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Degree-Degree Dependencies
in Random Graphs
with Heavy-Tailed Degrees
Remco van der Hofstad and Nelly Litvak

Abstract. Mixing patterns in large self-organizing networks, such as the Internet, the
World Wide Web, social, and biological networks are often characterized by degree-
degree dependencies between neighboring nodes. In assortative networks, the degree-
degree dependencies are positive (nodes with similar degrees tend to connect to each
other), whereas in disassortative networks, these dependencies are negative. One of the
problems with the commonly used Pearson correlation coefficient, also known as the
assortativity coefficient, is that its magnitude decreases with the network size in disas-
sortative networks. This makes it impossible to compare mixing patterns, for example,
in two web crawls of different sizes. As an alternative, we have recently suggested to
use rank correlation measures, such as Spearman’s rho. Numerical experiments have
confirmed that Spearman’s rho produces consistent values in graphs of different sizes
but similar structure, and it is able to reveal strong (positive or negative) dependencies
in large graphs.

In this study we analytically investigate degree-degree dependencies for scale-free
graph sequences. In order to demonstrate the ill behavior of the Pearson’s correla-
tion coefficient, we first study a simple model of two heavy-tailed, highly correlated,
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random variables X and Y , and show that the sample correlation coefficient converges
in distribution either to a proper random variable on [−1, 1], or to zero, and the limit
is nonnegative a.s. if X, Y ≥ 0. We next adapt these results to the degree-degree de-
pendencies in networks as described by the Pearson correlation coefficient, and show
that it is nonnegative in the large graph limit when the asymptotic degree distribu-
tion has an infinite third moment. Furthermore, we provide examples where in the
Pearson’s correlation coefficient converges to zero in a network with strong negative
degree-degree dependencies, and another example where this coefficient converges in
distribution to a random variable. We suggest an alternative degree-degree dependency
measure, based on Spearman’s rho, and prove that this statistical estimator converges
to an appropriate limit under quite general conditions. These conditions are proved
to be satisfied in common network models, such as the configuration model and the
preferential attachment model. We conclude that rank correlations provide a suitable
and informative method for uncovering network mixing patterns.

1. Introduction

In this article we present an analytical study of degree-degree correlations in
graphs with power-law degree distribution. In simple words, a random variable
X has a power-law distribution with tail exponent γ > 0 if its tail probabil-
ity P (X > x) is roughly proportional to x−γ , for large enough x. Large self-
organizing networks, such as the Internet, the World Wide Web, social, and
biological networks, usually exhibit high variation in the values of the degrees.
Such networks are called scale free indicating that there is no typical scale for
the degrees, and the high-degree vertices are called hubs. This phenomenon is
often modeled by using power-law degree distributions.

Power-law distributions are heavy-tailed since the tail probability decreases
much more slowly than a negative exponential, and, thus, one observes extremely
large values of X much more frequently than in the case of light tails. Statistical
analysis of scale-free complex networks has received massive attention in recent
literature (see, e.g., [Mitzenmacher 04, Newman 03b] for excellent surveys). Nev-
ertheless, there still are many fundamental open problems. One of them is how
to measure dependencies between network parameters.

An important characteristic of networks is the dependency between the degrees
of direct neighbors. A network is usually called assortative when nodes with
similar degrees are often connected, thus, the degree-degree dependencies are
positive, whereas in a disassortative network these dependencies are negative.
The degree-degree dependencies define many of the network’s properties. For
instance, the negative degree-degree correlations in the Internet graph have a
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great influence on the robustness to failures [Doyle et al. 05], efficiency of Internet
protocols [Li et al. 05], as well as distances and betweenness [Mahadevan et al.
06]. The correlation between in- and out-degree of tasks plays an important role
in the dynamics of production and development systems [Braha and Bar-Yam
07]. Mixing patterns affect epidemic spread [Eguiluz and Klemm 02, Eubank et
al. 04] and Web ranking [Fortunato et al. 07].

Often, degree-degree dependence is characterized by the assortativity coeffi-
cient of the network, introduced by Newman in [Newman 02]. The assortativity
coefficient is in fact the Pearson correlation coefficient between the vector of
degrees on each side of an edge, as a function of all edges. See [Newman 02, Ta-
ble I] for a list of assortativity coefficients for various real-world networks. The
empirical data suggest that social networks tend to be assortative (the assorta-
tivity coefficient is positive), whereas Internet, World Wide Web, and biological
networks tend to be disassortative. In [Newman 02, Table I], it is striking that,
typically, larger disassortative networks have assortativity coefficients that are
closer to 0 and therefore appear to have approximate uncorrelated degrees across
edges. Similar conclusions can be drawn from [Newman 03a], see in particular
[Newman 03a, Table II]. This phenomenon arises because Pearson’s correlation
coefficient in scale-free networks with realistic parameters decreases with the
network size, as was pointed out in several recent works [Dorogovtsev et al.
10, Raschke et al. 10, van der Hofstad and Litvak 13]. In this study, we prove
that Pearson’s correlation coefficient in scale-free networks shows several types
of pathological behavior; in particular, its infinite volume limit, when it exists,
is nonnegative, independently of the mixing pattern, and, in fact, this limit can
even be random.

In [van der Hofstad and Litvak 13] we propose an alternative measure for the
degree-degree dependencies, based on the ranks of degrees. This rank correlation
approach is in fact classical in multivariate analysis, falling under the category
of “concordance measures”—dependency measures based on order rather than
exact values of two stochastic variables. The huge advantage of such dependency
measures is that they work well independently of the number of finite moments
of the degrees, whereas Pearson’s coefficient suffers from a strong dependence on
the extreme values of the degrees. Recent applications of rank correlation mea-
sures, such as Spearman’s rho [Spearman 04] and the closely related Kendall’s
tau [Kendall 38], include the concordance between two rankings for a set of doc-
uments in web search. In this application field many other measures for rank
distances have been proposed, see, for example, [Kumar and Vassilvitskii 10]
and the references therein.
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We show mathematically that statistical estimators for degree-degree depen-
dencies based on rank correlations are consistent. That is, for graphs of different
sizes but similar structure (e.g., preferential attachment graphs of increasing
size), these estimators converge to their “true” or limiting value that describes
the degree-degree dependence in an infinitely large graph (in particular, the vari-
ance of the estimator decreases as the size of the graph grows). We also show
that Pearson’s correlation coefficient does not have this basic property when de-
gree distributions are heavy-tailed. In particular, as explained in more detail in
[van der Hofstad and Litvak 13], this implies that the assortativity coefficient
as suggested in [Newman 02] does not allow one to compare the degree-degree
dependencies in graphs of different sizes, such as they arise when studying a net-
work at different time stamps, or comparing two different networks, for example,
web crawls of different domains or Wikipedia graphs from different languages.
However, such a comparison is possible using Spearman’s rho. This study forms
the mathematical justification of our work [van der Hofstad and Litvak 13], in
which similar results were predicted on a less formal level and confirmed by
numerical experiments.

This article is organized as follows. In Section 2 we start with the analysis
of the sample Pearson correlation coefficient and the sample rank correlation,
Spearman’s rho, for a two-dimensional vector with heavy-tailed marginals. In
Section 2.3 we present a simple model with an explicit linear dependence and
show that the sample size grows to infinity, then Pearson’s correlation coeffi-
cient does not converge to a constant but rather to a random variable involving
stable distributions. We also verify analytically and numerically that the rank
correlation provides a consistent statistical estimator for this model. Next, in
Section 2.4, we prove that if random variables are heavy-tailed with infinite
second moment and are nonnegative, then the sample Pearson correlation co-
efficient never converges to a negative value. Thus, such a sequence will never
be classified as disassortative. This result is extended to sequences of graphs in
Section 3, where we also obtain quite general convergence criteria in the infinite
volume limit for the Pearson’s correlation coefficient and the Spearman’s rho.
In Section 4 analytical results are provided for Pearson’s correlation coefficient
and rank correlations in the configuration model and the preferential attachment
model. We also present an adaptation of the configuration model that has strong
negative degree-degree dependencies and prove that Spearman’s rho converges
to the theoretically justified negative value and Pearson’s coefficient converges
to zero. Furthermore, we construct an example in which Pearson’s correlation
coefficient converges to a random variable. Numerical results are presented in
Section 5. We close the article in Section 6 with a discussion on our results and
possible extensions thereof.
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2. Correlations Between Random Variables

In this section we introduce the dependency measures studied in this work. We
start with a general description of dependency measures for random vectors
(X,Y ). This will provide the necessary intuition and framework in order to
understand what happens when X and Y are the degrees of neighboring nodes
in a network graph. We present Pearson’s sample correlation coefficient in Section
2.1, and introduce Spearman’s rho in Section 2.2. In Section 2.3 we demonstrate
an ill behavior of Pearson’s sample coefficient in a simple model with linear
dependencies, and in Section 2.4 we show that if X and Y are nonnegative, then
the Pearson’s sample coefficient cannot converge to a negative value.

2.1. Sample Pearson’s Correlation Coefficient

The Pearson correlation coefficient ρ for two random variables X and Y with
cumulative distribution functions FX (·) and FY (·), joint cumulative distribution
function FX , Y (·, ·), and Var(X),Var(Y ) < ∞ is defined by

ρ =
E [XY ] − E [X]E [Y ]√

Var(X)
√

Var(Y )
. (2.1)

By Cauchy-Schwarz, ρ ∈ [−1, 1], and ρ measures the linear dependence between
the random variables X and Y . We can approximate ρ from a sample by com-
puting the sample correlation coefficient

ρn =
1

n−1

∑n
i=1(Xi − X̄n )(Yi − Ȳn )

Sn (X)Sn (Y )
, (2.2)

where

X̄n =
1
n

n∑
i=1

Xi, Ȳn =
1
n

n∑
i=1

Yi (2.3)

denote the sample averages of (Xi)n
i=1 and (Yi)n

i=1, while

S2
n (X) =

1
n − 1

n∑
i=1

(Xi − X̄n )2 , S2
n (Y ) =

1
n − 1

n∑
i=1

(Yi − Ȳn )2 (2.4)

denote the sample variances. For independent identically distributed (i.i.d.)
sequences of random vectors ((Xi, Yi))n

i=1 under the assumption of finite-variance
random variables, that is, Var(X),Var(Y ) < ∞, it is well known that the esti-
mator ρn of ρ is consistent, in other words,

ρn
P−→ ρ, (2.5)
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where P−→ denotes convergence in probability. In practice, however, we tend
not to know whether Var(X),Var(Y ) < ∞, since S2

n (X) < ∞ and S2
n (Y ) < ∞

clearly hold for any sample, and, therefore, one might be tempted to always
use ρn . Furthermore, by the Cauchy-Schwarz inequality, ρn ∈ [−1, 1] for every
n ≥ 1, which is part of the problem, because, for any sample, a value in [−1, 1]
is produced, and no alarm bells start ringing when ρn is used inappropriately. In
this work we investigate the case Var(X),Var(Y ) = ∞ and show that the use of
ρn , in this case, and in particular in scale-free random graphs, is uninformative.
For example, in the case of negative correlations, ρn converges to zero when n →
∞, which makes it impossible to compare the data of different sizes. Moreover,
if correlations are positive, ρn may even converge to a random variable, thus it
can produce very different numbers for two random structures of the same size
created by the same mechanism. We provide such examples for linearly dependent
random variables in Section 2.3 and for random graphs in Section 4.4.

2.2. Rank Correlations

For two-dimensional data ((Xi, Yi))n
i=1, let rX

i and rY
i be the rank of an obser-

vation Xi and Yi , respectively, when the sample values (Xi)n
i=1 and (Yi)n

i=1 are
arranged in a descending order. The idea of rank correlations is in evaluating sta-
tistical dependences on the data ((rX

i , rY
i ))n

i=1, rather than on the original data
((Xi, Yi))n

i=1. Rank transformation is convenient, in particular because, for con-
tinuous random variables, the two marginals of the resulting vector (rX

i , rY
i ) are

realizations of identical uniform distributions, implying many nice mathematical
properties.

