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• We study generic dynamical systems of any dimension.
• We obtain numerical normal forms for all codimension 2 bifurcations of limit cycles.
• We prove the existence of 3-tori and 4-tori in a laser model and a vibration model.
• We provide software for handling bifurcations of limit cycles.
• We use Lyapunov exponents for numerical detection of 3-tori and 4-tori.
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a b s t r a c t

In this paper we focus on the combination of normal form and Lyapunov exponent computations in
the numerical study of the three codim 2 bifurcations of limit cycles with dimension of the center
manifold equal to 4 or to 5 in generic autonomous ODEs. The normal form formulas are independent
of the dimension of the phase space and involve solutions of certain linear boundary-value problems.
The formulas allow one to distinguish between the complicated bifurcation scenarios which can happen
near these codim 2 bifurcations, where 3-tori and 4-tori can be present. We apply our techniques to
the study of a known laser model, a novel model from population biology, and a model of mechanical
vibrations. These models exhibit Limit Point–Neimark–Sacker, Period-Doubling–Neimark–Sacker, and
double Neimark–Sacker bifurcations. Lyapunov exponents are computed to numerically confirm the
results of the normal form analysis, in particular with respect to the existence of stable invariant tori
of various dimensions. Conversely, the normal forms are essential to understand the significance of the
Lyapunov exponents.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Consider a smooth system of ODEs

ẋ = f (x, p), x ∈ Rn, (1)

smoothly depending on a parameter vector p ∈ Rm. Typically, the
dynamics of such systems show qualitative transitions, i.e. bifurca-
tions, upon variation of a parameter. It is hard to use simulations
to characterize such transitions correctly and efficiently. Numeri-
cal continuation software such as auto [1] or matcont [2,3] may
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be used to track bifurcations from a stable equilibrium to a peri-
odic oscillation by a Hopf bifurcation and even the appearance of
(un)stable invariant toriwithmulti-frequency oscillations by a sec-
ondary Hopf, or Neimark–Sacker bifurcation. Bifurcations of these
invariant tori Tm≥2 into other tori or chaos, however, are out of
reach of the standard numerical analysis.

One possibility to study bifurcations of tori – if they are stable
– is to compute Lyapunov exponents. The dimension of the torus
for a given parameter value then equals the number of exponents
equal to zero. Varying one parameter one can observe that
exponents become zero and this indicates a bifurcation. The exact
nature of the bifurcation is however obscured from this analysis
and should be elucidated with additional means. Yet, in many
cases, bifurcations of tori first emerge from codim 2 bifurcations of
limit cycles. Specifically, these codim 2 bifurcations are points in
the parameter plane where one Neimark–Sacker bifurcation curve
intersects a Limit Point of cycles, a Period-Doubling or another
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Neimark–Sacker bifurcation curve. The intersections produce
LPNS, PDNS, or NSNS bifurcations, respectively. This paper focuses
on these bifurcations, occurring in generic systems (1)whenm ≥ 2
and n is sufficiently large. The bifurcations are well understood
theoretically with Poincaré maps and the corresponding normal
forms [4–10]. The results of the analysis of the normal form for
these codim 2 bifurcations can be used to verify nondegeneracy
conditions and classify the bifurcation structure. Hence, we need
an algorithm for the numerical computation of the coefficients of
each critical normal form to enable this analysis.

There is a straightforward approach to obtain the critical nor-
mal forms of the codim 2 bifurcations of the limit cycle. In the
Poincaré map, the limit cycle corresponds to a fixed point and one
can use techniques developed for maps to obtain the critical nor-
mal form [8,9]. However, in this case partial derivatives of the map
up to order k, most often k = 3, sometimes k = 5, are needed.
Alternatively one could integrate the variational equations [11] or
use automatic differentiation [12,13] to obtain the derivatives of
the Poincaré map. All these methods, however, have two draw-
backs that make them less (time) efficient. First, these are shooting
methods that are slower when the system is very sensitive to per-
turbations. Second, the full Poincaré map is computed while only
certain expressions are needed for the normalization. There is an
alternative technique that ismore suitable in the context of numer-
ical continuation of periodic orbits using collocation as the whole
periodic orbit is available. It uses periodic normalization [14,15]
and has been applied to codim 1 bifurcations of limit cycles and
implemented inmatcont [16]. This technique uses orthogonal col-
location in the solution of boundary value problems and does not
need to compute the corresponding tensors.

Recently, we have extended this algorithm to codim 2 bifurca-
tions of limit cycleswith centermanifold dimension atmost 3 [17].
Here we consider the three remaining and most difficult cases,
LPNS, PDNS, and NSNS, that are characterized by a center mani-
fold of the critical cycle of dimension 4 or 5. These three cases al-
ways involve a – possibly unstable – two-dimensional torusT2 and
in many cases also a 3-dimensional torus T3 and a 4-dimensional
torus T4.

We have implemented our algorithm in the numerical continu-
ation toolboxmatcontwhich automatically invokes the algorithm
whenever the corresponding bifurcation is detected. Hence, any
user is able to use it and take advantage of the automated nor-
mal formanalysis. Herewedocument preciselywhat our algorithm
does. First, our aim is to derive coefficients of a periodic critical
normal form. We present these normal forms in Section 2 using
(contrary to [16,17]) the original Iooss [14] representation. Remark
that these normal forms are closely related to the normal forms for
the Zero-Hopf and Hopf–Hopf bifurcations of equilibria. We dis-
cuss the correspondence and the interpretation of the bifurcation
diagrams of the generic unfoldings for the LPNS, PDNS, and NSNS
bifurcations. Next, we present the formulas to compute the criti-
cal normal form coefficients in Section 3. We extensively discuss
the LPNS case but omit details in the PDNS and NSNS cases (the
complete discussion can be found in [18]). Here we also comment
on the implementationwhich is similar to [17]. Finally in Section 4,
we consider several examples that involve tori bifurcations: a laser
model, a model from population biology, and one for mechanical
vibrations. In these models we find and analyze the three codim
2 bifurcations that we focus on. We compute the critical normal
form coefficients using our algorithm to predict the bifurcation di-
agram near each of these codim 2 points. Next we corroborate the
predictions using Lyapunov exponents. In fact, we argue that the
classification from the critical normal form guides the correct in-
terpretation of the Lyapunov exponents.
2. Normal forms on the center manifold and their bifurcations

Write (1) at the critical parameter values as
u̇ = F(u) (2)
and suppose that there is a limit cycle Γ corresponding to a
periodic solution u0(t) = u0(t + T ), where T > 0 is its (minimal)
period. Expand F(u0(t) + v) into the Taylor series

F(u0(t) + v) = F(u0(t)) + A(t)v +
1
2
B(t; v, v)

+
1
3!

C(t; v, v, v) +
1
4!

D(t; v, v, v, v)

+
1
5!

E(t; v, v, v, v, v) + O(∥v∥
6), (3)

where A(t) = Fu(u0(t)) and
B(t; v1, v2) = Fuu(u0(t))[v1, v2],

C(t; v1, v2, v3) = Fuuu(u0(t))[v1, v2, v3],

etc. The matrix A and the multilinear forms B, C,D, and E are
periodic in t with period T but this dependence will often not be
indicated explicitly.

Consider the initial-value problem for the fundamental matrix
solution Y (t), namely,
dY
dt

= A(t)Y , Y (0) = In,

where In is the n × n identity matrix. The eigenvalues of the
monodromy matrix M = Y (T ) are called (Floquet) multipliers of
the limit cycle. The multipliers with |µ| = 1 are called critical.
There is always a ‘‘trivial’’ critical multiplier µn = 1. We denote
the total number of critical multipliers by nc and assume that the
limit cycle is non-hyperbolic, i.e. nc > 1. In this case, there exists
an invariant nc-dimensional critical center manifold W c(Γ ) ⊂ Rn

near Γ .1

2.1. Critical normal forms

It is well known [19,7] that in generic two-parameter systems
(1) only eleven codim 2 local bifurcations of limit cycles occur. To
describe the normal forms of (2) on the critical center manifold
W c(Γ ) for these codim 2 cases, we parameterize W c(Γ ) near Γ
by (nc − 1) transverse coordinates and τ ∈ [0, kT ] for k ∈ {1, 2},
depending on the bifurcation. The 8 cases with nc ≤ 3 were
treated in [17]. Based on [14]we showed in Appendix A in [18] that
the restriction of (2) to the corresponding critical center manifold
W c(Γ ) with nc = 4 or nc = 5 will take one of the following Iooss
normal forms.

2.1.1. LPNS
The Limit Point–Neimark–Sacker bifurcation occurs when the

trivial criticalmultiplierµn = 1 corresponds to a two-dimensional
Jordan block and there are only two more critical simple multi-
pliers µ1,2 = e±iθ with θ ≠

2π
j , for j = 1, 2, 3, 4. The four-

dimensional Iooss normal form at the LPNS bifurcation is derived
in Appendix A.1.1 in [18] and can be written as

dτ
dt

= 1 − ξ1 + α200ξ
2
1 + α011 |ξ2|

2
+ α300ξ

3
1

+ α111ξ1 |ξ2|
2
+ . . . ,

dξ1
dτ

= a200ξ 2
1 + a011 |ξ2|

2
+ a300ξ 3

1 + a111ξ1 |ξ2|
2
+ . . . ,

dξ2
dτ

= iωξ2 + b110ξ1ξ2 + b210ξ 2
1 ξ2 + b021ξ2 |ξ2|

2
+ . . . ,

(4)

1 This manifold should not be confused with the (nc − 1)-dimensional center
manifold of the corresponding Poincaré map.
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where τ ∈ [0, T ], ω = θ/T , ξ1 is a real coordinate and ξ2 is a com-
plex coordinate on W c(Γ ) transverse to Γ , αijk, aijk ∈ R, bijk ∈ C,
and the dots denote the O(∥ξ 4

∥)-terms, which are T -periodic in τ .
Eqs. (4) implicitly describemotions on the 4-dimensional invariant
manifoldW c(Γ ) with one cyclic coordinate τ .

