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Cy-semigroups for hyperbolic partial differential equations
on a one-dimensional spatial domain

BIRGIT JACOB, KIRSTEN MORRIS AND HANS ZWART

Abstract. Hyperbolic partial differential equations on a one-dimensional spatial domain are studied. This
class of systems includes models of beams and waves as well as the transport equation and networks of non-
homogeneous transmission lines. The main result of this paper is a simple test for Cp-semigroup generation
in terms of the boundary conditions. The result is illustrated with several examples.

1. Introduction and main result

Consider the following class of partial differential equations

o) 0
a—f(;, 1= (P% + Po) (H@O)x@. 1), £ el0.1],120,

x(£,0) = x0(8), ey
where P is an invertible n x n Hermitian matrix, Py is an x n matrix and H(¢) is a pos-
itive n x n Hermitian matrix for a.e. ¢ € (0, 1) satisfying H, H~! € L®°(0, 1; C"*").
This class of Cauchy problems covers in particular the wave equation, the trans-
port equation and the Timoshenko beam equation, and also coupled beam and wave
equations. These Cauchy problems are also known as Hamiltonian partial differential

equations or port-Hamiltonian systems, see [3,6] and in particular the Ph.D thesis [7].
The boundary conditions are of the form

7o | (Hod,n) | _
WB [(Hx)((),t)] - Ov (2)
where WB is an n x 2n-matrix. Define

Ax = (PI% + Po) (x), x € D(A), 3)

on X, :=L"0,1;C"), 1 < p < oo, with the domain

D(A) = {x e W', 1:€" | Wy [ 1y | =0 @

Keywords: Cg-semigroups, Hyperbolic partial differential equations, Port-Hamiltonian differential
equations.
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Then, the partial differential equation (1) with the boundary conditions (2) can be
written as the abstract differential equation

X() = AHx(t), x(0) = xo.

If we equip X, with the energy norm (-, H-), then A’H generates a contraction
semigroup (or an unitary Cp-group) on (X3, (-, H-)) if and only if A is dissipative on
(X2, (-, ))(or A and —A are dissipative on (X», (-, -)), respectively) [1,3,4]. Matrix
conditions to guarantee generation of a contraction semigroup or of a unitary group
have been obtained [1,3,4]. The following theorem extends these results.

THEOREM 1.1. Let Wp := Wp [ 2 1] and £ :=[91],

1. The following statements are equivalent:
(a) AHwithdomain D(AH) := {x € X» | Hx € D(A)} = H~'D(A) generates
a contraction semigroup on (X2, (-, H-)),

(b) Re(Ax,x) <O0foreveryx € D(A);

(c) RePy<0andu*Piu— y*P1y <0 forevery [;] € ker Wg;

(d) RePy<0, WgXW} ZOandrankWB =n.

2. The following statements are equivalent:
(a) AHwithdomain D(AH) = {x € X» | Hx € D(A)} = H~'D(A) generates
a unitary Co-group on (Xy, (-, H-));

(b) Re(Ax,x) =0 forevery x € D(A);

(c) RePy=0andu*Piu— y*Pry =0 forevery [S‘] € ker Wpg;

(d) RePy=0, WpZWj = 0 and rank Wg = n.

Theorem 1.1 was proved in [3, Theorem 7.2.4] with the additional assumptions that
P§ = —Pp and rank WB = n. The extension to non-skew-adjoint matrices Py is in
[1]. However, the equivalence with (c) is not explicitly shown in the above references,
and it is assumed that rank Wg = n. A short proof of Theorem 1.1 is in the following
section.

By the assumptions on H, it is clear that the norm on (X3, (-, H-)) is equivalent to
the standard norm on X,. Hence, if AH generates a contraction (or a unitary group)
with respect to the energy norm for some H, then it will generate a Cp-semigroup
(Cop-group) on X equipped with the standard norm as well.

The following corollary follows immediately.

COROLLARY 1.2. The following statements are equivalent:

1. A generates a contraction semigroup on (Xa, (-, -)),
2. A'H generates a contraction semigroup on (X2, (-, H-)).

Corollary 1.2 implies that whether or not AH generates a contraction semigroup
on the energy space (X2, (-, H-)) is independent of the Hamiltonian density H: A is
the generator of a contraction semigroup on (X, (-, -)) if and only if AH generates a
contraction semigroup on (X2, (-, H-)). The condition of a contraction semigroup is
essential here. For a counterexample, see Example 3.2 or [8, Section 6].
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DEFINITION 1.3. An operator A generates a quasi-contractive semigroup if A —
wl generates a contraction semigroup for some w € R. 0

COROLLARY 1.4. IfRe Py < 0, then A’H generates a quasi-contractive semigroup
on (X2, (-, H-)) if and only if AH generates a contraction semigroup on (X2, (-, H-)).

