30%
tetraborate buffer (pancreatine solution). Fetuses of 15.5 dpc were digested
for 4–7 days at room temperature and pancreatine solution was changed
every day. Success of the digest was checked visually. Ossified bone
was stained with AlizarinRed Solution (Sigma Aldrich, Steinheim,
Germany). This staining solution (0.1 g/100 ml AlizarinRed-S in distilled
water, mixed 1:1 with 0.5% KOH directly before use) was incubated over-
night before excess dye was removed by washing the whole mount in 87%
glycerol/0.5% KOH (1:3), which was then subsequently replaced by 1:1
and 3:1 87% glycerol/0.5% KOH every day. For storage, the stained
fetuses were kept in 87% glycerol with added Thymol crystals to prevent
fungal infection.

Skeletal morphology was assessed with focus on the presence and condi-
tion of the bones and the possible occurrence of bone fusion, especially in the
ribs. Furthermore, bones were analysed for the onset and degree of ossifica-
tion. In particular, the lengths of femur, fibula, tibia, as well as humerus, ulna
and radius were determined and the extent of ossification of each bone was
evaluated. Measurements were performed using cellSens Standard 1.5
(Olympus Deutschland GmbH, Hamburg, Germany).

Figure 2 Histological analysis of several implantation sites stained with PAS. (A) Image of implantation site (is) with surrounding tissue of the uterus (u);
(B) implantation site with blood vessels (bv, indicative for placental tissue); (C) placenta (p) of an implantation site of an embryo from the HTF/Multiblast
group; (D) implantation site without blood vessels (¼empty residue) surrounded by maternal tissue (m). Embryos were collected from B6C3F1 females
mated with X C57Bl/6 males or allowed to develop in vivo. Collected embryos were replaced in pseudo-pregnant CD1 females (zygote control) or cultured
for 3.5 days in vitro in one of the media before transfer at the blastocyst stage to pseudo-pregnant CD1 females. Implantation sites were examined at
18.5 dpc.
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Histology
For histological evaluation, 15.5 dpc fetuses and implantation sites were fixed
in Bouin’s solution, stored in 70% EtOH and embedded in paraffin (2× 70%
EtOH, 80% EtOH, 96% EtOH, 99% EtOH, 100% EtOH for 1.5 h each; 100%
EtOH for 2 h; 2× N-butylacetate for 1.5 h each; 2× Paraplast 2 and 6 h, re-
spectively; see also Wistuba and Clemen, 1998; Wistuba et al., 1999, 2000).
Semi-serial 5 mm tissue sections of fetuses were taken using Leica SM 2000R
or SM 2010R microtomes. Sections were dried at 388C before staining. For a
histological overview, two staining methods were performed, the periodic
acid Schiff (PAS)-staining and the Azan-staining as described by Mulisch and
Welsch (2010).

Data analysis and statistics
Images of fetuses and histological sections were adjusted for brightness and
contrast using Adobe Photoshop CS 4 (Adobe). Graphs were obtained
using GraphPad Prism 5 (GraphPad Software Inc., CA, USA). Boxplots
depict the median and whiskers (1.5×inter-quartile distance according to
Tukey). The Kolmogorow–Smirnow test was performed to test for normality
distribution of values. Since not all experimental groups were normally distrib-
uted, non-parametric statistical analysis was performed. The Mann–Whitney
test was performed for pairwise comparison of B6C3F1xCD1 and
B6C3F1xC57Bl/6 strain specific differences. The Kruskal–Wallis and the
Dunn’s post hoc tests were performed for multiple-group analysis in all other

.............................................................................................................................................................................................

Table II Analysis of implantation sites for placental blood vessels as an indicator for placenta-like structures within the
residua.