The statistical correlation coefficient for the ranks is known as Spearman’s
rho [Spearman 04]:

ρrank
n =

∑n
i=1(r

X
i − (n + 1)/2)(rY

i − (n + 1)/2)√∑n
i=1(r

X
i − (n + 1)/2)2

∑n
i (rY

i − (n + 1)/2)2

=
1
n

∑n
i=1 rX

i rY
i − ((n + 1)/2)2

1
12 (n2 − 1)

. (2.6)

The mathematical properties of Spearman’s rho have been extensively investi-
gated in the literature. It is well known that if ((Xi, Yi))n

i=1 consists of indepen-
dent realizations of (X,Y ), and the joint distribution cumulative function of X

and Y is continuous, then ρrank
n converges to a number that can be interpreted

as its population value, see [Kendall 75, Chapter 9, Borkowf 02]:

ρrank
n

P−→ ρrank = 12E (FX (X)FY (Y )) − 3. (2.7)

For completeness, we give a brief explanation of this formula. Observe that
FX (X) is the random variable that takes the value FX (x) when X = x. If X
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is continuous, then FX (X) has a uniform distribution on [0, 1]:

FX (x) = P (X ≤ x) = P (FX (X) ≤ FX (x)). (2.8)

Now take FX (x) = t to obtain P (FX (X) ≤ t) = t, where t can take any value in
[0, 1]. We note that this derivation holds for any continuous random variable X.
We will use this many times throughout the article. In particular, it follows that
E (FX (X)) = E (FY (Y )) = 1/2. Next, note that rX

i /n is an empirical estimator
of 1 − FX (xi), where xi is the realized value of Xi . Moreover,

E ((1 − FX (X))(1 − FY (Y ))) = 1 − E (FX (X)) − E (FY (Y )) + E (FX (X)FY (Y ))
= E (FX (X)FY (Y )).

Hence, the right-hand side of (2.6) is a statistical estimator of the last expression
in (2.7).

For discrete random variables, the situation is more delicate, because the same
values of X and Y could occur more than once. We resolve the ties randomly,
using uniformization as suggested in [Mesfioui and Tajar 05]. Formally, we replace
the ranks of ((Xi, Yi))n

i=1 by the ranks of the random variables

((X∗
i , Y ∗

i ))n
i=1 = ((Xi + Ui, Yi + U ′

i))
n
i=1 ,

where ((Ui, U
′
i))

n
i=1 is a sequence of 2n i.i.d. uniform variables on (0, 1). The

random variables X∗
i and Y ∗

i now are continuous. We denote their cumulative
distribution functions by F ∗

X and F ∗
Y . Note that if X takes nonnegative integer

values, then F ∗
X can be seen as a linear interpolation of the cumulative probability

P (X < x), x = 0, 1, 2, . . . because P (X = x) = P (X∗ ∈ [x, x + 1)).
Since (X∗, Y ∗) has a continuous distribution, the convergence result in (2.7)

remains valid. Moreover, [Mesfioui and Tajar 05] gives the formula for ρrank

in a discrete case, and [Mesfioui and Tajar 05, Proposition 3.1] states that if
X,Y = 0, 1, . . ., then (X,Y ) and (X∗, Y ∗) have the population value ρrank , i.e.,

ρrank = 12E (F ∗
X (X∗)F ∗

Y (Y ∗)) − 3. (2.9)

The comparison of different ways for resolving ties, and their effect on the re-
sulting computation is an interesting topic, which is outside the scope of this
work. We refer the reader to [Nevslehová 07] for a general treatment of rank
correlations for noncontinuous distributions.

2.3. Linear Dependencies

It is well known that ρ in general measures linear dependence between two ran-
dom variables. Therefore, before analyzing the behavior of ρn in networks, we
wish to illustrate that ρn fails to capture the linear dependence between X and
Y when the variances of X and Y are infinite, that is, Var(X),Var(Y ) = ∞,
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even in a very straightforward case when the linear relation between X and Y is
explicitly defined. With this goal in mind, we analyze the behavior of ρn in the
following linear model:

X = α1ξ1 + · · · + αm ξm , Y = β1ξ1 + · · · + βm ξm , (2.10)

where ξj , j = 1, . . . , m, are i.i.d. nonnegative random variables with regularly
varying tail, and tail exponent γ. By definition, the nonnegative random variable
ξ is regularly varying with index γ > 0, if

P (ξ > x) = L(x)x−γ , x ≥ 0, (2.11)

where x 	→ L(x) is a slowly varying function, that is, for u > 0, L(ux)/L(x) → 1
as x → ∞, for instance, L(x) may be equal to a constant or log(x). Note that
the random variables X and Y have the same distribution when (β1 , . . . , βm ) is
a permutation of (α1 , . . . , αm ).

When we take an i.i.d. sample of random variables ((Xi, Yi))n
i=1 with the above

linear dependence, then Spearman’s rho is consistent by (2.7), with a variance
that converges to zero as 1/n. For the sample correlation coefficient, consistency
follows from (2.5) in, the case where Var(ξi) < ∞, but not when the ξi ’s have
infinite variance as we show in detail following. Our main result in this section
is the following theorem:

Theorem 2.1. (Weak convergence of the sample Pearson’s coefficient). Let ((Xi, Yi))n
i=1 be i.i.d.

copies of the random variables (X,Y ) in (2.10), and where (ξj )m
j=1 are i.i.d.

random variables satisfying (2.11) with γ ∈ (0, 2), so that Var(ξj ) = ∞. Then,

ρn
d−→ ρ ≡

∑m
j=1 αjβjZj√∑m

j=1 α2
j Zj

√∑m
j=1 β2

j Zj

, (2.12)

where (Zj )m
j=1 are i.i.d. random variables having stable distributions with param-

eter γ/2 ∈ (0, 1), and d−→ denotes convergence in distribution. In particular, ρ

has a density on [−1, 1]. This density is strictly positive on (−1, 1) when there
exist k, l such that αkβk < 0 < αlβl . Furthermore, the density is positive on (a, 1)
when αkβk ≥ 0 for every k, and on (−1,−a) when αkβk ≤ 0 for every k, where

a = inf
z1 ,...,zm ∈R

∑m
j=1 |αjβj |zj√∑m

j=1 α2
j zj

√∑m
j=1 β2

j zj

∈ (0, 1). (2.13)

Theorem 2.1 states that the sample correlation coefficient converges in distri-
bution to a proper random variable, contrary to Spearman’s rank correlation,
which converges in probability to a constant. In particular, this implies that
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when we have two independent samples, the sample correlation coefficient will
give two rather distinct values, whereas Spearman’s rank correlation will give
two similar values. We prove Theorem 2.1 in the remainder of this section. In its
proof, we need the following technical result:

Lemma 2.2. (Asymptotics of sums in stable domain). Let (ξi,j )i=1,2,...,n,j=1,2 be i.i.d. random
variables satisfying (2.11) for some γ ∈ (0, 2). Then there exists a sequence an

with an = n2/γ �(n), where n 	→ �(n) is slowly varying, such that

1
an

n∑
i=1

ξ2
i,1

d−→ Z1 ,
1
an

n∑
i=1

ξi,1ξi,2
P−→ 0, (2.14)

where Z1 is stable with parameter γ/2 and P−→ denotes convergence in probability.

Proof. Let F (x) = P (ξ ≤ x) be the cumulative distribution function of ξ. In order
to prove the first statement in (2.14) we need to note only that the cumulative
distribution function of ξ2 equals x 	→ F (

√
x), which, by (2.11), implies that ξ2

is regularly varying. Thus, the first statement in (2.14) is in fact the classical
convergence of infinite variance random variables with slowly varying distribution
functions to stable laws (see e.g., [Gnedenko and Kolmogorov 68]), where Z1 is a
stable γ/2 random variable. In particular, denoting [1 − F ](x) = 1 − F (x), x ≥ 0,
we can identify an = [1 − F ]−1(1/n2) [Bingham et al. 89]. Since x 	→ [1 − F ](x)
is regularly varying with index γ, [1 − F ]−1(1/n) is regularly varying with index
1/γ [Bingham et al. 89], so that an = [1 − F ]−1(1/n2) is regularly varying with
index 2/γ. To prove the second part of (2.14), we write

1 − F (x) = P (ξ > x) ≤ c′x−γ ′
, x ≥ 0, (2.15)

which is valid for any γ′ ∈ (1, γ) by (2.11) and Potter’s theorem. We next study
the cumulative distribution function of ξ1ξ2 , which we denote by H, where ξ1

and ξ2 are two independent copies of the random variable ξ. When F satisfies
(2.15), then it is not hard to see that there exists a C > 0 such that

1 − H(u) ≤ C(1 + log u)u−γ ′
. (2.16)

Indeed, assume that F has a density f(w) = cw−(γ ′+1), for w ≥ 1. Then,

1 − H(u) =
∫ ∞

1
f(w)[1 − F ](u/w)dw.

Clearly, 1 − F (w) = c′w−γ ′
for w ≥ 1 and 1 − F (w) = 1 otherwise. Substitution

of this yields

1 − H(u) ≤ cc′
∫ u

1
w−(γ ′+1)(u/w)−γ ′

dw + c

∫ ∞

u

w−(γ ′+1) dw ≤ C(1 + log u)u−γ ′
.
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When F satisfies (2.15), then ξ1 and ξ2 are stochastically upper bounded by ξ̂1

and ξ̂2 with cumulative distribution function F̂ satisfying 1 − F̂ (w) = c′w−γ ′ ∨
1, where (x ∨ y) = max{x, y}, and the claim in (2.16) follows from the above
computation.

By the bound in (2.16), the random variables ξi,1ξi,2 are stochastically bounded
from above by random variables Pi that are in the domain of attraction of a stable
γ′ random variable. As a result, there exists bn = n1/γ ′

�′(n), where n 	→ �′(n) is
slowly varying, such that

1
bn

n∑
i=1

Pi
d−→ W,

where W is stable γ′. By choosing γ′ > γ/2, we get bn/an → 0, so we obtain the
second statement in (2.14). �

Proof of Theorem 2.1. We start by noting that

ρn =
1

n−1

∑n
i=1(XiYi − X̄n Ȳn )
Sn (X)Sn (Y )

, (2.17)

and

S2
n (X) =

1
n − 1

n∑
i=1

(X2
i − X̄2

n ), S2
n (Y ) =

1
n − 1

n∑
i=1

(Y 2
i − Ȳ 2

n ). (2.18)

We continue to identify the asymptotic behavior of

n∑
i=1

X2
i ,

n∑
i=1

Y 2
i ,

n∑
i=1

XiYi.

Let [n] denote the set of integers {1, 2, . . . , n}. The distribution of ((Xi, Yi))n
i=1 is

described in terms of an array (ξi,j )i∈[n ],j∈[m ] , which are i.i.d. copies of a random
variable ξ. In terms of these random variables, we can identify

n∑
i=1

XiYi =
m∑

j=1

αjβj

(
n∑

i=1

ξ2
i,j

)
+

m∑
j1 
=j2 =1

αj1 βj2

(
n∑

i=1

ξi,j1 ξi,j2

)
. (2.19)

The sums
∑n

i=1 ξ2
i,j are i.i.d. for different j ∈ {1, . . . , m}, and by Lemma 2.2,∑n

i=1 ξi,j1 ξi,j2 is of a smaller order. Hence, from (2.19) we obtain that

1
an

n∑
i=1

XiYi
d−→

m∑
j=1

αjβjZj . (2.20)
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Therefore, by taking α = β, we also obtain

1
an

n∑
i=1

X2
i

d−→
m∑

j=1

α2
j Zj ,

1
an

n∑
i=1

Y 2
i

d−→
m∑

j=1

β2
j Zj , (2.21)

and the convergence holds simultaneously. As a result, (2.12) follows. It remains
to establish the properties of the limiting random variable ρ in (2.12).