2.1.2. PDNS
The Period-Doubling–Neimark–Sacker bifurcation occurs when

the trivial critical multiplier µn = 1 is simple and there are only
three more critical simple multipliers, namely −1 and µ1,2 = e±iθ

with θ ≠
2π
j , for j = 1, 2, 3, 4. The four-dimensional Iooss normal

form at the PDNS bifurcation is derived in Appendix A.1.2 in [18]
and can be written as

dτ
dt

= 1 + α200ξ
2
1 + α011 |ξ2|

2
+ α400ξ

4
1 + α022 |ξ2|

4

+ α211ξ
2
1 |ξ2|

2
+ . . . ,

dξ1
dτ

= a300ξ 3
1 + a111ξ1 |ξ2|

2
+ a500ξ 5

1 + a122ξ1 |ξ2|
4

+ a311ξ 3
1 |ξ2|

2
+ . . . ,

dξ2
dτ

= iωξ2 + b210ξ 2
1 ξ2 + b021ξ2 |ξ2|

2
+ b410ξ 4

1 ξ2

+ b221ξ 2
1 ξ2 |ξ2|

2
+ b032ξ2 |ξ2|

4
+ . . . ,

(5)

where τ ∈ [0, 2T ], ω = θ/T , ξ1 is a real coordinate and ξ2 is a
complex coordinate onW c(Γ ) transverse toΓ , αijk, aijk ∈ R, bijk ∈

C, and the dots denote the O(∥ξ 6
∥)-terms, which are 2T -periodic

in τ . Eqs. (5) implicitly describe motions on the 4-dimensional
invariant manifold W c(Γ ) that is doubly covered by the selected
coordinates.

2.1.3. NSNS
The double Neimark–Sacker bifurcation occurs when the trivial

critical multiplier µn = 1 is simple and there are only four more
critical simple multipliers µ1,4 = e±iθ1 and µ2,3 = e±iθ2 with
θ1,2 ≠

2π
j , for j = 1, 2, 3, 4, 5, 6 and lθ1 ≠ jθ2 for l, j ∈ Z with

l + j ≤ 4 (see [9]). The five-dimensional periodic normal form at
the NSNS bifurcation is derived in Appendix A.1.3 in [18] and can
be written as

dτ
dt

= 1 + α1100 |ξ1|
2
+ α0011 |ξ2|

2
+ α2200 |ξ1|

4
+ α0022 |ξ2|

4

+ α1111 |ξ1|
2
|ξ2|

2
+ . . . ,

dξ1
dτ

= iω1ξ1 + a2100ξ1 |ξ1|
2
+ a1011ξ1 |ξ2|

2
+ a3200ξ1 |ξ1|

4

+ a1022ξ1 |ξ2|
4
+ a2111ξ1 |ξ1|

2
|ξ2|

2
+ . . . ,

dξ2
dτ

= iω2ξ2 + b0021ξ2 |ξ2|
2
+ b1110ξ2 |ξ1|

2
+ b0032ξ2 |ξ2|

4

+ b2210ξ2 |ξ1|
4
+ b1121ξ2 |ξ1|

2
|ξ2|

2
+ . . . ,

(6)

where τ ∈ [0, T ], ω1,2 = θ1,2/T , ξ1 and ξ2 are complex coordi-
nates on W c(Γ ) transverse to Γ , αijkl ∈ R, aijkl, bijkl ∈ C, and the
dots denote the O(∥ξ 6

∥)-terms, which are T -periodic in τ . Eqs. (6)
implicitly describe motions on a 5-dimensional manifold with one
cyclic coordinate τ .

2.2. Generic unfoldings of the critical normal forms

Here we describe how the coefficients of the critical normal
forms canbeused to predict bifurcations of the phase portraits near
the critical limit cycles for nearby parameter values. We introduce
certain quantities – computable in terms of these coefficients –
that are reported in the matcont output and used to distinguish
between various bifurcation scenarios in examples in Section 4.

In generic two-parameter systems (1) the considered bifur-
cations occur at isolated parameter values. By translating the
origin of the parameter plane to one of such points, we can con-
sider an unfolding of the corresponding bifurcation and study its
canonical local bifurcation diagram for nearby parameter values.
It is well known that the critical center manifold W c(Γ ) can be
smoothly continued w.r.t. p in a neighborhood of the bifurcation
point, so that the restriction of (1) to this manifold can be stud-
ied. Choosing appropriate coordinates (ξ , τ ) on this parameter-
dependent invariant manifold, one can transform the restricted
system into a parameter-dependent normal form in which dξ

dτ has
a τ -independent principal part and higher-order terms which are
kT -periodic in τ with k = 1 for LPNS andNSNS and k = 2 for PDNS.
Below we describe bifurcations of these principal parts, i.e., the
truncated parameter-dependent autonomous normal forms. Since
the dynamics is determined by the ξ -equations, we first focus on
their bifurcations and then interpret appearing bifurcation dia-
grams for the original system (1). The new unfolding parameters
will be denoted by (β1, β2).

2.2.1. LPNS
Generically, a two-parameter unfolding of (1) near this bi-

furcation restricted to the center manifold is smoothly orbitally
equivalent (with possible time reversal) to a system in which the
equations for the transverse coordinates have the form

dξ
dτ

= β1 + ξ 2
+ s |ζ |

2
+ O(∥(ξ , ζ , ζ̄ )∥4),

dζ
dτ

= (β2 + iω1)ζ + (θ + iϑ)ξζ + ξ 2ζ + O(∥(ξ , ζ , ζ̄ )∥4),

(7)

where the O-terms are still T -periodic in τ . This system is similar
to the normal form for the Zero-Hopf bifurcation of equilibria (cf.
Theorem 8.6 on p. 338 in [7]). In Fig. A.1 the four possible bifur-
cation diagrams of the amplitude system (with ζ = ρeiϕ) for (7)
without the O-terms,

ξ̇ = β1 + ξ 2
+ sρ2,

ρ̇ = ρ(β2 + θξ + ξ 2),
(8)

are reported depending on the sign of the normal form coefficients
s and θ . Note that these unfoldings can also be found in [7]. Here
and in what follows a dot means the derivative w.r.t. τ .

Let us now discuss the interpretation of the phase portraits in
the (ξ , ρ)-plane of the truncated amplitude system in the context
of the bifurcating limit cycle. The fixed points or limit cycles have
additional dimensions from the phases of the periodic orbit itself
plus the phases ignored in the reduction to the amplitude system.
We note that in the amplitude system the vertical (ρ) direction
always corresponds to a Neimark–Sacker bifurcation, but that
the horizontal (ξ ) component of the phase space has a different
meaning. For LPNS, equilibria on the horizontal axis correspond
to limit cycles. Equilibria off the horizontal axis correspond to
invariant 2D tori T2 and the periodic orbit for (8) which exists if
sθ < 0 corresponds to an invariant 3D torus T3 for (1).

The critical values of s and θ can be expressed in terms of the
coefficients of (4) as

s = sign (a200a011), θ =
ℜ(b110)
a200

.

These values determine the bifurcation scenario. For sθ < 0, a 3-
torus appears in the unfolding via a Neimark–Sacker bifurcation.
The stability of this torus is determined by the third order terms in
(4). Indeed, the sign of the corresponding first Lyapunov coefficient
l1 for the Hopf bifurcation in (8) is opposite to that of θ but the
‘time’ in (7) is rescaled with factor

E = ℜ


b210 + b110


ℜ(b021)
a011

−
3a300
2a200

+
a111
2a011


−

b021a200
a011


.
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(a) s = 1, θ > 0. (b) s = −1, θ < 0.

(c) s = 1, θ < 0. (d) s = −1, θ > 0.

Fig. A.1. Bifurcation diagrams of the truncated amplitude system (8) for the LPNS bifurcation.
(see p. 337 in [7]). If E · l1 < 0, an unstable 3-torus appears, if
E · l1 > 0, the 3-torus is stable. The output given by matcont is
(s, θ, E).2

Note that Fig. A.1 presents bifurcations of the truncated system
(7) that only approximates the full normalized unfolding. In partic-
ular, the orbit structure on the invariant tori can differ from that for
the approximating system due to phase locking. Moreover, the de-
struction of T3 via a heteroclinic bifurcation in case (c) of Fig. A.1
becomes a complicated sequence of global bifurcations involving
stable and unstable invariant sets of cycles and tori. All these bi-
furcations, however, occur in the exponentially-small parameter
wedge near a heteroclinic bifurcation curve. For detailed discus-
sions of the effects of the truncation, also in the two other cases,
we refer to [8,10] and references therein.