Condition Total implantation sites
(% transferred embryos)

Placenta-like structures
present, n (%)

Placenta-like structures
absent, n (%)

In vivo 9 (n.d.) 5 (56) 4 (44)

zygote control 12 (15) 10 (83) 2 (17)

KSOM(aa) 9 (17) 6 (67) 3 (33)

Whitten’s 4 (57) 2 (50) 2 (50)

ISM1/ISM2 39 (30) 32 (82) 7 (18)

HTF/Multiblast 3 (6) 2 (67) 1 (33)

Analysis based on PAS staining. Background B6C3F1 X C57Bl/6. Embryos were collected from B6C3F1 females mated with X C57Bl/6 males or allowed to develop in vivo. Collected
embryos were replaced in pseudo-pregnant CD1 females (zygote control) or cultured for 3.5 days in vitro in one of the media before transfer at the blastocyst stage to pseudo-pregnant
CD1 females. Placentae were examined at 18.5 days post coitum. No significant differences were found comparing the experimental groups regarding the number of implantation sites
(Kruskal–Wallis P ¼ 0.427, H ¼ 4.909). n.d., not determined.

Figure 3 Areas (arbitrary units, AU) of the labyrinth layer and spongiotrophoblast of the placenta show no gross abnormalities between treatment
groups. The box depicts the median and quartiles and the whiskers extend for 1.5× the inter-quartile distance, dots indicate outliers. Embryos were
collected from B6C3F1 females mated with C57Bl/6 males or allowed to develop in vivo. Collected embryos were replaced in pseudo-pregnant CD1
females (zygote control) or cultured for 3.5 days in vitro in one of the media before transfer at the blastocyst stage to pseudo-pregnant CD1 females.
Implantation sites were examined at 18.5 dpc. Differences were found in the labyrinth layer between HTF/Multiblast and KSOM(aa). (HTF/MB
n ¼ 10, ISM1/ISM2 n ¼ 6, KSOM(aa) n ¼ 7, zygote control n ¼ 6). No differences were found in the maternal decidua (data not shown). *Statistically
significant P , 0.05.
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Figure 4 Mid-sections of representative fetuses at 15.5 dpc from the six experimental conditions after PAS (A) and Azan staining (B). Embryos were
collected from B6C3F1 females mated with C57Bl/6 males or allowed to develop in vivo. Collected embryos were replaced in pseudo-pregnant CD1
females (zygote control) or cultured for 3.5 days in vitro in one of the media before transfer at the blastocyst stage to pseudo-pregnant CD1 females.
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experiments. Statistics were calculated using GraphPad Prism 5 (GraphPad
Software Inc.). A value of P , 0.05 was defined as a trend (*), P ≤ 0.01 as sig-
nificant (**) and P ≤ 0.001 as highly significant (***).

Results

Implantation and fetal rates
Total implantation sites [composed of sites without fetus (IS) and with
fetus (F)] in the different culture media groups are presented in
Table I. Implantation and fetal rates of the in vivo group could not be
determined since it was not known how many embryos reached the
uterus of the female. Variable litter sizes were not due to differences in
the daily performance of embryo transfer (Kruskal–Wallis P ¼ 0.0607,
H ¼ 14.92). Analysis of variance shows that implantation and fetal
rates did not differ across the media and the control groups (implantation
rate: Kruskal–Wallis, H ¼ 1.633, P ¼ 0.8028, n.s.; fetal rate: Kruskal–
Wallis, H ¼ 5.110, P ¼ 0.2762, n.s.).

Histological analysis of implantation sites
Implantation sites differed by the presence of placental blood vessels with
either low(Fig. 2A)orhigh (Fig.2B) frequencyofbloodvessels (¼ placenta-
like structures) or no vessels (Fig. 2D). The number of implantation sites as
well as the percentage containing placental tissue for each experimental
group is shown in Table II. Only in the HTF/Multiblast group, we detected
one implantation site with a proper placenta (Fig. 2C). No significant differ-
ences were found comparing the experimental groups regarding the
number of implantation sites (Kruskal–Wallis P ¼ 0.427, H¼ 4.909).