The density of Zi is strictly positive on (0,∞). Note that rescaling zj = czj

j = 1, . . . , m, in (2.13), does not change the value of a. In particular, we can
choose c = (max{z1 , z2 , . . . , zm})−1 . If there exist k and l such that αkβk < 0 <

αlβl , then the density of ρ is strictly positive on (−1, 1). Indeed, with positive
probability ρ can be arbitrarily close to −1 if Zk = max{Z1 , . . . , Zm} and Zj/Zk ,
j 
= k are sufficiently small. Similarly, if Zl = max{Z1 , . . . , Zm}, then with pos-
itive probability, ρ can be arbitrarily close to 1. Now assume that αkβk ≥ 0 for
every k. In this case, the density of ρ is strictly positive on the support of ρ,
which is (a, 1), with a as in (2.13). Analogously, when αkβk ≤ 0, then ρ cannot
be positive and has a density on (−1,−a). �

Numerical example. In order to illustrate the result of Theorem 2.1, consider
the example with ξj ’s from a Pareto distribution satisfying P (ξ > x) = 1/x1.1 ,
x ≥ 1, so L(x) = 1 and γ = 1.1 in (2.11). The exponent γ = 1.1 is as observed
for the World Wide Web [Broder et al. 00]. In (2.10), we choose m = 3 and αi ,
βi , i = 1, 2, 3, as specified in Table 1. We generate N data samples ((Xi, Yi))n

i=1
and compute ρn and ρrank

n for each of the N samples. Thus, we obtain the vec-
tors (ρn,j )N

j=1 and (ρrank
n,j )N

j=1 of N independent realizations for ρn and ρrank
n ,

respectively, where the subindex j = 1, . . . , N denotes the jth realization of
((Xi, Yi))n

i=1. We then compute

E N (ρn ) =
1
N

N∑
j=1

ρn,j , E N (ρrank
n ) =

1
N

N∑
j=1

ρrank
n,j ; (2.22)

σN (ρn ) =

√√√√ 1
N − 1

N∑
j=1

(ρn,j − E N (ρn ))2 ,

σN (ρrank
n ) =

√√√√ 1
N − 1

N∑
j=1

(ρrank
n,j − E N (ρrank

n ))2 . (2.23)

The results are presented in Table 1. We clearly see that ρn has a significant
standard deviation, of which estimators are similar for different values of n. This
means that in the limit as n → ∞, ρn is a random variable with a significant
spread in its values, as stated in Theorem 2.1. Thus, by evaluating ρn for one
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N 103 102

Model parameters n 102 103 104 105

E N (ρn ) 0.4395 0.4365 0.4458 0.4067
α = (1/2, 1/2, 0) σN (ρn ) 0.3399 0.3143 0.3175 0.3106
β = (0, 1/2, 1/2) E N (ρrank

n ) 0.4508 0.4485 0.4504 0.4519
σN (ρrank

n ) 0.0922 0.0293 0.0091 0.0033

E N (ρn ) 0.8251 0.7986 0.8289 0.8070
α = (1/2, 1/3, 1/6) σN (ρn ) 0.1151 0.1125 0.1108 0.1130
β = (1/6, 1/3, 1/2) E N (ρrank

n ) 0.8800 0.8850 0.8858 0.8856
σN (ρrank

n ) 0.0248 0.0073 0.0023 0.0007

E N (ρn ) −0.3052 −0.3386 −0.3670 −0.3203
α = (1/2,−1/3, 1/6) σN (ρn ) 0.6087 0.5841 0.5592 0.5785
β = (1/6, 1/2,−1/3) E N (ρrank

n ) −0.3448 −0.3513 −0.3503 −0.3517
σN (ρrank

n ) 0.1202 0.0393 0.0120 0.0034

Table 1. Estimated mean and standard deviation of ρn and ρrank
n in N samples

with linear dependence (2.10), P (ξ > x) = x−1 .1 , x ≥ 1.

sample ((Xi, Yi))n
i=1 we will obtain a random number, even when n is huge. The

convergence to a nontrivial distribution is directly seen in Figure 1 because the
plots for the two values of n almost coincide. Note that in all cases, the density
is fairly uniform, ensuring a comparable probability for all feasible values and
rendering the value obtained in a specific realization even more uninformative.

However, from Table 1 we clearly see that the behavior of the rank correla-
tion is exactly as we can expect from a good statistical estimator. The obtained
average values are consistent whereas the standard deviation of ρrank

n decreases
approximately 1/

√
n as n grows large. Therefore, ρrank

n converges to a determin-
istic number.

2.4. Sample Pearson’s Correlation Coefficient for Nonnegative Variables

We proceed by investigating correlations between nonnegative heavy-tailed ran-
dom variables. Our main result in this section shows that the correlation coeffi-
cient is asymptotically nonnegative:

Theorem 2.3. (Asymptotic nonnegativity of the sample Pearson’s coefficient for positive r.v.’s). Let
((Xi, Yi))n

i=1 be i.i.d. copies of nonnegative random variables (X,Y ), where X
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Figure 1. The empirical distribution function FN (x) = P (ρn ≤ x) for the N =
1.000 observed values of ρn (n = 1.000, n = 10.000), in the case of linear depen-
dence (2.10).
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N 103 102

n 10 102 103 104 105

E N (ρn ) −0.4833 −0.1363 −0.0342 −0.0077 −0.0015
σN (ρn ) 0.1762 0.0821 0.0245 0.0064 0.0011

E N (ρrank
n ) −0.6814 −0.4508 −0.4485 −0.4504 −0.4519

σN (ρrank
n ) 0.1580 0.0283 0.0082 0.0024 0.0007

Table 2. The mean and standard deviation of ρn and ρrank
n in N simulations

of ((Xi , Yi ))n
i=1 , where X = 2ξI , Y = 2ξ(1 − I), I is a Bernoulli(1/2) random

variable, P (ξ > x) = x−1 .1 , x ≥ 1.

and Y satisfy

P (X > x) = LX (x)x−γX , P (Y > y) = LY (y)y−γY , x, y ≥ 0, (2.24)

with γX , γY ∈ (0, 2), so that Var(X) = Var(Y ) = ∞. Then, any limit point of the
sample Pearson correlation coefficient is nonnegative.

We illustrate Theorem 2.3 with a useful example. Let (ξi)n
i=1 be a sequence of

i.i.d. random variables satisfying (2.11) for some γ ∈ (0, 2), and where ξ ≥ 0 a.s.
Let (X,Y ) = (0, 2ξ) with probability 1/2 and (X,Y ) = (2ξ, 0) with probability
1/2. Then, XY = 0 a.s., whereas E [X] = E [Y ] = E [ξ] and Var(X) = Var(Y ) =
2E [ξ2 ] − E [ξ]2 = 2Var(ξ) + E [ξ]2 . By Theorem 2.3, ρn

P−→ 0 when (ξi)n
i=1 is a

sequence of i.i.d. nonnegative random variables satisfying (2.11) for some γ ∈
(0, 2), which is not appropriate because (X,Y ) are highly negatively dependent.
When γ > 2, this anomaly does not arise, since, if Var(ξ) < ∞,

ρn
P−→ ρ = − E [ξ]2

2Var(ξ) + E [ξ]2
∈ (−1, 0). (2.25)

The asymptotics in (2.25) are quite reasonable, because the random variables
(X,Y ) are highly negatively dependent: When X > 0, Y must be equal to 0,
and vice versa.

Table 2 shows the empirical mean and standard deviation of the estima-
tors ρn and ρrank

n . Here P (ξ > x) = x−1.1 , x ≥ 1, as in Table 1. As predicted
by Theorem 2.3, the sample correlation coefficient (assortativity) converges to
zero as n grows large, whereas ρrank

n consistently shows a clear negative depen-
dence, and the precision of the estimator improves as n → ∞. This explains why
strong disassortativity is not observed in large samples of nonnegative power-law
data.
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We next prove Theorem 2.3:

Proof of Theorem 2.3. Clearly
∑n

i=1 XiYi ≥ 0 when Xi ≥ 0, Yi ≥ 0, so that

ρn ≥ −
1

n−1

∑n
i=1 X̄n Ȳn

Sn (X)Sn (Y )
= − n

n − 1
X̄n

Sn (X)
Ȳn

Sn (Y )
.

It remains to be shown that if Var(X) = ∞, then X̄n/Sn (X) P−→ 0. Indeed, if
γ ∈ (1, 2) then X̄n

P−→ E [X] < ∞ by the strong law of large numbers. When
γ ∈ (0, 1], instead, then X is in the domain of attraction of a γ stable random
variable, hence X̄n , loosely speaking, scales as n1/γX −1 . Further, from (2.24) and
Lemma 2.2 it follows that Sn (X) scales as n2/γX −1 , in particular, X̄n/Sn (X) P−→
0 for all γ ∈ (0, 2). �

3. Applications to Networks

In real-world networks it is particularly important to measure degree-degree
dependencies for neighboring vertices. We refer to [Newman 10] for an exten-
sive introduction to networks, their empirical properties and models for them.
In Section 3.1, we start with the formal definition of Pearson’s correlation co-
efficient (which was termed the assortativity coefficient in [Newman 02]), and
Spearman’s rho in the network context. Next, in Section 3.2 we show that all
limit points of Pearson’s coefficients for sequences of growing scale-free ran-
dom graphs with power-law exponent γ < 3 are nonnegative, a result that
is similar in spirit to Theorem 2.3. In Section 3.3, we state general conver-
gence conditions for both Pearson’s correlation coefficient as well as Spearman’s
rho.

3.1. Definitions and Notations

We start by introducing some notation. Let G = (V,E) be an undirected random
graph. For a directed edge e = (u, v), we write e = u, e = v and we denote the
set of directed edges in E by E′ (so that |E ′| = 2|E|), and Dv is the degree of
vertex v ∈ V . In general, Dv is a random variable.

The assortativity coefficient of G is equal to (see, e.g., [Newman 02, (4)])

ρ(G) =
1

|E ′ |
∑

(u,v )∈E ′ DuDv −
(

1
|E ′|
∑

(u,v )∈E ′
1
2 (Du + Dv )

)2

1
|E ′|
∑

(u,v )∈E ′
1
2 (D2

u + D2
v ) −

(
1

|E ′ |
∑

(u,v )∈E ′
1
2 (Du + Dv )

)2 . (3.1)
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Note that the assortativity coefficient in (3.1) is equal to the sample correla-
tion coefficient, where ((Du,Dv ))(u,v )∈E ′ represents a sequence of nonnegative
random variables, as studied in Theorem 2.3. However, ((Du,Dv ))(u,v )∈E ′ is not
independent, so that we may not immediately apply the previous theory. The-
orem 3.1 is the analogue of Theorem 2.3 in the network context, and we give a
formal proof of it below.

Let us now introduce Spearman’s rho in G that we denote by ρrank(G). In ac-
cordance to the original definition of Spearman’s rho, ρrank(G) is the correlation
coefficient of the sequence of random variables (Re,Re), where e is a uniformly
chosen directed edge (u, v) from E′

n . We let Re and Re be the rank of, respec-
tively, De + Ue and De + U ′

e in the sequences (De + Ue)e∈E ′
n

and (De + U ′
e)e∈E ′

n
.

Here, as discussed earlier, (Ue)e∈E ′
n

and (U ′
e)e∈E ′

n
are i.i.d. sequences of uniform

(0, 1) random variables. Then, Spearman’s rank correlation coefficient is defined
as follows:

ρrank(G) =
1

|E ′|
∑

e∈E ′ ReRe − (|E ′| + 1)2/4

(|E ′|2 − 1)/12
. (3.2)

3.2. No Disassortative Scale-Free Random Graph Sequences

We compute that

1
|E ′|

∑
(u,v )∈E ′

1
2 (Du + Dv ) =

1
|E ′|

∑
v∈V

D2
v ,

1
|E ′|

∑
(u,v )∈E ′

1
2 (D2

u + D2
v ) =

1
|E ′|

∑
v∈V

D3
v . (3.3)

Thus, ρ(G) can be written as

ρ(G) =

∑
(u,v )∈E ′ DuDv − 1

|E ′|
(∑

v∈V D2
v

)2

∑
v∈V D3

v − 1
|E ′ |
(∑

v∈V D2
v

)2 . (3.4)

Consider a sequence of graphs (Gn )n≥1 , where Gn = (Vn ,En ) and n denotes
the number of vertices n = |Vn | in the graph. Since many real-world networks are
quite large, we are interested in the behavior of ρ(Gn ) as n → ∞. Note that this
discussion applies both to sequences of real-world networks of increasing size, as
well as to graph sequences of random graphs. We start by generalizing Theorem
2.3 to this setting:
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Theorem 3.1. (Asymptotic nonnegativity of Pearson’s coefficient in scale-free graphs). Let (Gn )n≥1 be
a sequence of graphs of size n satisfying that there exist γ ∈ (1, 3) and 0 < c <

C < ∞ such that cn ≤ |E| ≤ Cn, cn1/γ ≤ maxv∈Vn
Dv ≤ Cn1/γ and cn(2/γ )∨1 ≤∑

v∈Vn
D2

v ≤ Cn(2/γ )∨1 . Then, any limit point of Pearson’s correlation coefficient
ρ(Gn ) is non-negative.

In the next section, we give several examples where Theorem 3.1 applies
and yields results that are not sensible. The powerful feature of Theorem
3.1 is that it applies to all graphs, not just realizations of certain random
graphs.