2.2.2. PDNS
Generically, a two-parameter unfolding of (1) near this bi-

furcation restricted to the center manifold is smoothly orbitally
equivalent to a system in which the equations for the transverse

2 Remark that E = NaN is reported when terms up to only second order are
computed.
coordinates have the form
v̇1 = µ1v1 + P11v3

1 + P12v1 |v2|
2
+ S1v1 |v2|

4

+O(∥(v1, v2, v̄2)∥
6),

v̇2 = (µ2 + iω2)v2 + P21v2
1v2 + P22v2 |v2|

2
+ S2v4

1v2

+ iR2v2 |v2|
4
+ O(∥(v1, v2, v̄2)∥

6),

(9)

where the O-terms are still T -periodic in τ . This system is similar
to one of the normal forms for the Hopf–Hopf bifurcations of equi-
libria (cf. Lemma 8.14 on p. 354 in [7]).

The amplitude system for (9) without the O-terms is
ṙ1 = r1(µ1 + p11r21 + p12r22 + s1r42 ),
ṙ2 = r1(µ2 + p21r21 + p22r22 + s2r41 ),

(10)

where

p11 = P11, p12 = P12, p21 = ℜ(P21),
p22 = ℜ(P22), s1 = S1, s2 = ℜ(S2).

The values of pjk and sj, for j, k = 1, 2, and the quantities

θ =
p12
p22

, δ =
p21
p11

, Θ =
s1
p222

, ∆ =
s2
p211

(11)

indicate in which bifurcation scenario we are (see Section 8.6.2
in [7]).

In the ‘‘simple’’ case where p11p22 > 0, there are five topologi-
cally different bifurcationdiagramsof the truncated amplitude sys-
tem (10). Each case corresponds with a region in the (θ, δ)-plane,
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a b

Fig. A.2. (a) The five subregions in the (θ, δ)-plane in the ‘‘simple’’ case; (b) the six subregions in the (θ, δ)-plane in the ‘‘difficult’’ case.
a b

Fig. A.3. Bifurcation diagrams of the amplitude system (10) for the PDNS and NSNS bifurcations: (a) parametric portraits in the ‘‘simple’’ case; (b) phase portraits in the
‘‘simple’’ case.
see Fig. A.2(a). The parametric portraits belonging to the different
regions can be seen in Fig. A.3(a), with corresponding phase por-
traits in the (r1, r2)-plane in Fig. A.3(b). The phase portraits are only
shown for the casewhen p11 < 0 and p22 < 0. The case p11 > 0 and
p22 > 0 can be reduced to the considered one by reversing time.

In the ‘‘difficult’’ case where p11p22 < 0 however, there are
six essentially different bifurcation diagrams. The regions in the
(θ, δ)-plane are shown in Fig. A.2(b). The related parametric por-
traits and phase portraits of (10) are given in Fig. A.4. Only the case
where p11 > 0 and p22 < 0 is presented, to which the opposite
one can be easily reduced.

We note that Section 8.6.2 in [7] for the ‘‘difficult’’ case contains
a few errors in the figures and in the asymptotic expression for
the heteroclinic bifurcation curve.3 Therefore, for completeness,
we provide the figures here, and derive the quadratic asymptotics
of the Hopf (C) and heteroclinic (Y ) bifurcation curves in the
Appendix.

3 Unfortunately, there is also a minor misprint in our earlier ‘‘correction’’ [8] for
the heteroclinic curve given in [7].
The critical values of Pjk and Sj can be expressed in terms of the
coefficients of (5) as (see p. 356 in [7])

P11 = a300, P12 = a111, ℜ(P21) = ℜ(b210),
ℜ(P22) = ℜ(b021),

and

S1 = a122 + a111


ℜ(b221)
ℜ(b210)

− 2
ℜ(b032)
ℜ(b021)

−
a500ℜ(b021)
a300ℜ(b210)


,

ℜ(S2) = ℜ(b410) + ℜ(b210)

a311
a111

− 2
a500
a300

−
a300ℜ(b032)
a111ℜ(b021)


.

The fifth-order terms in (5) determine the stability of the tori
in the ‘‘difficult’’ cases. In fact, the sign of the first Lyapunov
coefficient for the Neimark–Sacker bifurcation is given by

sign l1 = −sign (θ(θ(θ − 1)∆ + δ(δ − 1)Θ)) . (12)

The output of matcont is (p11, p22, θ, δ, sign l1).4

4 Remark that sign l1 = NaN is reported when terms up to only third order are
computed.
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a b

Fig. A.4. Bifurcation diagrams of the amplitude system (10) for the PDNS and NSNS bifurcations: (a) parametric portraits in the ‘‘difficult’’ case; (b) phase portraits in the
‘‘difficult’’ case. The quadratic asymptotics of the bifurcation curves C and Y are given in the Appendix.
For PDNS we have an interpretation analogous to LPNS, but the
invariant sets may be ‘‘doubled’’. The origin always corresponds
the original limit cycle. Other fixed points on the horizontal axis
represent the period-doubled limit cycles, while a fixed point on
the vertical axis corresponds to aT2. Fixed points off the coordinate
axes correspond to doubled tori T2 and periodic orbits correspond
to T3. As in the LPNS case, Figs. A.3 and A.4 present bifurcations
of the truncated amplitude system that only approximates the
full normalized unfolding. In particular, one has to be careful
with ‘torus doubling’, which is in fact a complicated quasiperiodic
bifurcation [20,21].

2.2.3. NSNS
Generically, a two-parameter unfolding of (1) near this bi-

furcation restricted to the center manifold is smoothly orbitally
equivalent to a system in which the equations for the transverse
coordinates have the form

v̇1 = (µ1 + iω1)v1 + P11v1 |v1|
2
+ P12v1 |v2|

2

+ iR1v1 |v1|
4
+ S1v1 |v2|

4
+ O(∥(v, v̄)∥6),

v̇2 = (µ2 + iω2)v2 + P21v2 |v1|
2
+ P22v2 |v2|

2

+ S2v2 |v1|
4
+ iR2v2 |v2|

4
+ O(∥(v, v̄)∥6),

(13)

where the O-terms are T -periodic in τ . Neglecting this periodicity,
system (13) is the normal form for the Hopf–Hopf bifurcation of
equilibria (cf. Lemma 8.14 on p. 354 in [7]).

The truncated amplitude system for (13) is the same as (10),
where now

p11 = ℜ(P11) = ℜ(a2100), p12 = ℜ(P12) = ℜ(a1011),
p21 = ℜ(P21) = ℜ(b1110), p22 = ℜ(P22) = ℜ(b0021),

and
s1 = ℜ(S1)

= ℜ(a1022) + ℜ(a1011)


ℜ(b1121)
ℜ(b1110)

− 2
ℜ(b0032)
ℜ(b0021)

−
ℜ(a3200)ℜ(b0021)
ℜ(a2100)ℜ(b1110)


,

s2 = ℜ(S2)

= ℜ(b2210) + ℜ(b1110)


ℜ(a2111)
ℜ(a1011)

− 2
ℜ(a3200)
ℜ(a2100)

−
ℜ(a2100)ℜ(b0032)
ℜ(a1011)ℜ(b0021)


.

The output of matcont is (p11, p22, θ, δ, sign l1).5

Although the phase portraits of the truncated amplitude sys-
tem are the same as for PDNS, their interpretation is slightly dif-
ferent, since they ‘live’ in the (|v1|, |v2|)-plane. Here, on both axes
the fixed points correspond to invariant 2D tori T2 for the origi-
nal system. Fixed points off the coordinate axes and limit cycles
correspond to T3 and T4, respectively. The usual remark on the ap-
proximate nature of the bifurcation diagrams applies here as well.

3. Computation of critical coefficients

As was mentioned in the previous section, the stability of
the extra torus appearing in the ‘‘difficult’’ cases is determined
by third order terms for the LPNS bifurcation and fifth order
terms for the PDNS and NSNS bifurcations. In the ‘‘simple’’ cases,
second order derivatives are sufficient to determine the behavior
in the LPNS bifurcations and third order derivatives are sufficient
in the PDNS and NSNS bifurcations. Therefore, we restrict our
computations in this section to second order terms in the LPNS case
and up to and including third order terms in the PDNS and NSNS
cases. The expressions of the third order coefficients for LPNS and
fourth and fifth order coefficients for PDNS and NSNS are given in
Appendix C in [18]. Remark that for efficiency reasons these higher
order coefficients are not computed in matcont, unless explicitly
requested by the user.

5 Remark that sign l1 = NaN is reported when terms up to only third order are
computed.
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3.1. LPNS

The four-dimensional critical center manifold W c(Γ ) at the
LPNS bifurcation can be parametrized locally by (ξ1, ξ2, τ ) ∈ R ×

C × [0, T ] as

u = u0(τ ) + ξ1v1(τ ) + ξ2v2(τ ) + ξ̄2v̄2(τ ) + H(ξ1, ξ2, τ ), (14)

where H satisfies H(ξ1, ξ2, T ) = H(ξ1, ξ2, 0) and has the Taylor
expansion

H(ξ1, ξ2, τ ) =


2≤i+j+k≤3

1
i!j!k!

hijk(τ )ξ i
1ξ

j
2ξ̄

k
2 + O(∥ξ∥

4), (15)

where the eigenfunctions v1 and v2 are defined by
v̇1 − A(τ )v1 − F(u0) = 0, τ ∈ [0, T ],
v1(T ) − v1(0) = 0, T

0
⟨v1, F(u0)⟩dτ = 0,

(16)

and
v̇2 − A(τ )v2 + iωv2 = 0, τ ∈ [0, T ],
v2(T ) − v2(0) = 0, T

0
⟨v2, v2⟩dτ − 1 = 0.

