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a b s t r a c t

Increasing efficiency at the Emergency Department (ED) reduces overcrowding. At the ED in typical Dutch
Hospitals treatment rooms are mostly shared by two residents of different specialties: a Surgeon and an
Internist. Each resident usesmultiple rooms inparallel;while onepatient awaits test results in a treatment
room, the resident visits other patients. The assignment of rooms among the residents is often unbalanced,
which affects the blocking probability and waiting and sojourn times of patients. Invoking a queueing
model in a random environment, we analytically investigate expected sojourn times of (semi-urgent)
patients for both types of residents for different room assignment policies and working routines of the
residents. We determine the Pareto efficient policies and working routines for all performance measures.
We conduct a Discrete Event Simulation to validate our model and present numerical results for a large
Dutch teaching hospital and other illustrative cases.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Emergency department (ED) overcrowding has many negative
effects, for both patients and ED staff. ED overcrowding leads for
example to an increase in the number of medical errors, long
waiting times and high levels of stress for ED staff (see e.g. [1–3]).
Therefore, governments have set legal norms on the waiting and
sojourn times of patients visiting the ED. Meeting these norms is
often difficult due to an increasing demand for acute care and the
closure of many EDs and hospital beds [4].

The waiting and sojourn times of ED patients are influenced by
many factors, among others the patient’s urgency class and type.
In the Netherlands, patients are both triaged and assigned to a
specialty upon arrival at the ED. The triage category of a patient
determines the order in which patients are treated. Treatment can
start when there is a treatment room and the patient’s physician is
available. The specialties with the highest number of patients are
represented at the ED at all times, either by a specialist or a resident
(together with physicians collectively called ‘doctors’ in this
paper). Other specialties have to be called for assistance, implying
that patients at least have to wait for the travel time of the doctor.
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Typically at an ED, one doctor occupies multiple rooms in
parallel; when a patient requires diagnostic tests, the doctor
visits other patients. Each specialty/doctor has a different working
routine: Emergency Physicians are for example specially trained
for only providing urgent care, while other doctors tend to
provide care more like they are used to outside the ED [4]. As a
consequence, sojourn and waiting times of different patient types
differ significantly, and the room utilization can be unbalanced
over the doctor types. The unbalanced room utilization possibly
also affects the sojourn and waiting times of the patients.

Besides the sojourn and waiting times, the probability that
the ED is ‘full’ (blocking probability) is an important performance
measure. When the number of patients at the ED exceeds a certain
level, the ED staff will call in an extra doctor and/or defer new
patients. The first will result in additional costs, while the latter
negatively affects the image of the hospital.

In this paper we investigate several room assignment policies
and doctor working routines at an ED and determine the Pareto-
efficient combinations with respect to the performance measures
mentioned above. To this end, we invoke a continuous time
queueing model in which patients may require diagnostic tests,
implying that doctors visit their patients a random number of
times and interact in sharing the available treatment rooms. We
investigate a case study of a large Dutch teaching hospital (the
Jeroen Bosch Hospital, JBH) and several additional illustrative
cases. Bymeans of a Discrete Event Simulation, we investigate how
the obtained policies perform in a more realistic setting.
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We also study the sojourn time of an accepted patient condi-
tioned on the state found in the ED upon arrival. This conditional
waiting and sojourn times information may be provided to the pa-
tients to inform them about their expected length of stay at the ED,
which adds to patient satisfaction [5].

In the next section we will provide an overview of related
literature. The model is described in Section 3. Section 4 provides
the analytical results, Section 5 the numerical results, and Section 6
the conclusion and discussion.

2. Related literature

The literature that is related to this paper consists of papers on
EDs and of queueing models that are similar to the one considered
in this paper. Both types of literature will be summarized below.

EDs are modeled most often by means of queueing theory
and computer simulation. Typical focus areas of these works are
capacity dimensioning and patient routing, with the objectives to
minimize patient waiting time, maximize patient throughput or
increase staff utilization [6]. In patient routing the effects of for
example parallelization of tasks, a ‘fast-track’ system, and letting
patients wait outside the treatment room are studied.

There aremanypapers that apply queueingmodels to an ED, but
only a few papers are closely related to this paper as they consider
patients who are visited more than once by the doctor, cf. [7–9].
These studies consider a multi-server queueing network in which
customers can re-enter a queue, and the authors aim to determine
appropriate staffing levels to achieve certain performance targets.
Differences between the models in these references (and the
references therein) and the model considered here, are that
patients do not return to their own doctor and that it is assumed
that treatment can start once the doctor is available. This implies
that either there always is a sufficient number of treatment rooms,
or patients await their test results outside the room.

In a recent review, Wiler et al. [3] state that most queueing
approaches to modeling an ED assumed that: (1) arrival rates are
constant, (2) patients do not deteriorate, and (3) patients are not
seen by same doctor again. Here we also assume (1) and (2), but
allow for patients to be seen by the same doctor more than once.
For more literature on modeling EDs, the reader is referred to
recent literature reviews [2,3,6] and the references therein.