Proof. We note that Dv ≥ 0 for every v ∈ V , so that, from (3.4)

ρ(Gn ) ≥ ρ−(Gn ) ≡ −
1

|E ′|
(∑

v∈V D2
v

)2

∑
v∈V D3

v − 1
|E ′|
(∑

v∈V D2
v

)2 . (3.5)

By assumption,
∑

v∈V D3
v ≥ (maxv∈[n ] Dv )3 ≥ c3n3/γ , whereas 1

|E ′| (
∑

v∈V D2
v )2

≤ (C2/c)n2(2/γ∨1)−1 = (C2/c)n[(4/γ−1)∨1]. Since γ ∈ (1, 3) we have (4/γ − 1) ∨
1 < 3/γ, so that

∑
v∈V D3

v

1
|E ′|
(∑

v∈V D2
v

)2 → ∞.

Hence, ρ−(Gn ) → 0 as n → ∞. This proves the claim. �

In the literature, many examples are reported of real-world networks where the
degree distribution closely follows a power law with γ in (1, 3), see e.g., [Albert
and Barabási 02, Table I] or [Newman 03b, Table I]. Let D be such a power-law
random variable, and denote μp = E [Dp ] for p ∈ (0, γ). In that case, one can
expect that

|E ′| =
∑
v∈V

Dv ∼ μ1n,

while maxv∈V Dv ∼ n1/γ , and

1
n

∑
v∈V

Dp
v ∼

{
μp when γ > p,

Cpn
p/γ−1 when γ < p.

(3.6)
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Of course, the convergence in (3.6) depends sensitively on the occurrence of large
degrees. However, intuitively it can be explained as follows. When

1
n

∑
v∈V

1{Dv ≥k} = C ′k−γ (1 + o(1))

for all k for which k−γ � 1/n so that k � n1/γ , then

1
n

∑
v∈V

Dp
v =

∑
k≥1

(kp − (k − 1)p)
1
n

∑
v∈V

1{Dv ≥k} ≈ C ′′
n1 / γ∑
k=1

kp−1−γ = Cpn
p/γ−1 ,

where C ′′ and Cp are appropriately chosen constants. In particular, the con-
ditions of Theorem 3.1 hold and ρ−(Gn ) → 0 when γ < 3. Thus, the asymp-
totic degree-degree correlation of the graph sequence (Gn )n≥1 is nonnega-
tive. As a result, when the power-law exponent satisfies γ < 3 there exist no
scale-free graph sequences that will be identified as disassortative by Pear-
son’s coefficient. We next state a general theorem that allows us to identify
the limit of Spearman’s rho and Pearson’s coefficient for many random graph
models.

3.3. Convergence Conditions for Degree-Degree Dependency Measures

Let (Gn )n≥1 be again a sequence of graphs of size n, where Gn = (Vn ,En ),
|Vn | = n. We write E n for the conditional expectation given the graph Gn (which
in itself is random, so that we are not taking the expectation w.r.t. Gn ). Consider
a random vector (X,Y ) = (De,De), where e is chosen uniformly at random from
E ′. Recall that for a discrete random variable X, FX denotes its cumulative
distribution function, and F ∗

X denotes the cumulative distribution function of
X∗ = X + U , where U is an independent uniform random variable on (0, 1).
Then F ∗

X (X∗) has a uniform distribution on (0, 1), see (2.8). Our main result to
identify the limits of Spearman’s rho as given by (3.2) and Pearson’s coefficient
is the following theorem:

Theorem 3.2. (Convergence criteria for degree-degree dependency measures). Let (Gn )n≥1 be a
sequence of random graphs of size n, where Gn = (Vn ,En ), |Vn | = n. Let (Xn, Yn )
be the degrees on both sides of a uniform directed edge e ∈ E′

n . Suppose that for
every bounded continuous h : R 2 → R ,

E n [h(Xn, Yn )] P−→ E [h(X,Y )], (3.7)
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where the r.h.s. is nonrandom. Then
(a)

ρrank(Gn ) P−→ 12E (F ∗
X (X∗)F ∗

Y (Y ∗)) − 3 = ρrank , (3.8)

where X∗ = X + U, Y ∗ = Y + U ′U and U ′ are independent random variables on
(0,1), also independent of X and Y , and FX ∗(·) is the cumulative distribution
function of X∗;
(b) when we further suppose that E n [X2

n ] P−→ E [X2 ] < ∞, and Var(X) > 0, then
also

ρ(Gn ) P−→ ρ =
Cov(X,Y )

Var(X)
. (3.9)

We remark that when Gn is a random graph, then ρrank(Gn ) and ρ(Gn ) are
random variables. Equation (3.7) implies that the distribution of the degrees on
either side of an edge converges in probability to a deterministic limit, which
can be interpreted as the statement that the degree distribution converges to
a deterministic limit. The limits of ρrank(Gn ) and ρ(Gn ) depend only on the
limiting degree distribution, where ρrank(Gn ) always converges, while ρ(Gn ) can
be proved to converge only when its limit is well defined. We further note that
(3.7) is equivalent to showing that

#{e = (u, v) ∈ E′
n : (Du,Dv ) = (k, l)}/|E ′

n | P−→ P (X = k, Y = l). (3.10)

Condition (3.10) will be simpler to verify in practice. We emphasize that we
study undirected graphs but we work with directed edges e = (u, v), which
we vary over the whole set of edges, in such a way that (u, v) and (v, u)
contribute as different edges. In particular, the marginal distributions of
Xn and Yn , and consequently of X and Y , are the same. We next prove
Theorem 3.2:

Proof. We start with part (a). The sequence (Re/|E ′
n |, Re/|E ′

n |) is a bounded
sequence of two-dimensional random variables. Let Fn,X denote the empirical
cumulative distribution function of (De)e∈E ′

n
(which equals that of (De)e∈E ′

n
),

and let F ∗
n,X denote the empirical cumulative distribution functions of (De +

Ue)e∈E ′
n

(which equals that of (De + U ′
e)e∈E ′

n
), where (Ue)e∈E ′

n
, (U ′

e)e∈E ′
n

are
independent sequences of i.i.d uniform (0, 1) random variables. Then, we can
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rewrite, with �n = |E ′
n |,

(Re,Re) =
(
(��nF ∗

n,X (De + Ue)�, ��nF ∗
n,X (De + U ′

e)�
)
. (3.11)

In particular,

(Re/�n ,Re/�n ) =
(��nF ∗

n,X (De + Ue)�/�n , ��nF ∗
n,X (De + U ′

e)�/�n

)
. (3.12)

Thus,

(Re/�n ,Re/�n ) =
(
F ∗

n,X (De + Ue), F ∗
n,X (De + U ′

e)
)

+ O(1/�n ). (3.13)

By (3.7), the fact that Xn
d−→ X and the fact that F ∗

X is continuous, F ∗
n,X (x) P−→

F ∗
X (x) for every x ≥ 0. Moreover, we claim that this convergence holds uniformly

in x, i.e., supx∈R |F ∗
n,X (x) − F ∗

X (x)| P−→ 0. To see this, note that (3.7) implies that
the distribution functions of Xn and Yn converge to those of X and Y. Since all
these random variables take on only integer values, this convergence is uniform,
i.e., supk≥0 |Fn,X (k) − FX (k)| P−→ 0. We obtain F ∗

n,X by linearly interpolating
between Fn,X (k − 1) and Fn,X (k) for every k, so also F ∗

n,X converges uniformly,
as we claimed.
By this uniform convergence, for every bounded continuous function g : [0, 1]2 →
R ,

E n [g(Re/�n ,Re/�n )] = E n [g(F ∗
n,X (De + Ue), F ∗

n,X (De + U ′
e))] (3.14)

= E n [g(F ∗
X (De + Ue), F ∗

X (De + U ′
e))] + oP (1)

= E n [g(F ∗
X (Xn + U), F ∗

X (Yn + U ′))] + oP (1)
P−→ E [g(F ∗

X (X + U), F ∗
X (Y + U ′))]=E [g(F ∗

X (X∗), F ∗
X (Y ∗))],

again by (3.7) and the fact that (x, y) 	→ E [g(F ∗
X (x + U), F ∗

X (y + U ′))] is contin-
uous and bounded. Applying this to g(x, y) = xy, g(x, y) = x2 and g(x, y) = y2

yields the required convergence. Moreover, since F ∗
X (X∗) and F ∗

X (Y ∗) are uni-
form random variables, Var(F ∗

X (X∗)) = Var(F ∗
X (Y ∗)) = 1/12. This completes the

proof of convergence in (a). The equality in (a) is just [Mesfioui and Tajar 05,
Proposition 3.1], see (2.9).

For part (b), we note that

ρ(Gn ) =
Covn (Xn, Yn )

Varn (Xn )
. (3.15)

Since E n [X2
n ] P−→ E [X2 ] < ∞, also E n [Xn ] P−→ E [X] < ∞, so that

Varn (Xn ) P−→ Var(X). Since these limits are positive, by Slutzky’s
theorem,

ρ(Gn ) =
Covn (Xn, Yn )

Var(X)
(1 + oP (1)). (3.16)
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Furthermore, the random variables (XnYn )n≥1 converge in distribution, and are
uniformly integrable (since both (X2

n )n≥1 and (Y 2
n )n≥1 are, which again follows

from the fact that E n [X2
n ] P−→ E [X2 ] < ∞ and the fact that Xn and Yn have the

same marginals). Therefore, also E n [XnYn ] P−→ E [XY ], so that the convergence
follows. �

4. Random Graph Examples

In this section we consider four random graph models to highlight our result:
the configuration model, the configuration model with intermediate vertices, the
preferential attachment model, and a model of complete bipartite random graphs.
In Section 5, we present the numerical results for these models.

4.1. The Configuration Model

The configuration model (CM) was invented by Bollobás in [Bollobás 80] and
inspired by [Bender and Canfield 78]. Its connectivity structure was first studied
by Molloy and Reed [Molloy and Reed 95, 98]. It was popularized by Newman,
Srogatz and Watts [Newman et al. 01], who realized that it is a useful and simple
model for real-world networks.

Given a degree sequence, namely a sequence of n positive integers d =
(d1 , d2 , . . . , dn ) with �n =

∑
i∈[n ] di assumed to be even, the configuration model

(CM) on n vertices and degree sequence d is constructed as follows. Start with
n vertices labeled 1, 2, . . . , n, and dv halfedges adjacent to vertex v. The graph
is constructed by randomly pairing each halfedge to some other halfedge to form
an edge. Number the halfedges from 1 to �n in some arbitrary order. Then, at
each step, two halfedges that are not already paired are chosen uniformly at
random among all the unpaired halfedges and are paired to form a single edge
in the graph. These halfedges are removed from the list of unpaired halfedges.
We continue with this procedure of choosing and pairing two unpaired halfedges
until all the halfedges are paired. In the resulting graph Gn = (Vn ,En ) we have
|Vn | = n, �n = 2|En |. Although self-loops and double edges may occur, these be-
come rare as n → ∞ (see e.g. [Bollobás 01] or [Janson 09] for more precise results
in this direction). In the analysis, we keep the self-loops and multiple edges, so
that �n = |E ′

n |. In the numerical simulation we also consider the case where the
self-loops are removed, and we collapse multiple edges to a single edge. As we
will see in the simulations, these two cases are qualitatively similar.

We investigate the CM where the degrees are i.i.d. random variables, and note
that the probability that two vertices u and v are directly connected is close to
dudv/�n . Because this is of product form in u and v, the degrees at either end of an
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edge are close to being independent, and in fact are asymptotically independent.
Therefore, one expects the assortativity coefficient of the configuration model to
converge to 0 in probability, irrespective of the degree distribution.

We now make this argument precise. We make the following assumptions on
our degree sequence (dv )v∈Vn

:

Condition 4.1. (Degree regularity).
(a) There exists a probability distribution (pk )k≥0 such that nk/n → pk for every
k ≥ 1, where nk = #{v : dv = k} denotes the number of vertices of degree k.
(b) E [D(n) ] → E [D], where P (D(n) = k) = nk/n and P (D = k) = pk .

See [van der Hofstad 13, Chapter 7] for an extensive discussion of the CM
under Condition 4.1.

Theorem 4.2. (Convergence of the degree-degree dependency measures for CM). Let (Gn )n≥1 be
a sequence of configuration models of size n, for which the degree sequence
(dv )v∈Vn

satisfies Condition 4.1. Then

ρrank(Gn ) P−→ 0,

and

ρ(Gn ) P−→ 0.