(17)

In the codim 2 case considered here, the functions v1 and v2
exist because of Lemma 2 of [14]. The functions hijk will be found
by solving appropriate BVPs, assuming that (2) restricted toW c(Γ )
has the normal form (4).

The coefficients of the normal form arise from the solvability
conditions for the BVPs as integrals of scalar products over the
interval [0, T ]. Specifically, those scalar products involve among
other things the quadratic and cubic terms of (3) near the periodic
solution u0, the generalized eigenfunction v1 and eigenfunction v2,
and the adjoint eigenfunctions ϕ∗, v∗

1 and v∗

2 as solutions of the
problems

ϕ̇∗
+ AT(τ )ϕ∗

= 0, τ ∈ [0, T ],
ϕ∗(T ) − ϕ∗(0) = 0, T

0
⟨ϕ∗, v1⟩dτ − 1 = 0,

(18)

and
v̇∗

1 + AT(τ )v∗

1 + ϕ∗
= 0, τ ∈ [0, T ],

v∗

1(T ) − v∗

1(0) = 0, T

0
⟨v∗

1 , v1⟩dτ = 0,

(19)

and
v̇∗

2 + AT(τ )v∗

2 + iωv∗

2 = 0, τ ∈ [0, T ],

v∗

2(T ) − v∗

2(0) = 0, T

0
⟨v∗

2 , v2⟩dτ − 1 = 0.

(20)

Inwhat followswewillmake use of the orthogonality condition T

0
⟨ϕ∗, F(u0)⟩dτ = 0, (21)

and the normalization condition T

0
⟨v∗

1 , F(u0)⟩dτ = 1, (22)

which can be easily obtained from (16), (18) and (19).
To derive the normal form coefficients we write down the
homological equation and compare term by term. We therefore
substitute (14) into (2), using (3), (4) and (15). By collecting the
constant and linear terms we get the identities

u̇0 = F(u0), v̇1 − F(u0) = A(τ )v1, v̇2 + iωv2 = A(τ )v2,

and the complex conjugate of the last equation.
By collecting the ξ 2

1 -terms we find an equation for h200

ḣ200 − A(τ )h200 = B(τ ; v1, v1) − 2a200v1 − 2α200u̇0 + 2v̇1, (23)

to be solved in the space of functions satisfying h200(T ) = h200(0).
In this space, the differential operator d

dτ − A(τ ) is singular and its
null-space is spanned by u̇0. The Fredholm solvability condition T

0
⟨ϕ∗, B(τ ; v1, v1) − 2a200v1 − 2α200u̇0 + 2v̇1⟩ dτ = 0

allows one to calculate the coefficient a200 in (4) due to the required
normalization in (18), i.e.

a200 =
1
2

 T

0
⟨ϕ∗, B(τ ; v1, v1) + 2A(τ )v1⟩ dτ (24)

taking (16) and (21) into account. With a200 defined in this way,
let h200 be a solution of (23) in the space of functions satisfying
h200(0) = h200(T ). Notice that if h200 is a solution of (23), then
also h200 + ε1F(u0) satisfies (23), since F(u0) is in the kernel of the
operator d

dτ − A(τ ). In order to obtain a unique solution (without
a component along the null eigenspace) we impose the following
orthogonality condition which determines the value of ε1 T

0
⟨v∗

1 , h200⟩ dτ = 0,

since (22) holds. Thus h200 is the unique solution of the BVP
ḣ200 − A(τ )h200 − B(τ ; v1, v1) − 2A(τ )v1

+ 2a200v1 + 2α200u̇0 − 2u̇0 = 0, τ ∈ [0, T ],
h200(T ) − h200(0) = 0, T

0
⟨v∗

1 , h200⟩ dτ = 0.

(25)

By collecting the ξ 2
2 -terms (or ξ̄ 2

2 -terms)we find an equation for
h020

ḣ020 − A(τ )h020 + 2iωh020 = B(τ ; v2, v2),

(or its complex conjugate). This equation has a unique solution h020
satisfying h020(T ) = h020(0), since due to the spectral assumptions
e2iωT is not a multiplier of the critical cycle. Thus, h020 can be found
by solvingḣ020 − A(τ )h020 + 2iωh020 − B(τ ; v2, v2) = 0,

τ ∈ [0, T ],
h020(T ) − h020(0) = 0.

(26)

By collecting the ξ1ξ2-terms we obtain an equation for h110

ḣ110 − A(τ )h110 + iωh110 = B(τ ; v1, v2) − b110v2 + v̇2 + iωv2,

to be solved in the space of functions satisfying h110(T ) = h110(0).
In this space, the differential operator d

dτ − A(τ ) + iω is singular,
since eiωT is a critical multiplier. So we can impose the following
Fredholm solvability condition T

0
⟨v∗

2 , B(τ ; v1, v2) − b110v2 + v̇2 + iωv2⟩ dτ = 0,

which due to the normalization condition in (20) determines the
value of the normal form coefficient b110, yielding

b110 =

 T

0
⟨v∗

2 , B(τ ; v1, v2) + A(τ )v2⟩ dτ . (27)
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The nullspace belonging to the operator d
dτ − A(τ ) + iω is one-

dimensional and spanned by v2. To determine h110 uniquely, we
need to impose an orthogonality condition with a vector whose
inproduct with v2 is non-zero. The function v∗

2 can be chosen
because of the normalization condition in (20). In fact, h110 only
appears in the normal form coefficient b210 (see Appendix C.1
in [18]), and a different normalization of h110 does not influence
the value of that normal form coefficient. Therefore, we define h110
as the unique solution of the BVP

ḣ110 − A(τ )h110 + iωh110 − B(τ ; v1, v2)
+ b110v2 − A(τ )v2 = 0, τ ∈ [0, T ],

h110(T ) − h110(0) = 0, T

0
⟨v∗

2 , h110⟩ dτ = 0.

(28)

By collecting the |ξ2|
2-terms we obtain a singular equation for

h011, namely

ḣ011 − A(τ )h011 = B(τ ; v2, v̄2) − a011v1 − α011u̇0,

to be solved in the space of functions satisfying h011(T ) = h011(0).
The non-trivial kernel of the operator d

dτ − A(τ ) is spanned by u̇0.
So, the following Fredholm solvability condition is involved T

0
⟨ϕ∗, B(τ ; v2, v̄2) − a011v1 − α011u̇0⟩ dτ = 0,

which gives us the expression for the normal form coefficient a011,
i.e.

a011 =

 T

0
⟨ϕ∗, B(τ ; v2, v̄2)⟩ dτ . (29)

We impose the orthogonality condition with the adjoint general-
ized eigenfunction v∗

1 to obtain h011 as the unique solution of
ḣ011 − A(τ )h011 − B(τ ; v2, v̄2) + a011v1

+ α011u̇0 = 0, τ ∈ [0, T ],
h011(T ) − h011(0) = 0, T

0
⟨v∗

1 , h011⟩ dτ = 0.

(30)

We remark that the values of α200 and α011 are not determined
by the homological equation.We therefore put them equal to zero.

Third order coefficients are only needed to determine the
stability of the torus, if this torus exists. They can be found in
Appendix C in [18].

3.2. PDNS

The four-dimensional critical center manifold W c(Γ ) at the
PDNS bifurcation can be parametrized locally by (ξ1, ξ2, τ ) ∈ R ×

C × [0, 2T ] as

u = u0(τ ) + ξ1v1(τ ) + ξ2v2(τ ) + ξ̄2v̄2(τ ) + H(ξ1, ξ2, τ ), (31)

where H satisfies H(ξ1, ξ2, 2T ) = H(ξ1, ξ2, 0) and has the Taylor
expansion

H(ξ1, ξ2, τ ) =


2≤i+j+k≤5

1
i!j!k!

hijk(τ )ξ i
1ξ

j
2ξ̄

k
2 + O(∥ξ∥

6), (32)

while the eigenfunctions v1 and v2 are defined by
v̇1 − A(τ )v1 = 0, τ ∈ [0, T ],
v1(T ) + v1(0) = 0, T

0
⟨v1, v1⟩dτ − 1 = 0,

(33)

with v1(τ + T ) = −v1(τ ) for τ ∈ [0, T ] and (17).
The functions v1 and v2 exist because of Lemma 5 of [14]. The
functions hijk can be found by solving appropriate BVPs, assuming
that (2) restricted to W c(Γ ) has the normal form (5). Moreover,
u(τ , ξ1, ξ2, ξ̄2) = u(τ + T , −ξ1, ξ2, ξ̄2) so that

hijk(τ ) = (−1)ihijk(τ + T ), (34)

for τ ∈ [0, T ]. Therefore, we can restrict our computations to the
interval [0, T ] instead of [0, 2T ].

The coefficients of the normal form arise from the solvability
conditions for the BVPs as integrals of scalar products over the
interval [0, T ]. Specifically, those scalar products involve among
other things the quadratic and cubic terms of (3) near the periodic
solution u0, v1, v2, and the adjoint eigenfunctions ϕ∗, v∗

1 and v∗

2 as
solutions of the problems

ϕ̇∗
+ AT(τ )ϕ∗

= 0, τ ∈ [0, T ],
ϕ∗(T ) − ϕ∗(0) = 0, T

0
⟨ϕ∗, F(u0)⟩dτ − 1 = 0,

(35)

and
v̇∗

1 + AT(τ )v∗

1 = 0, τ ∈ [0, T ],
v∗

1(T ) + v∗

1(0) = 0, T

0
⟨v∗

1 , v1⟩dτ − 1 = 0,
(36)

and (20).
By collecting the constant and linear termswe get the identities

u̇0 = F(u0), v̇1 = A(τ )v1, v̇2 + iωv2 = A(τ )v2,

and the complex conjugate of the last equation, which merely
reflect the definition of u0, (33) and (17).