The proof of Corollary 1.4 will be given in Sect. 2.

Theorem 1.1 characterizes boundary conditions for which A’H generates a contrac-
tion semigroup or a unitary group. However, other boundary conditions may still lead
to a Co-semigroup. To characterize those, we diagonalize P1H(¢). It is easy to see
that the eigenvalues of P;7H(¢) are the same as the eigenvalues of H (¢ )% PlH({)%.
Hence, by Sylvester’s law of inertia, the number of positive and negative eigenval-
ues of Pi’H(¢) equal those of P;. We denote by n; the number of positive and by
ny = n — np the number of negative eigenvalues of Pj. Hence, we can find matrices
such that

A(Z)

PIH() = S7(©) [ 0 e

] 8@, aete(0,1D), )
with A(¢) and ©(¢) diagonal matrices of size n1 x n1 and ny x na, respectively.

The main result of this paper is the following theorem that provides easily checked
conditions for when the operator AH generates a Cp-semigroup on X ,. These cover
the situation where A’H may not generate a contraction semigroup.

THEOREM 1.5. Assume that S, A and © in (5) are continuously differentiable on
[0, 1] and that rank Wg = n. Define Z+ () to be the span of eigenvectors of Py H({)
corresponding to its positive eigenvalues. Similarly, we define Z~ ({) to be the span
of eigenvectors of PYH({) corresponding to its negative eigenvalues. We write Wpg as

W = [W Wo] (©)

with Wi, Wo € C"*". Then, the following statements are equivalent:

1. The operator AH defined by (3)—(4) generates a Cy-semigroup on X p.
2. WiH()ZT(1) @ WoH(0)Z(0) = C".

The proof of Theorem 1.5 will be given in the next section.

REMARK 1.6. 1. In Kato [9, Chapter I1], conditions on Pi’H are given guar-
anteeing that S, A and © are continuously differentiable.

2. In[2], a more restrictive version of Theorem 1.5 that applies when H = I and
p = 2 was proven by a different approach. In [2] estimates for the growth bound
are given.

3. Theorem 1.5 implies that if AH generates a Co-semigroup on one X p, then
AH generates a Cy-semigroup on every X, 1 < p < oo. A similar statement
does not hold for contraction semigroups. Example 3.3, given later in this paper,
illustrates this point.

0
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2. Proof of Theorems 1.1 and 1.5 and Corollary 1.4

Proof of Theorem 1.1: Since the proof of Part 2 is similar to that of Part 1 we only
present the details for Part 1.

The implication (a) = (b) follows directly from the Lumer—Phillips theorem and
Lemma 7.2.3 in [3]. Next, we show the implication (b) = (c). It is easy to see that

1
Re(Ax, x) = x(D)*Prx(1) — x(0)" P1x(0) +Re/ x(§)* Pox($)dg N
0

holds for every x € D(A). Choosing x € W2(0, 1; C") with x(0) = x(1) = 0, we
obtain Re Py < 0. For every u, y € C" and every ¢ > 0, there exists a function in
x € WH2(0, 1; C") such that x(0) = u, x(1) = y and the L?-norm of x is less than €.
Choosing this function in Eq. (7) and letting ¢ go to zero implies the second assertion
in (c), see also Lemma 2.4 of [1]. The implication (d) = (a) follows from Theorem
2.3 of [1], see also [4]. Hence, it remains to show (c¢) = (d).

We introduce the notation f; = x(1) and fi = x(0). Then, the condition in (c) can
be written as

[ fi fé‘]|:l())l _3)1][2]50, for [j%:|ekerﬁ/3. (8)

Since Wp is an n x 2n matrix, its Kernel has dimension 2z minus its rank. Hence, this

dimension will be larger or equal to . Since P; is an invertible Hermitian n X n matrix,

the matrix [ 18' —(}’1 ] will have n positive and n negative eigenvalues. This implies that

if v* [f)' —(1)"1 ] v < 0 for all v in a linear subspace, then that subspace has at most

dimension n. Combining these two facts, the dimension of the kernel of WB equals n,
and so Wp is a matrix of rank n.

Defining [ 3] = [/ /"] [% ], and using (8), an easy calculation shows

yiyo+yoy1 <0, for |:§(1)1| € ker Wp. 9)

We write Wp as W = [W] W;]. Now, it is easy to see that Wy + W; is invertible (we
refer to page 87 in [3] for the details). Defining V := (W) + Wo) "L (W, — Wa), we
obtain

1
Wi = S (Wi + Wo) [ +V.1-V].

Let [ Jef] € ker Wp be arbitrary. By [3, Lemma 7.3.2], there exists a vector £ such that
[/]=1[";"" ]¢. This implies

0> f*e+e*f = 05 (=21 +2V*V)e, (10)
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This inequality holds for any [{: ] € ker Wp. Since the n x 2n matrix Wp has rank n,
its kernel has dimension 7, and so the set of vectors ¢ satisfying [ { ] = [ K I__VV ] ¢ for
some [{ ] € ker Wg equals the whole space C". Thus, (10) implies that V*V < I,
and by [3, Lemma 7.3.1] we obtain Wp X Wy > 0. O

Proof of Corollary 1.4: As AH — wl generates a contraction semigroup, Theorem
1.1 implies WBZWE < 0 and rank W = n. Thanks to Re Py < 0 and Theorem 1.1,
finally AH generates a contraction semigroup. O

The following proposition is needed for the proof of Theorem 1.5.