Proof. We apply Theorem 3.2, and we start by investigating (3.10). We note that
a uniform edge can be constructed by taking two halfedges uniformly at random.
Indeed, we can first draw the first half-edge uniformly at random, and this will
be paired to another half-edge uniformly at random by construction of the CM.
We perform a second moment argument on Nk,l = #{e = (u, v) ∈ E ′

n : (du , dv ) =
(k, l)}, and will prove that

Nk,l/�n
P−→ kpk

E [D]
lpl

E [D]
.

For this, it suffices to prove that

E [Nk,l ]/�n → kpk

E [D]
lpl

E [D]
, E [N 2

k,l ]/�2
n →

( kpk

E [D]
lpl

E [D]

)2
,

since, then, Var(Nk,l/�n ) = o(1).
We note that

E [Nk,l ] =
klnknl

�n − 1
,
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where �n =
∑

v∈Vn
dv = 2|En | and nk = #{v : dv = k} is the number of vertices

with degree k. Therefore, also using that �n = nE [D(n) ], Condition 4.1 implies
that

E [Nk,l ]/�n → kpk

E [D]
lpl

E [D]
.

Further,

E [N 2
k,l ]/�2

n =
1
�2
n

∑
(u1 ,v1 ),(u2 ,v2 )

P (du1 = k, dv1 = l, du2 = k, dv2 = l).

There are four different cases, depending on a = #{u1 , u2 , v1 , v2}. When a = 4,
the contribution is

k2nk (nk − 1)l2nl(nl − 1)
�2
n (�n − 1)(�n − 3)

=
(knk lnl)2

�4
n

(1 + O(1/n)) →
(

kpk

E [D]
lpl

E [D]

)2

.

Therefore, we are shown that the contributions due to a ≤ 3 vanish.
When a = 3, either one of the edges (u1 , v1) and (u2 , v2) is a self-loop, while

the other joins two other vertices (which only contributes when k = l), or both
edges start in the same vertex v, so that this contribution is, at most,

k2nk (nk − 1)l2nl

�2
n (�n − 1)(�n − 3)

= O(1/n) = o(1).

When a = 2, similar computations show that the contribution is, at most,
O(1/n2). When a = 1, the edges (u1 , v1) and (u2 , v2) are self-loops from the
same vertex v, so this contributes only when k = l, and then, at most,

k(k − 1)(k − 2)(k − 3)nk

�2
n (�n − 1)(�n − 3)

= O(1/n3) = o(1).

We conclude that (3.10) holds with

P (X = k, Y = l) =
kpk

E [D]
lpl

E [D]
.

In particular, X and Y are independent, so that ρrank = 0. This proves the first
part of Theorem 4.2.

For the second part, we note that when the degrees (dv )v∈Vn
are fixed, the only

random part in ρ(Gn ) is

Mn =
1
�n

∑
e∈E ′

n

dede .

We perform a second moment method on this quantity. We use an edge e that is
a pair of two specified halfedges incident to two specific vertices. Thus, we can
denote e by e = (u, s), e = (v, t), where u, v are the vertices to which the specific
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halfedges are incident, while s ∈ {1, . . . , du} is the label of the halfedge incident
to vertex u, and t ∈ {1, . . . , dv} is the label of the halfedge incident to vertex
v, which are paired together. The probability of pairing them together equals
1/(�n − 1). Therefore,

E [Mn ] =
1
�n

∑
u,v ,s,t

dudv

�n − 1
=
∑

u,v∈Vn

d2
ud2

v /�n (�n − 1)=
∑

u,v∈Vn

d2
ud2

v /�2
n (1 + O(1/n)),

where we note that we count multiple edges as frequently as they occur. Further,
and in a similar way,

E [M 2
n ] = (1 + o(1))

∑
u,v ,u ′,v ′∈Vn

d2
ud2

u ′d2
v d2

v ′/�4
n ,

so that

Mn(∑
v∈Vn

d2
v /�n

)2
P−→ 1.

In particular,

ρ(Gn ) =
Mn −

(∑
u,v∈Vn

d2
u/�n

)2

∑
u∈Vn

d3
u/�n −

(∑
u∈Vn

d2
u/�n

)2
P−→ 0,

both when
∑

u∈Vn
d3

u/�n � (
∑

u∈Vn
d2

u/�n )2 , as well as when
∑

u∈Vn
d3

u/�n =
Θ(
∑

u∈Vn
d2

u/�n )2 . �

4.2. Configuration Model with Intermediate Vertices

We now give an example of a strongly disassortative graph to demonstrate that
ρ(Gn ) fails to capture obvious negative degree-degree dependencies when the
degree distribution is heavy tailed. In order to do that we adapt the configuration
model slightly by replacing every edge by two edges that meet at a middle
vertex. Denote this graph by Ḡn = (V̄n , Ēn ), while the configuration model is
Gn = (Vn ,En ). In this model, there are n + �n/2 vertices and |Ē ′

n | = 2�n directed
edges. For (u, v) ∈ Ē′

n , the degree of either vertex u or vertex v equals 2, and
the degree of the other vertex in the edge is equal to ds , where s is the unique
vertex in the original configuration model that corresponds to u or v.

Theorem 4.3. (Convergence of degree-degree dependency measures for CM with intermediate vertices). Let
(Ḡn )n≥1 be a sequence of configuration models with intermediate vertices, where
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the degree sequence (dv )v∈Vn
satisfies Condition 4.1. Then

ρrank(Ḡn ) P−→ 12E (FX (X)FX (Y )) − 3

= −3
4

+ 3
(

p̃1 +
1
2
p̃2

)(
1 − p̃1 − 1

2
p̃2

)
, (4.1)

where (X,Y ) = (2I + (1 − I)D̃1 , 2(1 − I) + ID̃2) with D̃1 , D̃2 i.i.d. random vari-
ables with P (D̃ = k) = kpk/E [D] := p̃k and I an independent Bernoulli(1/2)
random variable. Further,

ρ(Gn ) P−→
{

Cov(X,Y )
Var(X ) if E [D3

(n) ] → E [D3 ] < ∞;

0 if E [D3
(n) ] → ∞,

and, for E [D3
(n) ] → E [D3 ] < ∞, and writing μp = E [Dp ],

Cov(X,Y )
Var(X)

=
2μ2/μ1 − (1 + μ2/(2μ1))2

(2 + μ3/(2μ1)) − (1 + μ2/(2μ1))2 < 0.

The fact that the degree-degree correlation is negative is quite reasonable,
because in this model, vertices of high degree are connected to only vertices of
degree 2, so that there is a negative dependence between the degrees at either end
of an edge. When E [D3

(n) ] → ∞, however, ρ(Ḡn ) P−→ 0, which is inappropriate,
because the negative dependence of the degrees persists.

Proof. The first part follows directly from Theorem 3.2, since the collection of
values (d̄e , d̄e)e∈Ē ′

n
depends only on the degrees (dv )v∈Vn

and

#{e : d̄e = l, d̄e = k}/|Ē ′
n | = (knkδ2,l + lnlδ2,k − 2n21{k= l=2})/(2�n ),

which converges to P (X = k, Y = 2). Now, consider the possible values of X,
and notice that

P (X = 1) = p̃1/2, (4.2)
P (X = 2) = 1/2 + p̃2/2, (4.3)
P (X ≥ 3) = 1/2 − p̃1/2 − p̃2/2. (4.4)

Then we obtain

F ∗
X (x + U) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 p̃1U, if x = 1,
p̃1
2 +

(
p̃2
2 + 1

2

)
U, if x = 2,

1
2 +

∑x−1
k=1

p̃k

2 + p̃x

2 U, if x ≥ 3.

(4.5)
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Since either X or Y equals 2 and corresponds to the intermediate node, we
further condition on D̃:

E (F ∗
X (X∗)F ∗

X (Y ∗)) = E (F ∗
X (D̃ + U)F ∗

X (2 + U ′)) (4.6)
= E (F ∗

X (2 + U ′))

× [(E (F ∗
X (1 + U))P (D̃ = 1) + E (F ∗

X (2 + U))P (D̃ = 2)

+ E (D̃ + U |D̃ ≥ 3)P (D̃ ≥ 3)].

Now, using (4.5) and substituting (4.2–4.4) from the last expression, we readily
obtain

E (F ∗
X (X∗)F ∗

X (Y ∗)) =
(

p̃1

2
+

p̃2

4
+

1
4

)

×
[
1
4
(p̃1)2 +

( p̃1

2
+

p̃2

4
+

1
4

)
p̃2

+
( p̃1

4
+

p̃2

4
+

3
4

)
(1 − p̃1 − p̃2)

]

=
3
16

+
1
4

(
p̃1 +

1
2
p̃2

)(
1 − p̃1 − 1

2
p̃2

)
.

Substituting this in (3.8) and again using (2.9), we obtain (4.1).
For the second part, we compute

1
|Ē ′

n |
∑

(u,v )∈Ē ′
n

d̄u d̄v =
2
�n

∑
v∈Vn

d2
v ,

and for p ≥ 2,

1
|Ē ′

n |
∑
s∈V̄n

d̄p
s =

1
2�n

2p(�n/2) +
1

2�n

∑
v∈Vn

dp
v = 2p−2 +

1
2�n

∑
v∈Vn

dp
v ,

As a result, when E [D3
(n) ] → E [D3 ] < ∞, we have

ρ(Ḡn ) P−→ 2μ2/μ1 − (1 + μ2/(2μ1))2

(2 + μ3/(2μ1)) − (1 + μ2/(2μ1))2 < 0,

where μp = E [Dp ]. �

4.3. Preferential Attachment Model

We discuss the general preferential attachment model (PAM), as formulated, for
example, in [van der Hofstad 13, Chapter 8] or [Durrett 07, Chapter 4]. The
PAM is a dynamical random graph model, and thus models a growing network.
It is defined in terms of two parameters, m, which denotes the number of edges
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of newly added vertices, and δ > −m, which quantifies the tendency to attach
to vertices that already have a high degree. We start by defining the model for
m = 1.

We start with one vertex having one self-loop. Suppose we have the graph of
size t, which we denote by G( 1 )

t . Let i label the vertex that appeared at time
i = 1, 2, . . .. Then, G( 1 )

t+1 is constructed by adding one extra vertex that has one
edge, which forms a self-loop with probability (1 + δ)/((2 + δ)t + 1 + δ) and, con-
ditionally on G( 1 )

t , attaches to a vertex v ∈ [t] with probability (Di(t) + δ)/((2 +
δ)t + 1 + δ), where Di(t) is the random degree of vertex i in G( 1 )

t . As a result,
vertices with high degree have a higher probability to become attached, which
explains the name preferential attachment model.

The model with m ≥ 2 is obtained from the model with m = 1 as follows.
Collapse vertices m(s − 1) + 1, . . . , ms, and all of their edges, in (G( 1 )

t )t≥1 with
δ replaced by δ′ = δ/m to form vertex s in (G(m )

t )t≥1 with parameter δ. It is
well known (see e.g., [Bollobás et al. 01] where this was first derived for δ = 0
and [van der Hofstad 13, Theorem 8.3] as well as the references in [van der
Hofstad 13] for a more detailed literature overview) that the resulting graph has
an asymptotic degree sequence pk , i.e.,

Nk (t)/t = #{i ∈ [t] : Di(t) = k}/t
P−→ pk , (4.7)

where, for k ≥ m,

pk = (2 + δ/m)
Γ(k + δ)Γ(m + 2 + δ + δ/m)
Γ(m + δ)Γ(k + 3 + δ + δ/m)

. (4.8)

In particular, the PAM is scale free with power-law exponent γ = 2 + δ/m. See
[van der Hofstad 13, Section 8.2] for more details on the scale-free behavior of
the PAM. The next theorem investigates the behavior of Pearson’s correlation
coefficient as well as Spearman’s rho for the PAM:

Theorem 4.4. (Convergence of degree-degree dependency measures for PAM). Let (G(m )
t )t≥1 be the

PAM. Then

ρrank(G(m )
t ) P−→ ρrank , (4.9)

while

ρ(G(m )
t ) P−→

{
0 if δ ≤ m,

ρ if δ > m,
(4.10)
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where, abbreviating a = δ/m,

ρ =
(m − 1)(a − 1)[2(1 + m) + a(1 + 3m)]

(1 + m)[2(1 + m) + a(5 + 7m) + a2(1 + 7m)]
. (4.11)

The value of ρ in (4.11) was predicted in [Dorogovtsev et al. 10], and we
make this analysis mathematically rigorous. The remainder of the section is the
proof of Theorem 4.4. It involves intermediate technical results formulated as
Lemmas 4.5–4.9 below.