By collecting the ξ 2
1 -termswe obtain h200 as the unique solution

of the BVP
ḣ200 − A(τ )h200 − B(τ ; v1, v1) + 2α200u̇0 = 0,

τ ∈ [0, T ],
h200(T ) − h200(0) = 0, T

0
⟨ϕ∗, h200⟩ dτ = 0,

(37)

where

α200 =
1
2

 T

0
⟨ϕ∗, B(τ ; v1, v1)⟩ dτ . (38)

By collecting the ξ 2
2 -terms (or ξ̄ 2

2 -terms)we find h020 as solution
ofḣ020 − A(τ )h020 + 2iωh020 − B(τ ; v2, v2) = 0,

τ ∈ [0, T ],
h020(T ) − h020(0) = 0.

(39)

The BVP found by comparing the ξ1ξ2-terms is given by
ḣ110 − A(τ )h110 + iωh110 − B(τ ; v1, v2) = 0, τ ∈ [0, T ],
h110(T ) + h110(0) = 0. (40)

The |ξ2|
2-terms lead to a singular equation for h011 such that the

expression for the normal form coefficient α011 can be derived as

α011 =

 T

0
⟨ϕ∗, B(τ ; v2, v̄2)⟩ dτ . (41)

Function h011 is then the unique solution of
ḣ011 − A(τ )h011 − B(τ ; v2, v̄2) + α011u̇0 = 0, τ ∈ [0, T ],
h011(T ) − h011(0) = 0, T

0
⟨ϕ∗, h011⟩ dτ = 0.

(42)
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Wehave now examined all order two terms, and continuewith the
order three terms.

Collecting the ξ 3
1 -terms gives an equation for h300 and allows us

to obtain the following formula for the normal form coefficient a300
in (5):

a300 =
1
6

 T

0
⟨v∗

1 , C(τ ; v1, v1, v1)

+ 3B(τ ; v1, h200) − 6α200A(τ )v1⟩ dτ . (43)
h300 is then found as the unique solution of

ḣ300 − A(τ )h300 − C(τ ; v1, v1, v1) − 3B(τ ; v1, h200)
+ 6α200A(τ )v1 + 6a300v1 = 0, τ ∈ [0, T ],

h300(T ) + h300(0) = 0, T

0
⟨v∗

1 , h300⟩ dτ = 0.

(44)

The ξ 3
2 (or ξ̄ 3

2 )-terms from the homological equation give a BVP
for h030:ḣ030 − A(τ )h030 + 3iωh030 − C(τ ; v2, v2, v2)

− 3B(τ ; v2, h020) = 0, τ ∈ [0, T ],
h030(T ) − h030(0) = 0.

(45)

By collecting the ξ 2
1 ξ2-terms we can derive the expression for

the normal form coefficient b210, namely

b210 =
1
2

 T

0


v∗

2 , C(τ ; v1, v1, v2) + B(τ ; v2, h200)

+ 2B(τ ; v1, h110) − 2α200A(τ )v2

dτ . (46)

We obtain h210 as the unique solution of

ḣ210 − A(τ )h210 + iωh210 − C(τ ; v1, v1, v2)
− B(τ ; v2, h200) − 2B(τ ; v1, h110) + 2α200A(τ )v2
+ 2b210v2 = 0, τ ∈ [0, T ],

h210(T ) − h210(0) = 0, T

0
⟨v∗

2 , h210⟩ dτ = 0.

(47)

Since ξ1ξ
2
2 is not a term in the normal form (5), we will find

a non-singular equation for h120 when collecting the ξ1ξ
2
2 -terms

from the homological equation, i.e.ḣ120 − A(τ )h120 + 2iωh120 − C(τ ; v1, v2, v2)
−B(τ ; v1, h020) − 2B(τ ; v2, h110) = 0, τ ∈ [0, T ],
h120(T ) + h120(0) = 0.

(48)

The two remaining third order terms are the ξ2 |ξ2|
2-terms and

the ξ1 |ξ2|
2-terms lead to the computation of the two remaining

unknown third order normal form coefficients of (5), i.e.

b021 =
1
2

 T

0
⟨v∗

2 , C(τ ; v2, v2, v̄2) + B(τ ; v̄2, h020)

+ 2B(τ ; v2, h011) − 2α011A(τ )v2⟩ dτ (49)
and

a111 =

 T

0
⟨v∗

1 , C(τ ; v1, v2, v̄2) + B(τ ; v1, h011)

+ 2ℜ(B(τ ; v2, h101)) − α011A(τ )v1⟩ dτ . (50)
Since we need both h021 and h111 for the computation of higher
order normal form coefficients, we also write down their BVPs

ḣ021 − A(τ )h021 + iωh021 − C(τ ; v2, v2, v̄2)
− B(τ ; v̄2, h020) − 2B(τ ; v2, h011) + 2α011A(τ )v2
+ 2b021v2 = 0, τ ∈ [0, T ],

h021(T ) − h021(0) = 0, T

0
⟨v∗

2 , h021⟩ dτ = 0

(51)
and

ḣ111 − A(τ )h111 − C(τ ; v1, v2, v̄2) − B(τ ; v1, h011)
−2ℜ(B(τ ; v2, h101)) + α011A(τ )v1

+ a111v1 = 0, τ ∈ [0, T ],
h111(T ) + h111(0) = 0, T

0
⟨v∗

1 , h111⟩ dτ = 0.

(52)

The stability of a possibly existing torus depends on the fourth
and fifth order coefficients, which are listed in Appendix C in [18].

3.3. NSNS

The five-dimensional critical center manifold W c(Γ ) at the
NSNS bifurcation can be parametrized locally by (ξ , τ ) ∈ C2

×

[0, T ] as

u = u0(τ ) + ξ1v1(τ ) + ξ̄1v̄1(τ ) + ξ2v2(τ )

+ ξ̄2v̄2(τ ) + H(ξ , τ ), (53)

where H satisfies H(ξ , T ) = H(ξ , 0) and has the Taylor expansion

H(ξ , τ ) =


2≤i+j+k+l≤5

1
i!j!k!l!

hijkl(τ )ξ i
1ξ̄

j
1ξ

k
2 ξ̄

l
2 + O(∥ξ∥

6), (54)

where the complex eigenfunctions v1 and v2 are given by
v̇1 − A(τ )v1 + iω1v1 = 0, τ ∈ [0, T ],
v1(T ) − v1(0) = 0, T

0
⟨v1, v1⟩dτ − 1 = 0,

(55)

and (17).
The functions v1 and v2 exist because of Lemma 2 of [14]. The

functions hijkl will be found by solving appropriate BVPs, assuming
that (2) restricted toW c(Γ ) has the normal form (6).

The coefficients of the normal form arise from the solvability
conditions for the BVPs as integrals of scalar products over the
interval [0, T ]. Specifically, those scalar products involve among
other things the quadratic and cubic terms of (3) near the
periodic solution u0, the eigenfunctions v1 and v2, and the adjoint
eigenfunctions ϕ∗, v∗

1 and v∗

2 as solution of the problems (35),
v̇∗

1 + AT(τ )v∗

1 + iω1v
∗

1 = 0, τ ∈ [0, T ],
v∗

1(T ) − v∗

1(0) = 0, T

0
⟨v∗

1 , v1⟩dτ − 1 = 0,
(56)

and (20).
By collecting the constant and linear termswe get the identities

u̇0 = F(u0), v̇1 + iω1v1 = A(τ )v1,

v̇2 + iω2v2 = A(τ )v2,
(57)

and the complex conjugates of the last two equations. The above
equationsmerely reflect the definition of u0 and the first equations
in (55), (17).

By collecting the ξ 2
1 (or ξ̄ 2

1 -terms)-termswe find a BVP for h2000:ḣ2000 − A(τ )h2000 + 2iω1h2000
− B(τ ; v1, v1) = 0, τ ∈ [0, T ],

h2000(T ) − h2000(0) = 0.
(58)

The function h0200 is just the complex conjugate of the function
h2000. Analogously, by comparing the ξ 2

2 -terms, we find that h0020
is the unique solution ofḣ0020 − A(τ )h0020 + 2iω2h0020

− B(τ ; v2, v2) = 0, τ ∈ [0, T ],
h0020(T ) − h0020(0) = 0.

(59)
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By collecting the |ξ1|
2-terms we obtain a singular equation, as

expected since this term is present in the normal form (6). From
the Fredholm solvability condition follows that we can calculate
parameter α1100 as

α1100 =

 T

0
⟨ϕ∗, B(τ ; v1, v̄1)⟩ dτ . (60)

With this value of α1100 we obtain h1100 as the unique solution of
the BVP

ḣ1100 − A(τ )h1100 − B(τ ; v1, v̄1)
+ α1100u̇0 = 0, τ ∈ [0, T ],

h1100(T ) − h1100(0) = 0, T

0
⟨ϕ∗, h1100⟩ dτ = 0.