Histological analysis of placentae
Placentae retrieved at 18.5 dpc from the different groups were analysed
for the presence of gross morphological abnormalities, namely the misallo-
cationof the three main layers that form the placenta: labyrinth layer, spon-
giotrophoblast (as part of the junctional zone) and maternal decidua
(Fig. 3A). There was a significant difference in placental labyrinth area of
HTF/Multiblast (n ¼ 10) and KSOM(aa) (n ¼ 7; Kruskal–Wallis H ¼
10.13, P ¼ 0.0383; Dunn’s test P , 0.05; Fig. 3). All other groups
(ISM1/ISM2 n ¼ 6, zygote n ¼ 6) showed no changes (Dunn’s test P .

0.05). The spongiotrophoblast area and the ratio of spongiotrophoblast
to labyrinth was not different between the tested groups (Kruskal–
Wallis H ¼ 4.269, P ¼ 0.3709; Kruskal–Wallis H ¼ 2.073, P ¼ 0.7223).

Fetal morphological development of mice
after embryo culture
Of 159 fetuses analysed at 15.5 dpc, 157 appeared normal and complied
with the exterior morphologic characteristics of Theiler Stage 23. Only
one delayed fetus appeared in the in vivo group as well as one in the Whit-
ten’s group. Both showed features of Theiler Stage 21 in contrast to their
littermates. No other major developmental delays were observed in any
of the groups. Screening of the histological tissue sections with PAS
(Fig. 4A) or Azan staining (Fig. 4B) showed no detectable pathologies
in any of the experimental groups. All showed the same morphology
and all main organs were present. Further, no major necrotic tissue
was visible in any of the fetuses.

Figure 5 Comparison of body weight (A) and crown-rump length
(CRL) (B) of 15.5 dpc fetuses under the six experimental conditions.
The box depicts the median and quartiles and the whiskers extend for
1.5× the inter-quartile distance, dots indicate outliers. Embryos were
collected from B6C3F1 females mated with C57Bl/6 males or
allowed to develop in vivo. Collected embryos were replaced in pseudo-
pregnant CD1 females (zygote control) or cultured for 3.5 days in vitro in
one of the media before transfer at the blastocyst stage to pseudo-
pregnant CD1 females. P ≤ 0.01 significant (**) and P ≤ 0.001 is
highly significant (***); +, mean. (Number of animals in A/B: zygote
control n ¼ 22/18, KSOM(aa) n ¼ 13/13, Whitten’s n ¼ 13/12,
ISM1/2 n ¼ 20/17, HTF/Mulitblast n ¼ 17/17, in vivo control
n ¼ 73/73.)
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Body weight and CRL of 15.5 dpc mouse
fetuses from different culture media and effect
of paternal genotype
Body weights of inbred fetuses from the in vivo control, the zygote control
and the four culture media groups are shown in Fig. 5A. Differences were
observed when comparing the fetal weight between the six experimental
groups (Kruskal–Wallis test P , 0.001). No significant differences in
fetal body weight were found between the IVC groups and the zygote
control (Dunn’s test P . 0.05, n.s.). However, fetuses from all in vitro cul-
tured embryos, except the Whitten’s group (Dunn’s test P . 0.05, n.s.),
were significantly heavier than in vivo control fetuses (Dunn’s test
P≤0.001).

The CRL of inbred fetuses from the in vivo control, the zygote control
and the four media groups are shown in Fig. 5B. The zygote control dif-
fered significantly from the KSOM(aa) group (Kruskal–Wallis test P ,

0.0001, Dunn’s test P ≤ 0.01) and KSOM(aa) fetuses differed from
Whitten’s fetuses (Dunn’s test P ≤ 0.01). All other IVC groups
showed no significant differences among each other (Dunn’s test P .

0.05). However, KSOM(aa), ISM1/ISM2 and HTF/Multiblast groups
showed highly significant differences from the in vivo group (Dunn’s
test P ≤ 0.001).

Fetuses produced by mating B6C3F1 females with inbred C57Bl/6
males or outbred CD1 males and allowed to develop in vivo exhibited
significant differences in fetal body weight as result of paternal influence
(Mann–Whitney, U ¼ 36.00, P ¼ 0.0110) and CRL (Mann–Whitney,
U ¼ 12.00, P ¼ 0.055) at 15.5 dpc (Fig. 6A and B).