For the PAM, it will be convenient to direct the edges from young to old, so
that there are mt directed edges. Let Nk,l(t) denote the number of directed edges
e for which De(t) = k, De(t) = l. We will prove that there exists a probability
distribution (qk,l)k,l≥m such that

Nk,l(t)/(mt) P−→ qk,l . (4.12)

Since a uniform directed edge oriented from young to old can be obtained by
taking a uniform vertex and then a uniform edge coming out of this vertex, this
proves (3.10) with

pkl = P (X = k, Y = l) = 1
2 (qk,l + ql,k ). (4.13)

In particular, by Theorem 3.2(a), this proves (4.9) in Theorem 4.4. We follow the
proof of [van der Hofstad 13, Theorem 8.2], which, in turn, is strongly inspired
by the proof in [Bollobás et al. 01].

Proofs for convergence of the degree sequence typically consist of two key steps.
The first is a martingale concentration argument in Lemma 4.5.

Lemma 4.5. (Convergence of degree-degree counts). For every k, l, there exists a C > 0 such
that,

P
(

max
k,l

|Nkl(t) − E [Nkl(t)]| ≥ C
√

t log t
)

= o(1). (4.14)

Proof. The proof for the degree distribution in [van der Hofstad 13] applies almost
verbatim (see, in particular, [van der Hofstad 13, Proposition 8.4] and its proof).
Indeed, the proof relies on a martingale argument. Define the Doob-martingale,
for n = 0, . . . , t,

Mn = E [Nkl(t) | G(m )
n ].

The crucial observation is that (Mn )t
n=0 is a martingale with Mt = Nkl(t) and

M0 = E [Nkl(t)] that satisfies

|Mn − Mn−1 | ≤ 4m. (4.15)
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We prove (4.15) below. The Azuma-Hoeffding inequality [Azuma 67, Hoeffding
63] then proves (4.14) for any C > 4[4m]2 . Indeed,

P
(
|Nkl(t) − E [Nkl(t)]| ≥ A

)
= P

(
|Mt − M0 | ≥ A

)
≤ e−A 2 /(2t[4m ]2 ) .

Taking A = C
√

t log t with C2 > 4[4m]2 proves that

P
(
|Nkl(t) − E [Nkl(t)]| ≥ C

√
t log t

)
= o(1/t2),

so that even

P
(

max
k,l

|Nkl(t) − E [Nkl(t)]| ≥ C
√

t log t
)

≤ (mt)2 max
k,l

P
(

max
k,l

|Nkl(t) − E [Nkl(t)]| ≥ C
√

t log t
)

= o(1).

This completes the proof of Lemma 4.5, assuming (4.15).
We complete the proof by deriving (4.15). For this, it will be convenient to

introduce some further notation. Let e ∈ [mt] label the edges. Let ve = �e/m�
denote the vertex from which the eth edge emanates, and Ve (which is a random
variable) represent the vertex to which the eth edge points. Then,

Nk,l(t) =
∑

e∈[mt]

1{Dv e (t)=k,DV e (t)= l}.

As a result,

Mn − Mn−1 =
∑

e∈[mt]

[P (Dve
(t) = k,DVe

(t) = l | Gn )

−P (Dve
(t) = k,DVe

(t) = l | Gn−1)],

where we abbreviate Gn = G(m )
n . We let (G′

l)l≥0 denote the PAM with G′
n−1 =

Gn−1 , while the evolution of (G′
l)l≥0 after time n − 1 is the same in distribution

as that of (Gl)l≥0 , but conditionally independent of it given Gn−1 = G′
n−1 . Let

D′
i(t) denote the degree of vertex i in G′

t . Then,

P (Dve
(t) = k,DVe

(t) = l | Gn−1) = P (D′
ve

(t) = k,D′
Ve

(t) = l | Gn−1)
= P (D′

ve
(t)= k,D′

Ve
(t)= l | Gn−1 , Gn\Gn−1),

where Gn \ Gn−1 is shorthand for the edges of Gn that are not in Gn−1 . The last
step is due to the conditional independence of the evolution after time n − 1 in
(G′

t)t≥0 . Thus,

P (Dve
(t) = k,DVe

(t) = l | Gn−1) = P (D′
ve

(t) = k,D′
Ve

(t) = l | Gn ).
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We conclude that

Mn − Mn−1 =
∑

e∈[mt]

[P (Dve
(t) = k,DVe

(t) = l | Gn )

−P (D′
ve

(t) = k,D′
Ve

(t) = l | Gn )].

When Ve > n, clearly

P (Dve
(t) = k,DVe

(t) = l | Gn ) = P (D′
ve

(t) = k,D′
Ve

(t) = l | Gn ),

as the degrees of vertices i with i > n are independent of Gn . Thus, we can restrict
to Ve ≤ n. Further, when ve > n, then Dve

(t) is independent of Gn , so that

P (Dve
(t) = k,DVe

(t) = l | Gn ) − P (D′
ve

(t) = k,D′
Ve

(t) = l | Gn )

= P (Dve
(t) = k)

[
P (DVe

(t) = l | Gn ) − P (D′
Ve

(t) = l | Gn )
]
.

Note that DVe
(n − 1) = D′

Ve
(n − 1) a.s., P (DVe

(t) = l | Gn,DVe
(n) = j) =

P (DVe
(t) = l | DVe

(n) = j), and

P (D′
Ve

(t) = l | Gn,D′
Ve

(n) = j) = P (D′
Ve

(t) = l | D′
Ve

(n) = j)
= P (DVe

(t) = l | DVe
(n) = j).

Thus, using that

P (DVe
(t) = l | Gn ) = E [P (D′

Ve
(t) = l | DVe

(n)) | Gn ],
P (D′

Ve
(t) = l | Gn ) = E [P (D′

Ve
(t) = l | D′

Ve
(n)) | Gn ],

we obtain at

|P (D′
Ve

(t) = l | DVe
(n)) − P (D′

Ve
(t) = l | D′

Ve
(n))| ≤ 1{DV e (n) 
=D ′

V e
(n)}.

Taking expectations yields

|P (Dve
(t) = k,DVe

(t) = l | Gn ) − P (D′
ve

(t) = k,D′
Ve

(t) = l | Gn )|
≤ P (DVe

(n) 
= D′
Ve

(n) | Gn ).

In a similar way, we see that for ve ≤ n,

|P (Dve
(t) = k,DVe

(t) = l | Gn ) − P (D′
ve

(t) = k,D′
Ve

(t) = l | Gn )|
≤ P (DVe

(n) 
= D′
Ve

(n) | Gn ) + P (Dve
(n) 
= D′

ve
(n) | Gn ).

We conclude that

|Mn − Mn−1 | ≤
∑

e∈[mt]

[
P (DVe

(n) 
= D′
Ve

(n) | Gn ) + P (Dve
(n) 
= D′

ve
(n) | Gn )

]
≤ 4m.

�
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We continue with the proof of (4.12). The second key step of the proof of
(4.12) is to prove that, for each k, l,

lim
t→∞ E [Nkl(t)]/(mt) = qk,l . (4.16)

We sum over the vertex s that has degree l at time t, and condition on the
degree r ≥ m of the vertex to which the edge of vertex s is attached. This yields

E [Nkl(t)] = m

t∑
s=1

∑
r≥m

(r + δ)
(2m + δ)s

E [Nr (s)]

× [P
(
Br+1[s + 1, t] = k,Bm [s + 1, t] = l

)
+ O(1/s)], (4.17)

where Bm [s + 1, t] is m plus the number of edges attached to vertex s between
time s + 1 and t, while Br+1[s + 1, t] is r plus the number of further edges at-
tached to the vertex of degree r to which the edge of vertex s is attached. The
O(1/s) term is due to contributions where at least two edges of vertex s are at-
tached to the same vertex of degree r, and also due to the fact that the probability
of attaching the jth edge of vertex s to a vertex of degree r at time s is actually
equal to (r+δ)

(2m+δ)s+(j−1)(2+δ/m )+1+δ/m , which is (r+δ)
(2m+δ)s (1 + O(1/s)). Further,

P
(
Br+1[s + 1, t] = k,Bm [s + 1, t] = l

)
= P (Br+1[s + 1, t] = k)P (Bm [s + 1, t] = l) + O(1/t),

since the dependence between the two probabilities is entirely due to the fact
that edges that contribute to Br+1[s + 1, t] cannot contribute to Bm [s + 1, t].
Indeed, (Br+1[s + 1, t], Bm [s + 1, t]) is equal in distribution to the number of
balls in two urns at time m(t − s), where we start with r + 1 and m balls at
time 0, and in each draw, we draw a ball in each of the urns with probability
equal to the number of balls plus δ and then replace it with two balls. Knowing
how many balls are put into the first urn gives us information only about how
many balls cannot be put into the second urn, so the balls in the different urns
are close to independent. We study these probabilities now:

Lemma 4.6. (Growth of degrees in PAM). For all k ≥ r ≥ m and a ∈ (0, 1),

lim
s→∞ P (Br [as, s] = k) = Pk (a; r),

where, for each r ≥ m and a ∈ (0, 1), (Pk (a; r))k≥r is a probability measure.

Proof. We note that (Br [s, ts])t≥1
d−→ (Zt)t≥1 , as s → ∞, where (Zt)t≥0 is a

pure birth process, which increases by 1 at rate m(Zt + δ)/((2m + δ)t) at time
t. Indeed, when Br [s, ts] = k, then each of the m edges of vertex st + 1 has
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probability (k + δ)/[(2m + δ)(st)] + O(1/s2) of being attached to the vertex
that has degree k at time ts, and thus of increasing Br [s, ts] to k + 1. Thus,
within a short time interval [t, t + dt] and conditionally on Br [s, ts] = k, the
probability that Br [s, (t + dt)s] = k + 1 is equal to

sdt
[
m(k + δ)/[(2m + δ)(st)] + O(1/s2) + o(1)

]
→ dt

m(k + δ)
(2m + δ)t

+ o(dt),

as s → ∞. This is the birth rate of the pure birth process (Zt)t≥1 .
We next study the limiting birth process, for which is it useful to make a time

change. With bt = Ze( 2 + δ / m ) t , (bt)t≥0 is a birth process that grows at rate bt + δ

at time t. Define

fr,k (t) = P (bt = k | b0 = r).

Then,

∂

∂t
fr,k (t) = −(k + δ)fr,k (t) + (k − 1 + δ)fr,k−1(t).

This set of differential equations is solved by fr,r (t) = e−(r+δ)t and, for k ≥ r + 1,

fr,k (t) = (k − 1 + δ)e−(k+δ)t
∫ t

0
e(k+δ)sfr,k−1(s)ds.

This can be solved, for k ≥ r + 1, by

fr,k (t) = P (bt = i | b0 = r) =
Γ(k + δ)
Γ(r + δ)

e−(k+δ)t
k−r∑
j=0

αj,k ejt ,

where α0,k = −∑k−1
j=0 αj,k−1/(j + 1), while, for j ≥ 1,

αj,k = αj−1,k−1/j.

As a result, for all a ∈ (0, 1),

lim
t→∞ P (Br [at, t] = k) = P (Z1/a = k | Z1 = r) = fr,k ((2 + δ/m)−1 log(1/a)).

Note that Pr (a; r) is the probability that the birth process has no births. We
thus compute that Pr (a; r) = fr,r ((2 + δ/m)−1 log(1/a)) = a(r+δ)/(2+δ/m ) for
k = r, while

Pk (a; r) = fr,k ((2 + δ/m)−1 log(1/a))

=
Γ(k + δ)
Γ(r + δ)

a(k+δ)/(2+δ/m )
k−r∑
j=0

αj,ka−j/(2+δ/m ) .

�
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We continue from (4.17), and rewrite it as

E [Nkl(t)]/(mt) =
∑
r≥m

E

[
(r + δ)

(2m + δ)Ut
E [Nr (Ut)]P (Br+1[Ut, t] = k | U)

×P (Bm [Ut, t] = l | U)
]

+ O(log t/t), (4.18)

where U has a uniform distribution, we interpret Ut = �Ut�, and the outer
expectation is over U only. Using that E [Nr (s)]/s = pr + O(1/s) (see [van der
Hofstad 13, Proposition 8.4]), we further arrive at

E [Nkl(t)]/(mt) =
∑
r≥m

r + δ

2m + δ
pr E [P (Br+1[Ut, t] = k | U)P (Bm [Ut, t] = l | U)]

+ o(1). (4.19)

By Lemma 4.6, this converges to

E [Nkl(t)]/(mt) → qk,l ≡
∑
r≥m

r + δ

2m + δ
pr E [Pk (U ; r)Pl(U ;m)]. (4.20)

This proves (4.16), and thus, by Theorem 3.2(a), proves the convergence of the
rank correlation in (4.9) in Theorem 4.4.