(61)

Analogously, function h0011 can be obtained by solving
ḣ0011 − A(τ )h0011 − B(τ ; v2, v̄2)

+ α0011u̇0 = 0, τ ∈ [0, T ],
h0011(T ) − h0011(0) = 0, T

0
⟨ϕ∗, h0011⟩ dτ = 0,

(62)

with

α0011 =

 T

0
⟨ϕ∗, B(τ ; v2, v̄2)⟩ dτ . (63)

From collecting the ξ1ξ2-terms follows that h1010 can be found
by solvingḣ1010 − A(τ )h1010 + iω1h1010 + iω2h1010

− B(τ ; v1, v2) = 0, τ ∈ [0, T ],
h1010(T ) − h1010(0) = 0.

(64)

We note that h0101 = h1010.
The last second order term is found from the ξ1ξ̄2-terms and is

a non-singular differential equation, such thatḣ1001 − A(τ )h1001 + iω1h1001 − iω2h1001
− B(τ ; v1, v̄2) = 0, τ ∈ [0, T ],

h1001(T ) − h1001(0) = 0.
(65)

We now come to the third order terms. From the ξ 3
1 and ξ 3

2 -
terms we immediately get the BVPs for h3000 and h0030, namely

ḣ3000 − A(τ )h3000 + 3iω1h3000
− C(τ ; v1, v1, v1) − 3B(τ ; v1, h2000) = 0,

τ ∈ [0, T ],
h3000(T ) − h3000(0) = 0

(66)

andḣ0030 − A(τ )h0030 + 3iω2h0030 − C(τ ; v2, v2, v2)
− 3B(τ ; v2, h0020) = 0, τ ∈ [0, T ],

h0030(T ) − h0030(0) = 0.
(67)

Since the ξ1 |ξ1|
2-term is present in the normal form for the

double Neimark–Sacker bifurcation, a Fredholm solvability condi-
tion is involved, which determines a2100 as

a2100 =
1
2

 T

0
⟨v∗

1 , C(τ ; v1, v1, v̄1) + 2B(τ ; v1, h1100)

+ B(τ ; v̄1, h2000) − 2α1100A(τ )v1⟩ dτ . (68)
Therefore, we can compute h2100 as the unique solution of the BVP

ḣ2100 − A(τ )h2100 + iω1h2100 − C(τ ; v1, v1, v̄1)
− 2B(τ ; v1, h1100) − B(τ ; v̄1, h2000)
+ 2a2100v1 + 2α1100A(τ )v1 = 0, τ ∈ [0, T ],

h2100(T ) − h2100(0) = 0, T

0
⟨v∗

1 , h2100⟩ dτ = 0.

(69)

We can now immediately list the following four BVPs
ḣ2010 − A(τ )h2010 + 2iω1h2010 + iω2h2010

− C(τ ; v1, v1, v2) − B(τ ; v2, h2000)
− 2B(τ ; v1, h1010) = 0, τ ∈ [0, T ],

h2010(T ) − h2010(0) = 0,

(70)


ḣ2001 − A(τ )h2001 + 2iω1h2001 − iω2h2001

− C(τ ; v1, v1, v̄2) − B(τ ; v̄2, h2000)
− 2B(τ ; v1, h1001) = 0, τ ∈ [0, T ],

h2001(T ) − h2001(0) = 0,

(71)


ḣ1020 − A(τ )h1020 + iω1h1020 + 2iω2h1020

− C(τ ; v1, v2, v2) − B(τ ; v1, h0020)
− 2B(τ ; v2, h1010) = 0, τ ∈ [0, T ],

h1020(T ) − h1020(0) = 0,

(72)

and
ḣ0120 − A(τ )h0120 − iω1h0120 + 2iω2h0120

− C(τ ; v̄1, v2, v2) − B(τ ; v̄1, h0020)
− 2B(τ ; v2, h0110) = 0, τ ∈ [0, T ],

h0120(T ) − h0120(0) = 0.

(73)

The ξ2 |ξ2|
2-terms from the homological equation make it

possible to compute b0021 as

b0021 =
1
2

 T

0
⟨v∗

2 , C(τ ; v2, v2, v̄2) + B(τ ; v̄2, h0020)

+ 2B(τ ; v2, h0011) − 2α0011A(τ )v2⟩ dτ (74)
with h0021 as the unique solution of the BVP

ḣ0021 − A(τ )h0021 + iω2h0021 − C(τ ; v2, v2, v̄2)
− B(τ ; v̄2, h0020) − 2B(τ ; v2, h0011)
+ 2b0021v2 + 2α0011A(τ )v2 = 0, τ ∈ [0, T ],

h0021(T ) − h0021(0) = 0, T

0
⟨v∗

2 , h0021⟩ dτ = 0.

(75)

The last two third order terms which we have to examine give
us both the formula for a normal form coefficient. The first one,
obtained from the |ξ1|

2 ξ2-terms, gives us the BVP

ḣ1110 − A(τ )h1110 + iω2h1110 − C(τ ; v1, v̄1, v2)
− B(τ ; v1, h0110) − B(τ ; v̄1, h1010) − B(τ ; v2, h1100)
+ b1110v2 + α1100A(τ )v2 = 0, τ ∈ [0, T ],

h1110(T ) − h1110(0) = 0, T

0
⟨v∗

2 , h1110⟩ dτ = 0,

(76)

where from the solvability condition it follows that

b1110 =

 T

0
⟨v∗

2 , C(τ ; v1, v̄1, v2) + B(τ ; v1, h0110)

+ B(τ ; v̄1, h1010) + B(τ ; v2, h1100) − α1100A(τ )v2⟩ dτ . (77)
Analogously, we obtain the BVP

ḣ1011 − A(τ )h1011 + iω1h1011 − C(τ ; v1, v2, v̄2)
− B(τ ; v1, h0011) − B(τ ; v2, h1001) − B(τ ; v̄2, h1010)
+a1011v1 + α0011A(τ )v1 = 0, τ ∈ [0, T ],

h1011(T ) − h1011(0) = 0, T

0
⟨v∗

1 , h1011⟩ dτ = 0,

(78)
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with

a1011 =

 T

0
⟨v∗

1 , C(τ ; v1, v2, v̄2) + B(τ ; v1, h0011)

+ B(τ ; v2, h1001) + B(τ ; v̄2, h1010) − α0011A(τ )v1⟩ dτ . (79)

As before, the higher order coefficients which determine the
stability of the torus can be found in Appendix C in [18].

3.4. Implementation

Numerical implementation of the formulas derived in the
previous section requires the evaluation of integrals of scalar
functions over [0, T ] and the solution of nonsingular linear BVPs
with integral constraints. Such tasks can be carried out within the
standard continuation software such as auto [1], content [22],
and matcont [2]. In these software packages, periodic solutions
to (1) are computed with the method of orthogonal collocation
with piecewise polynomials applied to properly formulated BVPs
[23,24].

We have implemented our algorithms in matcont analogously
to the eight cases with nc ≤ 3. For further details we refer to [17]
where this is extensively discussed.

4. Examples

4.1. Laser model

In [25] a single-mode inversionless laser with a three-level
phaser was studied and shown to operate in various modes. These
modes are ‘‘off’’ (non-lasing), continuous waves, periodic, quasi-
periodic and chaotic lasing. The model is a 9-dimensional system
given by 3 real and 3 complex equations:

Ω̇l = −
γcav

2
Ωl − gℑ(σab)

ρ̇aa = Ra −
i
2
(Ωl(σab − σ ∗

ab) + Ωp(σac − σ ∗

ac))

ρ̇bb = Rb +
i
2
Ωl(σab − σ ∗

ab)

σ̇ab = −(γ1 + i∆l)σab −
i
2
(Ωl(ρaa − ρbb) − Ωpσcb)

σ̇ac = −(γ2 + i∆p)σac −
i
2
(Ωp(2ρaa + ρbb − 1) − Ωlσ

∗

cb)

σ̇cb = −(γ3 + i(∆l − ∆p))σcb −
i
2
(Ωlσ

∗

ac − Ωpσab),

(80)

with Ra = −0.505ρaa − 0.405ρbb + 0.45, Rb = 0.0495ρaa −

0.0505ρbb + 0.0055 and ∆l = ∆cav + gℜ(σab)Ωl. The fixed
parameters are γ1 = 0.275, γ2 = 0.25525, γ3 = 0.25025, γcav =

0.03, g = 100, ∆p = 0. The parameters Ωp and ∆cav are
varied. The bifurcation diagram of (80) is computed in [26] and is
reproduced in Fig. A.5 to facilitate reading.

4.1.1. The LPNS points
Fig. A.5 shows three NS curves NS(1), NS(2) and NS(3) starting

from two HH points. OnNS(3) one of the richer situations happens.
The normal form coefficients for the LPNS point at (Ωp, ∆cav) =

(3.411, −1.819) are (s, θ, E) = (1, −0.139, −911.248), so sθ <
0. Thismeans that there exists a 3-torus,which is stable since θ < 0
and E < 0. Therefore, we are in the case represented in Fig. A.1(c),
but with a stable 3-torus. For computing the Lyapunov exponents,
we used a code written by V. N. Govorukhin (2004). Fig. A.6 (left)
shows the Lyapunov exponents for Ωp fixed at 3.45 and ∆cav ∈

[−1.8; −1.6]. More detail is shown in Fig. A.6 (right), where we
get a clear view on the number of Lyapunov exponents equal to
Fig. A.5. Bifurcation diagram of (80). The thin red curves are Hopf curves. In blue
are limit point of cycles bifurcations and in magenta Neimark–Sacker bifurcations.
Solid/dotted curves correspond to supercritical/subcritical bifurcations. The dashed
curves are curves of neutral saddles. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

zero. For ∆cav values to the right of −1.636, there is one Lyapunov
exponent equal to zero, which corresponds to the stable limit cycle
from region 6 in Fig. A.1(c). At ∆cav = −1.636, we cross NS(3) and
arrive in region 5with a stable 2-torus and therefore two Lyapunov
exponents equal to zero. When crossing the heteroclinic curve at
point P at ∆cav = −1.773, the stable 3-torus from region 4 arises.
Remark that in some small intervals only two Lyapunov exponents
are equal to zero, and thus not the expected three zero ones, but
these correspond with resonances on the 3-torus. Then, in the
interval ∆cav ∈ [−1.796; −1.7916] positive Lyapunov exponents
appear which indicate that there is chaos. This zone is delimited
by the points indicated with T . Afterwards, we arrive in region 3,
where all Lyapunov exponents are negative.