PROPOSITION 2.1. ([8, Theorem 3.3] [3, Theorem 13.3.1] for p = 2 and [8,
Theorem 3.3 and Section 7] for 1 < p < o0) Suppose K, Q € C"*", A € cl(o, 11;
C™>™) s a diagonal real matrix-valued function with (strictly) positive functions on
the diagonal and ® € C([0, 11; C"2*"2) ny + ny = n, is a diagonal real matrix-
valued function with (strictly) negative functions on the diagonal. We split a function
geLP0,1,C" as

g(() = [ifgﬂ : (11

where g1 (¢) € C" and g_(¢) € C™2,
Then, the operator A : D(A) C X, — X, defined by

l-a (o o]l >

S | 75 DR A<1>g+<1>} [A(O)g+(0>}=]
D I[g—}ew (O’I’C)'K[@)(O)g_(m 2l oM, 1) =°

(13)
generates a Co-semigroup on X, if and only if K is invertible.

Proof of Theorem 1.5: We define the new state variable g := Sx. Since S defines
a boundedly invertible operator on L”(0, 1; C"), the operator AH generates a Co-
semigroup if and only if SAHS™! generates a Co-semigroup. We define

A 0
e[l

Then, we obtain

ds—!
d¢

+S)PyHE)S™ (©)g(0)

1y Lo 1. | (Hs—lgm)}_]
D(SAHS )—[geW (O’I’CHWB[(HS_lg)(O) =0{. (14

d
(SAHS '9)(¢) = &m(c)g(:)) +5(2) (OA)g(©)
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Since the last two operators in (14) are bounded, SAHS~! generates a Co-semigroup
if and only if the operator

d
Asg = @(Ag) (15)

_ 1,p . nxn ¥ (HS_lg)(l)] _ ]
D(As)—[gGW 0, 1;C"")y | Wpg |:(HS_1g)(0) =0 (16)

generates a Co-semigroup on X,. We split the matrices W (HS~1(1) and
Wo(HS™1)(0) as
WiHS H(h =[vi Vo]  WoHS™H(0) =[U1 Ua],

where Uy, Vi € C"" and U, Vo, € C"*"2, and as in (11) write

g(¢) = [gfgﬂ : 17)

where g4 (¢) € C" and g_(¢) € C"2. Then,

&[SI g+(D) g+(0)
0= G- ipio) =11 I e o)

_ g+(D) &+

= [Vl U2] |:g_(0)] + [Ul V2] I:g_(l)i|

- A0 A(D)gy (1)
= U] [ 0 @(orl} [®<0>8<0>}

AO)! 0 A(0)g+(0)
0 oM~ [[emes- ]

Thus, by Proposition 2.1, the operator Ag as defined in (15) and (16) generates a
Co-semigroup if and only if the matrix

+[ur W] [

K =[vi U2]|:A(1)1 0 }

0 e0)!
A 0

0 oeo!
Co-semigroup if and only if [V} Us] is invertible. Now, [V} U,] is invertible if and
only if for every f € C" there exists x € C"! and y € C"2 such that

et vt ot ]
-t wafoto ]

= Wi (HS™H) m + Wo(HS™ 1 (0) m . (18)

is invertible. Since the matrix [ ] is invertible, Ag generates a
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Referring, to Eq. (5) the columns of S™!(¢) are the eigenvectors of PyH(¢). The
eigenvectors corresponding to the positive eigenvalues forms the first n; columns.

Thus, S~ (1) m isin Z*(1). Similarly, S~1(0) m isin Z7(0). Thus, [V; U] is

invertible if and only if
WiH(ZT (1) @ WoH(0)Z~ (0) = C",

which concludes the proof. O

3. Examples

The following three examples are provided as illustration of Theorem 1.5.

EXAMPLE 3.1. Consider the one-dimensional transport equation on the interval
O, 1):

ax OHx
E(é‘vt) = W(é"t)’ X(C,O) ZXO(C),

Hx)(1, 0]
[wi wo] [('Hx)(O, t)]_o,

where H € C'[0, 1] with H(¢) > 0 forevery ¢ € [0, 1].