Cartilage and bone analysis in 15.5 dpc mouse
fetuses after embryo culture
No skeletal abnormalities were observed compared with zygote
or in vivo control. No fused ribs were found in any of the fetuses.
Normal ossification progression of bones was present in all fetuses.

Ossification of the fingers was according to Theiler Stage 23 in all six
conditions (Fig. 7).

The analysis of bone lengths revealed no significant differences
between the six study groups for the femur, humerus, ulna and radius
(femur: Kruskal–Wallis test, P ¼ 0.0442, H ¼ 11.39; but Dunn’s test
P . 0.05); humerus: Kruskal–Wallis test, P ¼ 0.0767, H ¼ 9.947;
ulna: Kruskal–Wallis test, P ¼ 0.1286, H ¼ 8.546; radius: Kruskal–
Wallis test, P ¼ 0.3532, H ¼ 5.543). In contrast to this finding, the
in vivo control group differed significantly from the ISM1/ISM2 group in
the length of fibula and tibia (fibula: Kruskal–Wallis test, P ¼ 0.0025,
H ¼ 18.35, Dunn’s test P , 0.05; tibia: Kruskal–Wallis test, P ¼ 0.0099,
H ¼ 15.10, Dunn’s test P , 0.05). All other groups showed no signifi-
cant differences regarding the fibula and tibia (Dunn’s test P . 0.05;
Fig. 8).

Analysing the length of ossified bone, no significant differences were
found in any of the bones when comparing the six conditions (femur:
Kruskal–Wallis test, P ¼ 0.9584, H ¼ 1.050; fibula: Kruskal–Wallis
test, P ¼ 0.5467, H ¼ 4.019; tibia: Kruskal–Wallis test, P ¼ 0.9813,
H ¼ 0.7303; humerus: Kruskal–Wallis test, P ¼ 0.5569, H ¼ 3.948;
ulna: Kruskal–Wallis test, P ¼ 0.9692, H ¼ 0.9140; radius: Kruskal–
Wallis test, P ¼ 0.9657, H ¼ 0.9606).

Discussion
Many biological studies pointing at issues of clinical importance are in
need of appropriate and valid animal models which can be used to
perform experiments under highly standardized conditions. Data
derived from human ART clinics provide valuable information on the
impact of ART procedures on, e.g. CRL and birthweight, but a thorough
histological assessment of fetuses or newborns cannot be performed.
Surprisingly, no detailed study has yet been devoted to placentae from
live births of ART children. In our present mouse study, we are able to
see implantation failure by detection of implantation sites with or

Figure 6 Significant differences of fetal body weight (A) and crown-rump length (CRL) (B) of non-cultured 15.5 dpc fetuses in two different genetic
backgrounds. The box depicts the median and quartiles and the whiskers extend for 1.5× the inter-quartile distance, dots indicate outliers. Body
weight Mann–Whitney test, P ¼ 0.0110; CRL Mann–Whitney test, P ¼ 0.0214; +, mean. (Number of animals in A/B B6C3F1xCD1 n ¼ 16/16,
B6C3F1xC57Bl/6 n ¼ 11/5.)
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without placenta-like structures. In the human, these findings are also not
available as material from early ART miscarriages is usually not preserved
or carefully screened. Only a standardized and systematic approach in an
animal experiment can address all relevant end-points. Prior to clinical
use, all clinical IVF media are tested using the MEA which is considered
a standardized animal experiment. We propose here an extended
version of the MEA to detect the impact of ART media beyond blastocyst
development.

The implantation rate is a valuable tool to assess the quality of different
embryo culture media (Gardner et al., 1999; Van Langendonckt et al.,
2001). In this study, we found no significant changes in the implantation
and fetal rates using different human culture media in contrast to our pre-
vious findings (Schwarzer et al., 2012). This is intriguing as in both studies
only the best blastocysts at 3.5 dpc were selected for embryo transfers.
Different numbers of embryo transfers might explain the discrepancy or

we used different quality standards, especially in the ISM1/ISM2 group
having in mind that this group generated lower fetal rates in our first study.