On the NS(2) curve there is one LPNS point for (Ωp, ∆cav) =

(4.632, 1.438). The normal form coefficients are (s, θ, E) =

(1, 0.206, 808.009). The product sθ > 0 is positive, so we are in
a ‘‘simple’’ case, where no 3-torus is present. Since s = 1, the torus
arisen through the Neimark–Sacker curve exists below the NS(2)
curve. We have computed the Lyapunov exponents for a straight
line where the beginning point (Ωp, ∆cav) = (4.302, 0.673) and
end point (Ωp, ∆cav) = (4.984, 1.984) lie between the curves
LPC(2) and NS(2), to the left and to the right of the LPNS point. In
Fig. A.7, we plot the Lyapunov exponents for Ωp ∈ [4.3, 4.98]. The
stable limit cycle is situated in the upperwedge between the LPC(2)
and NS(2) curves which corresponds to region 4 in Fig. A.1(a), so
we have one Lyapunov exponent equal to zero forΩp-values larger
than the subcritical NS(2) curve. At Ωp ≈ 4.41, we cross the
subcritical NS(2) curve, with to the left only negative Lyapunov
exponents as the orbit went to an equilibrium.

4.2. Periodic predator–prey model

As a second model we study a simple two-patch predator–prey
system with periodic (seasonal) forcing. Simple predator–prey
models lead to the ‘paradox of enrichment’, i.e., increasing the
carrying capacity of the prey ultimately leads to extinction of
the population [27]. Outside the laboratory, however, stable
populations are observed and not extinction. Here, spatial models
have been put forward to explain this discrepancy. As the
simplest spatial case, onemay consider a two-patch predator–prey
model [28] where predator and prey can migrate between the
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Fig. A.6. Lyapunov exponents computed for Ωp = 3.45 close to the LPNS point at (Ωp, ∆cav) = (3.411, −1.819), (left) for ∆cav ∈ [−1.8; −1.6] and (right) zoomed in near
the region with chaos due to heteroclinic tangles. The vertical black lines indicate the parameter values where a bifurcation occurs.
Fig. A.7. Lyapunov exponents computed close to the LPNS point at (Ωp, ∆cav) =

(4.632, 1.438). The two-colored dashed lines reveal pairs of equally large Lyapunov
exponents.

two patches by diffusion. This leads to a diffusive instability of
large oscillations and stabilizes the total population size [29]. Here,
we propose an extension where one of the patches experiences
seasonal influenceswhile the other can be seen as awild-life refuge
where human intervention minimizes seasonal influences. As a
simplificationwewill only consider the case that the predators can
move between the patches, i.e. they can cross the refuge barrier. On
a proper time scale, the investigated system is defined by

ẋ1 = r1x1(1 − x1) −
cx1x2

x1 + b1(1 + εv1)
,

ẋ2 = −x2 +
cx1x2

x1 + b1(1 + εv1)
+ γ (y2 − x2),

ẏ1 = r2y1(1 − y1) −
cy1y2
y1 + b2

,

ẏ2 = −y2 +
cy1y2
y1 + b2

+ γ (x2 − y2),

v̇1 = −v2 + v1(1 − v2
1 − v2

2),

v̇2 = v1 + v2(1 − v2
1 − v2

2).

(81)

The values of x1 and x2 denote the numbers of individuals (or
densities) respectively of prey and predator populations living
outside the refuge and y1 and y2 are the corresponding numbers
or densities inside. The intrinsic growth rates ri and the constant
Fig. A.8. Bifurcation diagram of limit cycles in (81). In green are period doubling
curves and in magenta Neimark–Sacker curves (of the first or of the second iterate,
respectively labeled with NS1 and NS2). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

attack rate c are parameters of the model. For the predator outside
the refuge, the Holling type II is chosen as functional response
with a half saturation which varies periodically with period 2π .
To this end, the last two equations are introduced; their solutions
converge to a stable limit cyclev1(t) = cos(t+φ)with aphase shift
φ depending on the initial conditions. The terms with parameter
γ describe the coupling of the two patches. The fixed parameter
values are r1 = 1, r2 = 1, b1 = 0.4, γ = 0.1, c = 2.
We will use the half saturation b2 as a continuation parameter
together with the amplitude of the seasonal forcing ε. It is not
our aim to fully study this model, but rather analyze the codim
2 bifurcations relevant for this paper. We observe that a refuge
can induce complex behavior in a spatial population model with
seasonal forcing.

4.2.1. The PDNS points
Fig. A.8 represents a bifurcation diagram for system (81) where

two PDNS points are found. The right PDNS point has parameter
values (b2, ε) = (0.277, 0.530). We are in the ‘‘simple’’ case of
Section 2.2.2 because the product of the coefficients p11 = −5.01 ·

10−2 and p22 = −0.211 is positive. Since θ = −0.320 and
δ = 1.087, Fig. A.1(a) indicates that the bifurcation diagram in
a neighborhood of the PDNS point is as in case III in Fig. A.3(a),
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a b

Fig. A.9. (a) Zoom of the neighborhood of the PDNS point at (b2, ε) = (0.277, 0.530) from Fig. A.8. In blue is the sketch of the T2 ‘curve’. (b) Lyapunov exponents computed
for b2 = 0.261, close to the PDNS point at (b2, ε) = (0.277, 0.530). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
a b

Fig. A.10. (a) Zoom of the neighborhood of the PDNS point at (b2, ε) = (8.699 · 10−2, 0.519) from Fig. A.8. In blue is the sketch of the T2 ‘curve’. (b) Lyapunov exponents
computed for b2 = 0.08709, close to the PDNS point at (b2, ε) = (8.699 · 10−2, 0.519). Exponents indicated with solid lines are computed by following the attractor with
increasing ε, dotted lines with decreasing ε. This highlights the bistability between NS2(1) and T2. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
where µ1 = 0 corresponds with NS1 and µ2 = 0 with PD. Curve
T1 corresponds to the Neimark–Sacker curve of the period doubled
cycle NS2(2) in Fig. A.8.

Therefore, we expect the period doubling ‘curve’ T2 of the torus
to be situated to the left of NS1(2) and under the PD curve. The
stable limit cycles are situated in the lower right region of thePDNS
point. The exact location of T2 can be determined by computing
Lyapunov exponents for fixed b2 values smaller than the critical
b2 = 0.277 corresponding with the PDNS point. We have plotted
a sketch of this T2 curve in Fig. A.9(a), which represents a zoom of
the neighborhood of the PDNS point and which includes a plot of
NS2(2) (curve T1 in Fig. A.3(a)). We have computed the Lyapunov
exponents for b2 fixed at 0.261 and ε ∈ [0.46; 0.62], see Fig. A.9(b).
In this figure the black vertical lines indicate the position of the
PD and NS2(2) curves. From the value of the Lyapunov exponents
we derive that T2 is crossed for ε ≈ 0.52. To the left of the T2
curve in Fig. A.9(b), we have a stable torus, arisen through the
supercritical Neimark–Sacker curve NS1(2), corresponding with
region 2 from Fig. A.3(b). Between the curves T2 and NS2(2), the
2-torus arisen through T2 is attracting. These regions correspond
with region 6 (between T2 and PD) and 5 (between PD andNS2(2))
from Fig. A.3(b). When crossing the NS2(2) curve, the 2-torus
disappears and the period doubled cycle becomes attracting. All
this is in agreement with the fact that two Lyapunov exponents
are equal to zero to the left of NS2(2), where afterwards only one
zero Lyapunov exponent is left.

The left PDNS point at (b2, ε) = (8.699 · 10−2, 0.519) again
belongs to one of the ‘‘simple’’ situations in Section 2.2.2 (p11 =

−0.447, p22 = −1.472). The neighborhood of the bifurcation
point is as in case I in Fig. A.1(a) since (θ, δ) = (2.234, 1.304).
Remark that the stable limit cycles are situated in the lower left
quadrant of the PDNS point in Fig. A.10(a). The behavior in a
neighborhood of this PDNS point can be derived from Fig. A.10(a),
which includes a plot of the Neimark–Sacker curve NS2(1) of the
period doubled cycle and also a sketch of the period doubled curve
T2 of the torus, made on the basis of the computation of the
Lyapunov exponents. We have calculated the Lyapunov exponents
for parameter values in the upper right quadrant, close to the PDNS
point, for b2 = 0.08709. The results are given in Fig. A.10(b). Going
from the left to the right, where we follow the solid lines, we start
with two Lyapunov exponents equal to zero which correspond
with the stable torus from the original cycle in the regions 2,
3 and 4 from Fig. A.3. At the point where the second Lyapunov
exponent becomes non-zero, the T2 curve is located, namely at
ε ≈ 0.5198. We then arrive in region 12 from Fig. A.3(b) where
the 2-torus has lost his stability and the period doubled cycle is
stable. Therefore, one zero Lyapunov exponent remains. We scan
the Lyapunov exponents for a second time where we now go
from the right to the left and follow the dashed lines. The second
Lyapunov exponent now approaches zero not at the T2 curve but
at the NS2(1) curve. This is explained by the bistability happening
in region 4, where one Lyapunov exponent equal to zero indicates
the stable period doubled cycle and two zero Lyapunov exponents
indicate the stable torus. When going further, we cross region 3
and 2, with the stable torus of the original cycle.