For the convergence of the correlation coefficient in (4.10) in Theorem 4.4,
we aim to use Theorem 3.2(b) and thus start by investigating the convergence
of moments of Xn . By (3.3), and letting E n denote the conditional expectation
given Gn ,

E n [X2
n ] =

1
n

∑
i∈[n ]

Di(n)3 .

Thus, we are led to studying sums of powers of degrees. To analyze the limit of
sums of powers of degrees, we rely on the following lemma:

Lemma 4.7. (Sum of powers of degrees in PAM). For all p < γ = 2 + δ/m,

1
n

∑
i∈[n ]

Di(n)p P−→ μp =
∑
k≥m

kppk < ∞.

Proof. We note that
∑

i∈[n ] Di(n)p =
∑

k≥m kpNk (n). Under the conditions
stated, for every kn → ∞,∑

k≥m

kpNk (n) =
∑

m≤k≤kn

kpNk (n) + oP (n).
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This follows since, for any ε > 0, k > kn implies that kε/kε
n > 1, so that∑

k>kn

kpNk (n) ≤ k−ε
n

∑
k≥m

kp+εNk (n) = k−ε
n

1
n

∑
i∈[n ]

Di(n)p+ε .

By the analysis in [van der Hofstad 13, Sections 8.1 and 8.6], when
p + ε < γ + 1 = 3 + δ/m,

lim sup
n→∞

E
[ 1
n

∑
i∈[n ]

Di(n)p+ε
]

< ∞.

Therefore, by the Markov inequality,
∑

k>kn
kpNk (n) = oP (n).

Now, since maxk |Nk (n) − pk | ≤
√

Cn log n whp by [van der Hofstad 13,
Proposition 8.4],∑

m≤k≤kn

kpNk (n) = t
∑

m≤k≤kn

kppk + OP (kp+1
n

√
n log n).

This proves the claim. �

It follows from Lemma 4.7 that, for 3 < γ = 2 + δ/m,

E n [X2
n ] =

1
n

∑
i∈[n ]

Di(n)3 = B(1 + oP (1)),

where B is a constant. As a result,

ρ(Gn ) a.s.−→ ρ = Cov(X,Y )/Var(X) =

∑
k,l klqk,l − E [X]2

E [X2 ] − E [X]2
. (4.21)

This proves (4.10) in Theorem 4.4 when δ > m. For γ < 3, instead,
D1(n)/n1/γ a.s.−→ ξ, for some strictly positive random variable ξ (see e.g., [van der
Hofstad 13, Sections 8.1 and 8.6]). Therefore, E n [X2

n ] ≥ ξ3n3/γ−1(1 + o(1)).
Further, the majority of edges of high-degree vertices is young, so that

E n [XnYn ] = oP (n3/γ−1). (4.22)

Indeed, fix Tn such that Tn → ∞ and Tn = o(n). There are, at most, mTn edges
between vertices with index, at most, Tn , and, since the maximal degree is
OP (n1/γ ), these contribute, at most, OP (n2/γ−1Tn ). For the other edges, one of
the vertices involved was born after time Tn . Since maxi≥Tn

Di(n) = oP (n1/γ ),
the contribution of these edges is, at most,

oP (n1/γ )E n [Xn + Yn ].

In turn, E n [Xn + Yn ] = OP (n(2/γ−1)∧1), which completes the proof of (4.22).
This implies that ρ(Gn ) P−→ 0, which proves (4.10) in Theorem 4.4 when δ < m.
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For δ = m, so that γ = 3,
∑

i∈[n ] Di(n)3 = ΘP (n log n)(1 + oP (1)). As a result,

also in this case ρ(Gn ) a.s.−→ 0 for δ ≤ m. �

We continue with the proof of (4.11) in Theorem 4.4. To compute expectations
involving X, we often rely on the following lemma:

Lemma 4.8. (Degree on one side of uniform edge). For every function f : N → R ,

E [f(X)] =
∑
k≥m

f(k)
kpk

2m
.

Proof. Let f be bounded, and let Xn be the degree at the bottom of a uniform
edge. Then,

E [f(Xn ) | G(m )
n ] =

1
|E ′

n |
∑

e∈E ′
n

f(De(n)) =
1

2mn

∑
v∈[n ]

f(Dv (n))Dv (n)

=
1

2m

∑
k≥m

f(k)kNk (n)/n.

Taking the limit of n → ∞, and using that Nk (n)/n
P−→ pk , as well as Xn

d−→ X,
proves the claim. �

Lemma 4.8 allows us to identify the r.h.s. of (4.21) as

ρ = Cov(X,Y )/Var(X) =
(2m)2 ∑

k,l klqk,l − λ2
2

2mλ3 − λ2
2

,

where λa =
∑

k≥m kapk . To identify the limit, we follow [Dorogovtsev et al. 10].
Recall the definition of pkl in (4.13).

Lemma 4.9. (Asymptotic degree-degree distribution for PAM). For all k, l ≥ m,

pkl = P (X = k, Y = l) (4.23)

= (2 + δ/m)
Γ(m + 2 + δ + δ/m)

Γ(m + δ)2

Γ(l + δ)Γ(k + δ)
Γ(k + 2 + δ)Γ(l + k + 2 + 2δ + δ/m)

×
[ k∑

j=m+1

(
k + l − j − m

l − m

)(
j + k + 2 + 2δ + δ/m

k + 1 + δ

)

+
l∑

j=m+1

(
k + l − j − m

k − m

)(
j + l + 2 + 2δ + δ/m

l + 1 + δ

)]
.

Consequently, (4.11) follows.
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Proof. To compute P (X = k, Y = l), we let Mkl(t) denote the number of edges at
time t where one side has degree k and the other side degree l, so that

pkl = lim
t→∞ E [Mkl(t)]/(2mt).

We note that Mkl(t) satisfies the recursion relation

E [Mkl(t + 1)] − E [Mkl(t)]

= m
(k ∨ l) − 1 + δ

(2m + δ)t
E [Nk∨l−1(t)]1{k∧l=m}

+ m
k − 1 + δ

(2m + δ)t
E [Mk−1,l(t)] + m

l − 1 + δ

(2m + δ)t
E [Mk,l−1(t)]

− m
k + δ

(2m + δ)t
E [Mk,l(t)] − m

l + δ

(2m + δ)t
E [Mk,l(t)] + O(1/t2).

It is not clear that the left-hand side converges because we know only
that E [Mk,l(t)]/(2mt) → pkl , and we will show this now. Indeed, since
E [Mk,l(t)]/(2mt) → pkl and E [Nk (t)]/t → pk , we arrive at the claim that, for
all k, l with k ∨ l ≥ m + 1,

lim
t→∞ E [Mkl(t + 1)] − E [Mkl(t)]

= 2m2 (k ∨ l) − 1 + δ

2m + δ
pk−11{k∧l=m} + 2m2 k − 1 + δ

2m + δ
pk−1,l

+ 2m2 l − 1 + δ

2m + δ
pk,l−1 − 2m2 k + l + 2δ

2m + δ
pk,l .

Since limt→∞ E [Mkl(t)]/(2mt) = pkl , we must therefore have that
limt→∞ E [Mkl(t + 1)] − E [Mkl(t)] = 2mpkl , so that

pkl = m
(k ∨ l) − 1 + δ

2m + δ
pk∨l−11{k∧l=m} + m

k − 1 + δ

2m + δ
pk−1,l + m

l − 1 + δ

2m + δ
pk,l−1

−m
k + l + 2δ

2m + δ
pk,l ,

and

(k + l + 2 + 2δ + δ/m)pkl = ((k ∨ l) − 1 + δ)pk∨l−11{k∧l=m}
+ (k − 1 + δ)pk−1,l + (l − 1 + δ)pk,l−1 . (4.24)
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This is equivalent to [Dorogovtsev et al. 10, (12)]. This can be worked out to
yield

pkl=
k∑

j=m+1

(
k + l − j − m

k − j

)
Γ(k + δ)

Γ(j − 1 + δ)
Γ(l + δ)
Γ(m + δ)

Γ(j + k + 2 + 2δ + δ/m)
Γ(l + k + 3 + 2δ + δ/m)

pj−1

+
l∑

j=m+1

(
k + l − j − m

l − j

)
Γ(k + δ)

Γ(j − 1 + δ)
Γ(l + δ)
Γ(m + δ)

Γ(j + l + 2 + 2δ + δ/m)
Γ(l + k + 3 + 2δ + δ/m)

pj−1 .

Substituting (4.8), we arrive at (4.23).
The computation to go from (4.24) to (4.11) is performed in [Dorogovtsev et

al. 10, (12)], and applies verbatim. �

4.4. Asymptotically Random Pearson’s Coefficient: Collection of Complete Bipartite Graphs

In this section, we present an example where ρ(Gn ) in (3.4) converges to a
random variable when the number of vertices tends to infinity. For |Vn | = n,
under the assumptions of Theorem 3.1, we have

∑
(u,v )∈E ′

n

DuDv ≤ max
v∈Vn

dv

∑
(u,v )∈E ′

n

Du = max
v∈Vn

Dv

(∑
v∈Vn

D2
v

)
≤ C2n1/γ+(2/γ∨1) ,

(4.25)∑
(u,v )∈E ′

n

DuDv ≥ max
v∈Vn

Dv ≥ cn1/γ , (4.26)

∑
(u,v )∈E ′

n

DuDv ≥
∑
v∈Vn

D2
v ≥ cn2/γ∨1 . (4.27)

Further, from the proof of Theorem 3.1, we know that∑
v∈Vn

D3
v ≥ (max

v∈Vn

Dv )3 ≥ c3n3/γ , (4.28)

and

1
|E ′

n |

(∑
v∈Vn

D2
v

)2

≤ (C2/c)n(4/γ−1)∨1 , (4.29)

where we see that (4.29) is vanishing compared to (4.28). The convergence
of (3.4) to a random variable can take place only if the crossproducts on the
left-hand side of (4.25–4.27) are of the same order of magnitude as the left-hand
side of (4.28). As we see from the above, this is possible for γ ∈ (1, 3).

Below we present an example where ρ(Gn ) indeed converges to a random
variable. However, due to slow convergence, a substantially larger computational
capacity is needed in order to approximate the limiting distribution.
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Take ((Xi, Yi))n
i=1 to be an i.i.d. sample of integer random variables as

in (2.10), where α1 = α2 = β1 = b, β2 = ab for some b > 0 and a > 1. Then,
for i = 1, . . . , n, we create a complete bipartite graph of Xi and Yi vertices,
respectively. These n complete bipartite graphs are not connected to one
another. We denote such a collection of n bipartite graphs by Gn . The graph
Gn has |Vn | =

∑n
i=1(Xi + Yi) vertices and |E ′

n | = 2
∑n

i=1 XiYi directed edges.
Further, if Dv denotes the random degree of vertex v, then we obtain

∑
v∈Vn

Dp
v =

n∑
i=1

(Xp
i Yi + Y p

i Xi),
∑

(u,v )∈E ′
n

DuDv = 2
n∑

i=1

(XiYi)2 .

Assume that the ξj ’s in (2.10) satisfy (2.11) with γ ∈ (2, 4), so that
E [ξ2 ] < ∞, but E [ξ4 ] = ∞. As a result, |E ′

n |/n
P−→ 2E [XY ] < ∞ and

1
n

∑
v∈V D2

v
P−→ E [XY (X + Y )] < ∞ when γ ∈ (3, 4), while, for γ ∈ (2, 3),

n−3/γ
∑
v∈V

D2
v = n−3/γ

n∑
i=1

(X2
i Yi + Y 2

i Xi)
d−→ Z, (4.30)

for some random variable Z. (For γ = 3, this sum grows as a slowly varying
function in n, but this case is very similar and will thus be omitted). Further,

n−4/γ b−4
n∑

i=1

(X3
i Yi + Y 3

i Xi)
d−→ (a3 + a)Z1 + 2Z2 ,

n−4/γ b−4
n∑

i=1

(XiYi)2 d−→ a2Z1 + Z2 ,

where Z1 and Z2 are two independent stable distributions with parameter γ/4.
Therefore, using (3.4) and the fact that 4/γ > (6/γ − 1) ∧ 1, we arrive at

ρ(Gn ) d−→ 2a2Z1 + 2Z2

(a + a3)Z1 + 2Z2
, as n → ∞,

which is a proper random variable taking values in (2a/(1 + a2), 1).
For convergence of the rank correlation, we note that

P (Xn = k, Yn = l) → P (X = k, Y = l) =
kl

E [X1Y1 ]
P (X1 = k, Y1 = l),

where we recall that (X1 , Y1) is as in (2.10), whereas (X,Y ) are the degrees at
either side of a uniformly chosen edge. Thus, convergence of the rank correlation
follows from Theorem 3.2(a).
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5. Numerical Results

In this section, we present numerical examples that illustrate our results.