A reason for the change in implantation rates may be the ability of
embryos to differentially adapt to conditions in their microenvironment.
In consequence, IVC may affect the developmental probability of blasto-
cysts by influencing the response to defined check points. In the human,
ART blastocysts showing abnormal development are not considered for
embryo transfer. It is believed that these embryos might not implant
in vivo as they will be selected out by nature prior to reaching the uterus.
In ART cycles, poor embryos are commonly transferred as higher-grade
embryos are not always available. Under those artificial conditions, these
embryos have the chance to implant and generate a viable pregnancy.
The in vitro conditions promoted their probability to survive, although
these were rather incompetent preimplantation embryos. However, fol-
lowing implantation, other mechanisms of selection maybe activated and

Figure 7 Cartilage and bone staining of representative 15.5 dpc fetuses developed under six different conditions [in vivo, zygote control, KSOM(aa),
Whitten’s medium, ISM1/ISM2 and HTF/Multiblast group]. Cartilage stained in blue (AlcianBlue), ossified bone in red (AlizarinRed; appears dark blue
in images). Embryos were collected from B6C3F1 females mated with C57Bl/6 males or allowed to develop in vivo. Collected embryos were replaced
in pseudo-pregnant CD1 females (zygote control) or cultured for 3.5 days in vitro in one of the media before transfer at the blastocyst stage to pseudo-
pregnant CD1 females.
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Figure8 Bone length and ossified bone length in 15.5 dpc fetal femur, tibia, fibula, humerus, ulna and radius. The box depicts the median and quartiles and
thewhiskers extend for 1.5× the inter-quartile distance,dots indicate outliers. Embryoswerecollected from B6C3F1 females matedwith C57Bl/6 males or
allowed to develop in in vivo. Collected embryos were replaced in pseudo-pregnant CD1 females (zygote control) orcultured for 3.5 days in vitro in one of the
media before transfer at the blastocyst stage to pseudo-pregnant CD1 females. The length of tibia and fibula were significantly different between ISM1/ISM2
and in vivo fetuses (fibula: Kruskal–Wallis test, P ¼ 0.0025, Dunn’s test P , 0.05; tibia: Kruskal–Wallis test, P ¼ 0.0099, Dunn’s test P , 0.05). P , 0.05
is regarded as a trend (*); +, mean.
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newly generated embryonic cells and tissues having normal developmen-
tal potentials now form the viable embryo.

Placental abnormalities have been reported to occur after ART (Delle
Piane et al., 2010). Changes in the spongiotrophoblast/labyrinth ratio
are associated with impaired placental function such as insufficient
vascularization (Rossant and Cross, 2001). Placentae from embryos cul-
tured in HTF/Multiblast, ISM1/ISM2, KSOM(aa) and the zygote control
showed no gross abnormalities or different sizes in terms of morphology.
Spongiotrophoblast and decidua proportions were indistinguishable
from controls. Although the labyrinth area of HTF/Multiblast and
KSOM(aa) placentae showedsignificant differences, the ratiowasnot dif-
ferent. Under our experimental conditions, the different ART media
showed no diverse effects on placental morphology. This finding may
be due to our strict selection as only the best blastocysts were trans-
ferred. These embryos contained normal TE leading to normal placenta
development.

Fetal weight may be used as a parameter to assess the quality of dif-
ferent culture conditions as, for example, different oxygen concentra-
tions have a direct influence on the weight of newborn mice (Feil
et al., 2006). Changes in fetal weight after IVC have been detected in
cattle. Large offspring syndrome is associated with serum supplementa-
tion and IVC-induced imprinting alterations (reviewed in Young et al.,
1998; Sinclair et al., 2000). Also in the human, several reports have
shown that IVC can induce departures in the weight of the newborn
(Dumoulin et al., 2010; Nelissen et al., 2012). We were not able to
confirm these findings as zygote control fetuses had the same weight
as the fetuses after IVC. This is in accordance with recent findings
reporting no differences in the weight of the offspring after IVC (Lin
et al., 2013). In the mouse, preimplantation embryos are capable to
compensate for poor culture conditions (Hogan et al., 1994; Calle
et al., 2012). Furthermore, they are also able to compensate for substan-
tial increases and decreases in cell numbers (Snow, 1981). The final size
of mouse offspring is not affected by removing blastomeres from the
preimplantation embryo. If a compensatory growth after impaired
early development occurs, it happens at time points prior to 11.5 or
12.5 dpc (Burgoyne et al., 1983; Hogan et al., 1994). It obviously does
not occur after 15.5 dpc, the time point when we analysed the
fetuses. Although ISM1/ISM2 embryos showed lower mean cell
numbers at the blastocyst stage (Schwarzer et al., 2012), they still
implanted and formed fetuses with equal weight and CRL in comparison
to other media and control groups. It might well be that compensatory
growth has occurred at earlier time points being non-detectable at
15.5 dpc. Whether such compensatory growth also occurs in the
human remains unknown.