An easy calculation shows PyH = H and thus Z* (1) = C and Z~(0) = {0}. Thus,
by Theorem 1.5 the corresponding operator

0
AHx = &(Hx),

D(AH)

x € W].p(O, 1) | [wl wO] [(HX)(l)] — O] ,

(Hx)(0)

generates a Co-semigroup on LP (0, 1) if and only if wy # 0. Further, by Theorem
1.1, AH generates a contraction semigroup (unitary Co-group) on L*(0, 1) equipped
with the scalar product (-, H-) if and only ifw% > u)g (w% = w(z)). O

EXAMPLE 3.2. An (undamped) vibrating string can be modeled by

Py =L (T(;)aw(z t)) 20,21 (19)
8z T b(o) a¢ T A

where ¢ € [0, 1] is the spatial variable, w(¢, t) is the vertical position of the string at
place ¢ and time t, T () > 0 is the Young’s modulus of the string and p(¢) > 0 is the
mass density, which may vary along the string. We assume that T and p are positive
and continuously differentiable functions on [0, 1]. By choosing the state variables
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X1 = p%—? (momentum) and x, = %—'; (strain), the partial differential equation (19)
can equivalently be written as

g{m@o}zp 13_ 25 0 [mmn]
or [x2(¢, 1) 1 0]ad¢ 0 T(@)|[x(,0)
9 X1(C,f)])
=P — 2
'ag (71(;)[x2(§,t) , (20)

where P| = [?(1)] and H(¢) = [@ T?{)].
The boundary conditions for (20) are

Mo 1.0
[ wﬂLH@@o}‘Q

where [W1 Wo] is a 2 X 4-matrix with rank 2, or equivalently, the partial differential
equation (19) is equipped with the boundary conditions

PG 1)

w

(1,1

e (Lo |
(Wi W] 20, 1 =0

p5 (0,

a
220,1)

Defining y = /T (£)/p(¢), the matrix function P1’H can be factorized as
y —v][yr o[ en! ,0/21|
P'H = .
: [p‘l p‘l] [0 —y] [—(2)/)‘l p/2

This implies Z7 (1) = span [58;] and Z~(0) = span [_VT((()())) ] Thus, by Theorem

1.5 the corresponding operator

o 170 (|-L o0
_ ) .
(AHX)(¢) = [1 0] oc ([p(f T({):| x(;“)),

(H”“qzo}

D(AH) = [x e WhP(0, 1:C%) | [Wi W] |:(Hx)(0)

generates a Co-semigroup on LP (0, 1; C?) if and only if

y(1) —vO) | _
" [role 7o ] =<

or equivalently if the vectors W [;8;] and Wy [_TV(S;)] are linearly independent.
IfWy :=1and Wy := [ ’01 (1)] then A'H generates a Cy-semigroup if and only if the
vectors [;EB] and [;Eg;] are linearly independent. Thus, not only the nature of the
boundary conditions but also Young’s modulus and the mass density on the interval
[0, 1] affect whether or not AH generates a Cy-semigroup. O



Vol. 15 (2015) Cp-semigroups for hyperbolic partial differential equations 501

EXAMPLE 3.3. Consider the following network of three transport equations on
the interval (0, 1):

ey =iy 120, ce@. 1), j=1273
Btg’_f)(g”_’{ 1), J=1,24,5,
.X](;,O) = xj,()(é-)s ; € (07 1)7 .] = l’ 29 3

xi1(1,0)]

100 0 0 0 ngg

010 -1 0 -1 iS(O,t) =0, 1>0
1Y,

001 0 —1 o]
| x3(0, 1) |

Writing x = [% ] the corresponding operator A : D(A) C LP(0,1;C?) —
LP(0,1;C¥) is

A _ ax
x)(&) = &(C),

1 00 0 O O 0
D)= {xew O CH {0 1 0 —1 0 -1 [x(o)] 0o
001 0 -1 o]
In this example, H = Py = I and Py = 0 and therefore the assumptions on S, A and
® are satisfied. An easy calculation yields

x*(Dx(1) = x*(0)x(0) = 2x1(0)x3(0)

for every x € D(A). Theorem 1.1 implies that A does not generate a contraction
semigroup on L*(0, 1; C?).

However, by Theorem 1.5 A generates a Cy-semigroup on LP (0, 1; (C3) for1l <

0 0 0
p < oo: In this example, Z+(¢) = C3, Z7(¢) = {0}, W) = I and Wy = [—Ol 01 —Ol].
Thus,
Wizt (1) @ WoZ~(0) = C°.

Finally, [5, Corollary2.1.6] implies that A generates a contraction semigroup on
L'(0,1; CY).

Summarizing, A generates a Co-semigroup on LP (0, 1; C3) for 1 < p < oo and in

fact a contraction semigroup on L'(0, 1; C?) but it does not generate a contraction
semigroup on L*(0, 1; C?). O
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