Remark that since we have a periodically forced system the
return time is independent of the distance from the limit cycle,
so we could do this extra check. Indeed, for all PDNS points, the
αijk in the first equation of (5) are zero up to the accuracy of the
computation. Here too, the Lyapunov exponents corroborate the
prediction based on the normal form coefficients.
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Fig. A.11. Partial bifurcation diagram of limit cycles in system (82).

4.3. Control of vibrations

In [30] a two-mass system of which themainmass is excited by
a flow-induced, self excited force is studied. A single mass which
acts as a dynamic absorber is attached to the main mass and, by
varying the stiffness between the main mass and the absorber
mass, represents a parametric excitation. The system is given by

ẋ1 = v1
ẋ2 = v2

v̇1 = −k1(v1 − v2) − Q 2(1 + εy1)(x1 − x2)
v̇2 = Mk1(v1 − v2) + MQ 2(1 + εy1)(x1 − x2)

− k2v2 − x2 + βV 2(1 − γ v2
2)v2

ẏ1 = −ηy2 + y1(1 − y21 − y22)
ẏ2 = ηy1 + y2(1 − y21 − y22).

(82)

The following parameters are fixed: ε = 0.1, k2 = 0.1, β =

0.1, V =
√
2.1, γ = 4,Q = 0.95,M = 0.2, k1 and η will be

the continuation parameters.

4.3.1. The NSNS points
An NSNS point is detected for (k1, η) = (9.167 · 10−2, 0.411),

see Fig. A.11.
The normal form coefficients are

(p11, p22, θ, δ, sign l1)
= (−3.733 · 10−3, −6.494 · 10−3, 0.541, 1.203, 1).

The positive sign of the product p11p22 implies that we are in a
‘‘simple’’ case of Section 2.2.3. Since δ > θ , the role of both
coefficients has to be reversed. Therefore, θ > 1, δ < 1, θδ <
1 indicate that the NSNS bifurcation is located in region II in
Fig. A.3(a). As in the previous examples, we have computed the
Lyapunov exponents to check the obtained results of the normal
form coefficients. We have done the computations for k1 fixed at
0.083 and η ∈ [0.4; 0.42] (η values are between the NS curves).
The results are given in Fig. A.12. For η-values starting from 0.38,
we are in region 3 (or 12 due to symmetry) in Fig. A.3(b), where
there is a stable 2-torus and thus two Lyapunov exponents equal
to zero. A third Lyapunov exponent approaches zero and between
η ≈ 0.4117 and η ≈ 0.4154 three Lyapunov exponents are
equal to zero. This region denotes the appearance of a stable 3-
torus and corresponds with region 5 from Fig. A.3(b). The critical
values of η correspond with the curves T1 and T2 in Fig. A.3(a).
For η ≥ 0.4154, only a stable 2-torus remains such that there are
Fig. A.12. Lyapunov exponents computed for k1 = 0.083.

two zero Lyapunov exponents. Therefore, the computed Lyapunov
exponents are in agreement with the normal form coefficients.

Also in this case all αijkl in the normal form (6) vanish since we
have a periodically forced system.

5. Discussion

This paper completes the development of efficient methods for
the computation of the critical normal form coefficients for all
codim 1 and 2 local bifurcations of limit cycles, started in [16,17]
and based on [14]. Together with our previous papers on the
computation of the critical normal form coefficients for codim 1
and 2 local bifurcations of equilibria in ODEs [31] and fixed points
of maps [13,8], it contributes to the development of methods,
algorithms, and software tools for multiparameter bifurcation
analysis of smooth finite-dimensional dynamical systems.

The resulting formulas are independent of the phase space
dimension and can be applied in the original basis, without
preliminary linear transformations. As limit cycles are concerned,
the formulas are directly suitable for numerical implementation
using orthogonal collocation. They fit perfectly into a continuation
context, where limit cycles and their bifurcations are computed
using the BVP-approach [32], without numerical approximation of
the Poincaré map or its derivatives. Being implemented into the
matlab toolbox matcont [2,3], the methods developed are freely
available to assist an advanced two-parameter bifurcation analysis
of dynamical systems generated by ODEs and maps from various
applications.

In the present paper we deal with the three most complex
cases, LPNS, PDNS and NSNS, in which bifurcations of tori play an
essential role. We heavily rely on the computation of Lyapunov
exponents to provide evidence for the existence of bifurcations of
tori.

To fully support the two-parameter bifurcation analysis of
ODEs and maps, one needs special methods to switch between
various branches of codim 1 bifurcations of fixed points and cycles
rooted at codim 2 points. Such methods have been developed
and implemented in matcont for codim 2 equilibrium [26] and
fixed point [9] bifurcations. Switching at codim 2 points to the
continuation of codim 1 local bifurcations of limit cycles seems
to be the next natural problem to attack, while that for codim 1
bifurcations of homoclinic and heteroclinic orbits is more difficult
and probably requires new computational ideas. Similar remarks
can be made about quasiperiodic bifurcations of tori.
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Appendix. Bifurcations of the amplitude system for Hopf–Hopf
bifurcation in the ‘‘difficult’’ case

Here, we derive quadratic approximations of the Hopf and
heteroclinic bifurcation curves for the double Hopf amplitude
system (10) that in this case can be reduced to the form
ẋ
ẏ


=


x(µ1 + x − θy + Θy2)
y(µ2 + δx − y + 1x2)


, (A.1)

where θ, δ, Θ , and ∆ are defined by (11).
The main results are

µ1,C = −
θ − 1
δ − 1

µ2 −
(δ − 1)Θ + (θ − 1)∆

(δ − 1)3
µ2

2, (A.2)

µ1,Y = −
θ − 1
δ − 1

µ2 +
θΘ(δ − 1)3 + δ∆(θ − 1)3

(δ − 1)3(2δθ − δ − θ)
µ2

2, (A.3)

l1 = −δ (δ(δ − 1)Θ + θ(θ − 1)∆) . (A.4)

For the Hopf bifurcation curve C we impose the conditions ẋ =

0, ẏ = 0 and ∂ ẋ
∂x +

∂ ẏ
∂y = 0. Solving a series expansion yields

the result for the curve. Next, the first Lyapunov coefficient l1 is
computed using the invariant formula.

For the heteroclinic curve Y we proceed as follows. We as-
sume δ, θ < 0 and δθ − 1 > 0 and we transform variables to
obtain a system that is a perturbation of a Hamilton-system. This
enables to formulate a Melnikov function. Setting this function to
zero yields an equation from which we extract the quadratic ap-
proximation to the heteroclinic curve. Introducing the transforma-
tion (t, x, y, µ1, µ2) → (εxp−1yq−1t, εx, εy, c1ε + c2ε2, ε) where

c1 = −
θ − 1
δ − 1

, p =
1 − δ

δθ − 1
, q =

1 − θ

δθ − 1
.

Then we obtain
ẋ
ẏ


= xp−1yq−1


x(c1 + x − θy)
y(1 + δx − y)


+ εxp−1yq−1


c2x + Θxy2

1yx2


, (A.5)

which for ϵ = 0 is a Hamilton system with Hamiltonian

H(x, y) =
1
p
xpyq


−1 +

δ − 1
θ − 1

x + y


.

TheMelnikov function along the nontrivial critical curveH(x, y) =

0 is given by the following integral

M(h) =


H=h

g1dy − g2dx (A.6)

=


H=h

xpyq−1(c2 + Θy2)dy − 1xp+1yqdx (A.7)

=


H=h


xpyq−1(c2 + Θy2) +

q∆
p + 2

xp+2yq−1

dy (A.8)

where we used Green’s Theorem to convert the dx term to dy.
Now along the nontrivial critical curve H(x, y) = 0 we have x =
θ−1
δ−1 (1 − y) so that

M(0) =


θ − 1
δ − 1

p  1

0
(1 − y)pyq−1

×


c2 + Θy2 +


θ − 1
δ − 1

2 q∆
p + 2

(1 − y)2

dy

∼ c2Ip,q−1 + ΘIp,q+1 +


θ − 1
δ − 1

2 q∆
p + 2

Ip+2,q−1
where we defined

Ia,b =

 1

0
(1 − y)aybdy =

Γ (1 + a)Γ (1 + b)
Γ (2 + a + b)

.

SolvingM(0) = 0 and substituting p, q we obtain

c2 =
θΘ(δ − 1)3 − δ∆(1 − θ)3

(δ − 1)3(2δθ − δ − θ)
.

As final checkwe consider the difference between the quadratic
approximations of the heteroclinic and the Hopf curves

µ1,Y − µ1,C = −
(δθ − 1)l1

δ(δ − 1)3(2δθ − δ − θ)
µ2

2. (A.9)

We see that these approximations coincide precisely when the
Hopf bifurcation is degenerate, i.e. l1 = 0.
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