5.1. Numerical Results for Configuration Models and Preferential Attachment Model

We have generated random graphs of different sizes using the configuration model
in Section 4.1, the configuration model with intermediate vertices in Section 4.2,
and the preferential attachment model (PAM) in Section 4.3. For the undirected
preferential attachment model, we use the basic version with m = 1 and δ = 0,
which implies γ = 2. In both configuration models (without and with intermedi-
ate vertices) we generate the degree sequences by rounding up i.i.d. values of a
continuous random variable η with Pareto distribution: P (η > x) = 4x−2 , x > 2.
The exponent γ = 2 is chosen for a fair comparison to PAM, and all degrees are
at least three for the strongest disassortativity in the model with intermediate
vertices, see (4.1). In the case of the configuration graph in Section 4.1, we
consider two versions: the original model with self-loops and double edges
present, and the model where self-loops and double edges are removed. The rank
correlation coefficient ρrank(G) is computed as in (3.2). The results are presented
in Table 3.

The results for the configuration model with intermediate vertices confirm our
findings in Section 4.2: Pearson’s coefficient converges to zero, whereas Spear-
man’s rho quickly converges to −0.75, revealing the strong negative dependence.
For the PAM, Pearson’s coefficient converges to zero, as indicated in Theorem 3.1,
and Spearman’s rank correlation clearly indicates a negative dependence. This
can be understood by noting that the majority of edges of vertices with high
degrees, that are old vertices, come from vertices that are added late in the graph
growth process and thus have small degrees. However, by the growth mechanism
of the PAM, vertices with low degrees are more likely to be connected to vertices
having high degrees, which indeed suggests negative degree-degree dependencies.

We emphasize that, under given model assumptions, the graphs of different
sizes have been constructed by the same algorithm. Thus, their mixing patterns
are exactly the same. As we predicted, the Pearson correlation coefficient fails to
reflect the intrinsic properties of the model because its absolute value decreases
with the graph size, and converges to zero for all models. On the contrary,
Spearman’s rho consistently shows neutral mixing for the classical configuration
model, moderately disassortative mixing for the preferential attachment graph,
and strongly disassortative mixing for the configuration model with intermediate
vertices.
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n

Model Characteristic 102 103 104 105

E N (ρ(Gn )) −0.0070 −0.0018 −0.0011 0.0006
Configuration model σN (ρ(Gn )) 0.0735 0.0221 0.0077 0.0017
with self-loops and E N (ρrank(Gn )) 0.0056 −0.0098 −0.0036 0.0005
double edges σN (ρrank(Gn )) 0.0504 0.0150 0.0046 0.0019

E N (ρ(Gn )) −0.0713 −0.0226 −0.0150 −0.0032
Configuration model σN (ρ(Gn )) 0.0546 0.0188 0.0092 0.0029
without self-loops and E N (ρrank(Gn )) −0.0409 −0.0094 −0.0032 −0.0006
double edges σN (ρrank(Gn )) 0.0700 0.0201 0.0083 0.0021

E N (ρ(Ḡn )) −0.2804 −0.1346 −0.0572 −0.0291
Configuration model σN (ρ(Ḡn )) 0.0742 0.0517 0.0279 0.0147
with intermediate E N (ρrank(Ḡn )) −0.7523 −0.7498 −0.7498 −0.7500
vertices σN (ρrank(Ḡn )) 0.0081 0.0025 0.0008 0.0003

E N (ρ(Gn )) −0.2682 −0.1282 −0.0608 −0.0272
Preferential attachment σN (ρ(Gn )) 0.0575 0.0271 0.0132 0.0064

E N (ρrank(Gn )) −0.4347 −0.4263 −0.4288 −0.4289
σN (ρrank(Gn )) 0.0627 0.0272 0.0065 0.0020

Table 3. Estimated mean and standard deviation of ρ(Gn ) and ρrank (Gn ) ob-
tained from 20 realizations of Gn for random graph models in Sections 4.1–4.3.

5.2. Numerical Results for Collections of Bipartite Graphs

We next compute the degree-degree dependencies in the collection of bipartite
graphs discussed in Section 4.4. In Table 4 we present numerical results for
ρ(Gn ) and ρrank(Gn ). Here we choose b = 1/2, a = 2, ξ has a generalized Pareto
distribution P (ξ > x) = (1 + (x − 1)/2.8)−2.8 , x > 1, and the degrees X and Y

are obtained by rounding up the values in (2.10).
Note that in this model there is a genuine dependence between the correlation

measure and the graph size. Indeed, if n = 1 then the assortativity coefficient
equals −1 because nodes with larger degrees are connected to nodes with smaller
degrees. However, when the graph size grows, the positive correlations start
dominating because of the positive linear dependence between X and Y . We see
that, again, the rank correlation captures the relation faster and gives consistent
results with decreasing dispersion of values. Finally, Figure 2 shows the changes
in the empirical distribution of ρ(Gn ) as n grows. It is clear that a part of the
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n 102 103 104 105

E N (ρ(Gn )) 0.6554 0.7247 0.8042 0.8265
σN (ρ(Gn )) 0.1145 0.1406 0.0689 0.0654

E N (ρrank(Gn )) 0.7575 0.7950 0.8526 0.8615
σN (ρrank(Gn )) 0.0735 0.1377 0.0218 0.0074

Table 4. Estimated mean and standard deviation of ρ(Gn ) and ρrank (Gn ) for
the collection of n complete bipartite graphs. The number of realizations for each
graph size is 20.

probability mass is spread over the interval (0.8, 1). In the limit, ρ(Gn ) has
a nonzero density on this interval. The difference between the crossproducts
and the expectation squared in ρ(Gn ) is only of the order n1−2/γ , which is
about n0.29 in our example, thus, the convergence is too slow to be observed at
n = 100.000.

Figure 2. The empirical distribution function P (ρ(Gn ) ≤ x) for 100 observed
values of ρ(Gn ), where Gn is a collection of n complete bipartite graphs.
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5.3. Web Samples and Social Networks

For completeness, we present the numerical results for web samples and social
networks from [van der Hofstad and Litvak 13], see in Table 5. We used the com-
pressed graph data from the Laboratory of Web Algorithms (LAW) at the Uni-
versità degli studi di Milano [Boldi and Vigna 04, Boldi et al. 11] with the bvgraph
MATLAB package [Gleich et al. 10]. The stanford-cs database [Constantine and
Gleich 07] is a 2001 crawl that includes all pages in the cs.stanford.edu domain.
In datasets (iv), (vii), and (viii) we evaluate ρ(Gn ), ρrank(Gn ), and ρ−(Gn ) (see
(3.5)) over 1000 random edges, and present the average over 10 such evaluations
(in 10 samples of 1000 edges, the observed dispersion of the results was small).

We note that ρrank(Gn ) here is an approximation of (3.2) computed as
described in [van der Hofstad and Litvak 13]: we define the random variables
X and Y as the degrees on two ends of a random undirected edge in a graph
(that is, here (u, v) and (v, u) represent the same edge); for each edge, when the
observed degrees are a and b, we assign [X = a, Y = b] or [X = b, Y = a] with
probability 1/2; the ties are resolved randomly as in (3.2). The experiments on
random graphs show that the values obtained by this algorithm are very close
to those computed by (3.2).

The most remarkable result here is obtained on the two .uk crawls (iii)
and (iv). Here ρ(Gn ) is significantly smaller in magnitude on a larger crawl.
Intuitively, mixing patterns should not depend on the crawl size. This is indeed
confirmed by the value of Spearman’s rho, which consistently shows strong
negative correlations in both crawls. We could not observe a similar phenomenon
so sharply in (vi) and (vii), probably because a larger coauthorship network
incorporates articles from different areas of science, and the culture of scientific
collaborations can vary greatly from one research field to another.

We also notice that, as predicted by our results, the size in magnitude
values of ρ−(Gn ) result in profound difference in magnitude between ρ(Gn ) and
ρrank(Gn ). This is clearly seen in the data sets (ii), (iv), and (v). Again, (ii) and
(iv) are the largest among the analyzed web crawls.

The observed behavior of Pearson’s coefficient is explained by the results
proved in this study in that ρ(Gn ) is strongly influenced by the large dispersion
in the degree values, and particularly by the presence of hubs. The latter in-
creases with graph size because of the scale-free phenomenon. As a result, ρ(Gn )
becomes smaller in magnitude when n increases, which makes it impossible to
compare graphs of different sizes. In contrast, the ranks of the degrees are drawn
from a uniform distribution on [0, 1], scaled by the factor |E′|. Clearly, when
a correlation coefficient is computed, the scaling factor cancels, and therefore,
Spearman’s rho provides consistent results in the graphs of different sizes.
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6. Discussion

In this study, we have investigated dependency measures for power-law random
variables. We have argued that Pearson’s correlation coefficient, despite its
appealing feature that it is always in [−1, 1], is inappropriate to describe depen-
dencies between heavy-tailed random variables. Indeed, the two main problems
with the sample correlation coefficient are that (a) it can converge to a proper
random variable when the sample size tends to infinity, indicating that it fluctu-
ates tremendously as the sample size increases, and (b) it is always asymptotically
nonnegative when dealing with nonnegative random variables (even when these
are obviously negatively dependent). In the context of random graphs, the first
deficiency means that Pearson’s coefficient can have a nonvanishing variance
even when the size of the graph is huge, the second deficiency mistakenly sug-
gests that there do not exist asymptotically disassortative scale-free graphs. We
give proofs for the facts stated above, and illustrate the results using simulations.

Rank correlations are a special case of the broader concept of copulas
that are widely used in multivariate analysis, in particular in applications in
mathematical finance and risk management. There is a heated discussion in this
area about the adequacy and informativeness of such measures, see e.g. [Mikosch
06] and consequent reactions. There are several points of criticism. In particular,
Spearman’s rho uses rank transformation, which changes the observed values
of the degrees. Then, first of all, what exactly does Spearman’s rho tell us
about the dependence between the original values? Second of all, no substantial
justification exists for the rank transformation, besides its mathematical
convenience. We thus do not claim that Spearman’s rho is the solution to the
problem. Nevertheless, compared to the Pearson’s coefficient, Spearman’s rho
has a significant advantage, that it is free from the undesirable size-dependency,
and converges to a meaningful value in the infinite volume limit.

We note that Spearman’s rho has computational complexity O(n log(n))
because the values of the random variables must be ranked first. Pearson’s cor-
relation coefficient is easier to evaluate because it uses the values of the degrees
directly, and has computational complexity O(n). Efficient methods for comput-
ing Spearman’s rho in large graphs is an interesting topic for future research.

Raising the discussion to a higher level, random variables X and Y are
positively dependent when a large realization of X typically implies a large
realization of Y . A strong form of this notion is when P (X > x, Y > y) ≥
P (X > x)P (Y > y) for every x, y ∈ R , but for many purposes this notion is too
restrictive. The covariance for nonnegative random variables is obtained by inte-
grating the above inequality over x, y ≥ 0, so that it is true for “typical” values
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of x, y. In many cases, however, we are particularly interested in certain values
of x, y. Another class of methods for measuring rank correlations is based on the
angular measure, a notion originating in the theory of multivariate extremes, for
which the above inequality is investigated for large x and y, so that it describes
the tail dependence for a random vector (X,Y ), that is, the dependence between
extremely large values of X and Y , see e.g. [Resnick 07]. Such tail dependence
is characterized by probability-like measure, or, the angular measure, on [0, 1].
Informally, a concentration of the angular measure around the points 0 and 1 in-
dicates independence of large values, although concentration around some other
number a ∈ (0, 1) suggests that a certain fraction of large values of Y comes to-
gether with large values of X. In [Volkovich et al. 08, 09] a first attempt was made
to compute the angular measure between in-degree of a node and its importance
measured by the Google PageRank algorithm. Strikingly, completely different
dependence structures were discovered in Wikipedia (independence), preferential
attachment networks (complete dependence) and the Web (intermediate case).
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