CRL is a measure commonly determined in humans during pregnancy
and upon birth. In this study, the CRL of the fetuses revealed differences
between the in vivo control and the fetuses of the zygote culture group.
The explanation for this observation is the higher numberof in vivo fetuses
limiting space and nutrition in an overcrowded uterus. However, we
cannot exclude an additional effect resulting from the different back-
ground of the mother; in vivo fetuses were carried by a C57Bl6
mother, while all other fetuses were carried by a CD-1 foster mother.
Zygote control and Whitten’s fetuses were both showing a lower CRL
than KSOM(aa) fetuses and were more similar to the in vivo fetuses.
The reason for this is unclear and cannot be explained by correlation ana-
lysis (data not shown) or the number of fetuses per female. Since the
zygote control fetuses were shorter than the KSOM(aa) fetuses, we

cannot exclude a culture-associated effect. However, this effect was
not observed in the other IVC groups. The Whitten’s fetuses were
shorter than the KSOM(aa) fetuses, a hint that the culture in Whitten’s
medium might impair growth, although this finding was associated with
lower body weight.

Morphometric parameters and gross anatomical features, such as
skeletal development, bone growth and ossification, are routinely
used in toxicological studies (Schlabritz-Loutsevitch et al., 2004;
Burdan et al., 2005). The assessment of these anatomical traits allows
the detection of major anomalies in morphogenetic development in
analogy to the toxicological studies. Equivalent methodology is easily ap-
plicable to mouse fetuses. Differences in cartilage and bone and differ-
ences in the length of the ossified bone may be a result of perturbed
differences in growth rate. Especially, the length of femur (and
humerus) is often used as reference value when the size of an animal
or human fetus is described. In humans, the reduced length of the
femur is a good anatomical indicator for several pathological conditions.
For example, it is associated with skeletal dysplasia, chromosomal errors
or might be a sign for growth retardation (Kurtz et al., 1990; Snijders
et al., 2000; Bromley et al., 2002; Abdelhedi et al. 2012; Ventura et al.,
2012). We found in ISM1/ISM2 media, fetuses with elongated tibia
and fibula compared with their in vivo counterparts. Although ISM1/
ISM2 fetuses were heavier and had a longer CRL compared with in
vivo fetuses, it is surprising that elongated bone development was
observed only in these two bones. Tibia and fibula are the slowest
growing bones during fetal development of the limbs in mice. It seems
that in ISM1/ISM2 fetuses, these bones developed faster than in the in
vivo fetuses. This might also be a sign for compensatory growth as the
precedent blastocysts had lower cell numbers.

At the moment, we cannot exclude epigenetic or behavioural effects
of embryo culture as observed after culture in Whitten’s medium
(Doherty et al., 2000; Ecker et al., 2004; Giritharan et al., 2007, 2010).
Further studies addressing such consequences of IVC are needed.

To the best of our knowledge, this study is the first to evaluate
fetuses and implantation sites after IVC based on defined and clinically
relevant histological and anatomical end-points. The normal mor-
phological development and the lack of abnormalities in fetal develop-
ment represent an encouraging outcome for the future use of ART
procedures.

Supplementary data
Supplementary data areavailable athttp://humrep.oxfordjournals.org/.
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