A different but related topic is the optimal assignment of servers
to two types of calls in a callcenter, studied by e.g. Bhulai and
Koole [10]. Here the question iswhen to assign servers to outbound
calls in such a way that inbound calls still achieve high service
levels. Differences with our work are that in [10] each call visits
the server only once, and each server has its own line (opposed to
doctors sharing multiple treatment rooms).

Our contribution to both fields of literature is that we
incorporate the ordering of diagnostic tests and doctors revisiting
their patients in a queueing model for an ED. We consider a model
with two resource types (doctors and rooms) in which a customer
can only get service when both resource types are available at the
same time. To the best of our knowledge, this type of model has
not been analyzed before. This model is applied to an ED, but could
easily be adapted to, for example, an outpatient clinic in which
multiple physicians share the available treatment rooms.

The method used in this paper has been applied before to
telecommunication systems, see for the most related papers
[11–14]. These systems typically have two call types: inelastic
(speech) calls, and elastic (data) calls. The inelastic calls require
one unit of capacity (bandwidth) throughout their entire service
time. The elastic calls share the remaining capacity in a processor
sharing fashion. Important performance measures are the (aver-
age) throughput, sojourn time and blocking probability. At an ED,
multiple types of patients also have to share the available capacity
(treatment rooms). Although the processor sharing service disci-
pline is not applicable for an ED, it will be shown that the methods
applied to telecommunication systems can still be applied.
Fig. 1. Schematic representation of the queueing network.

3. The model

In this paper, we focus on a system with two doctors, since
in many Dutch hospitals such as the JBH most of the non-urgent
patients require a Surgeon or an Internist and both specialties
are represented at the ED at all times. Patients that require other
specialties are either treated by an Emergency Physician (working
at the ED 7:00–23:00 h) or by a specialist doctor who is called for
assistance.

Upon arrival at the ED, patients are triaged, assigned to a doctor,
and join a waiting area. We only consider patients that are triaged
as non-urgent, and are therefore treated on a first come, first serve
(FCFS) basis. The triage is typically not the bottleneck at an ED, and
therefore we only focus on the process after triage.

To model this ED in which two doctors share multiple treat-
ment rooms to treat two types of patients with equal priority and
each type of patient has its own queue and doctor, we consider a
queueing system as depicted in Fig. 1. There are more treatment
rooms than doctors, depicted by squares and circles respectively.
The number of patients in the system is finite for both patient types
and patients are assumed to arrive at their assigned queue accord-
ing to a random process with constant arrival rate (we numerically
investigate this assumption in Section 5). When the required doc-
tor is inactive upon arrival of a patient and a treatment room is
available, the treatment commences immediately. Otherwise, the
patient is either blocked (if the maximum number of patients of
this type is reached) or placed in a waiting area.

The treatment of a patient consists of at least one visit by the
doctor; between two visits of the doctor, patients take diagnostic
tests. At the instant the treatment of a patient begins, he is assigned
a treatment room. This room will be assigned to this patient
during the entire treatment time, even if the patient is not always
physically in the room, which is the common policy at Dutch
hospitals. We call each time a doctor visits a patient a ‘phase’
and the ‘consultation time’ of a patient denotes the total time
a doctor has to spend with this patient in a room (so the sum
of all phases). The treatment time thus includes the consultation
time and possibly time between two doctor visits and time for
taking diagnostic tests. To enhance tractability, we assume that
both types of doctors visit their patients in random order. The
sojourn time equals thewaiting time before a room is assigned plus
the treatment time.

During each visit the doctor can decide that the patient requires
(further) diagnostic tests. Therefore, after each phase completion
a patient stays in the system with a certain probability. When a
patient’s phase is completed but this patient does not leave the
ED, the doctor can consult either a patient from the waiting area
(‘new patient’) or in another treatment room (‘existing patient’).
The first option requires an extra room. The decision which of
the two options to choose, depends on the working routine of the
doctor andwill be varied. If at phase completion the patient cannot
leave the system and there is no other patient in the system, the
doctor will become ‘inactive’, e.g. perform administrative tasks,
for a random time. If a new patient arrives during an inactive
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period and there is a room available, the new patient is consulted
immediately.

An interesting feature of thismodel is that in order to be treated,
each patient requires two resources at the same time: a room and
a doctor. Rooms ‘serve’ patients in a first come first serve fashion,
while doctors visit their patients in random order. A patient
occupies a room throughout its entire treatment time, while the
doctor will only be in the room with the patient occasionally.
Without the doctor present in the room, the treatment of the
patient is ‘paused’.

The system under consideration can be modeled as a continu-
ous time Markov process with two types of patients and one doc-
tor for each patient type. This system has two independent Poisson
arrival streams with rates λ1 and λ2. The state of the system is de-
noted by n = (n1, r1, i1; n2, r2, i2), with: nj the number of patients
in system; rj the number of rooms occupied; ij ∈ {0, 1} an indi-
cator that equals 1 if the doctor is with a patient and 0 otherwise;
and j = 1, 2 denotes the different patient and doctor types. The in-
dicator is used when there is a phase completion of a patient that
is the only patient present of his type. At such phase completions,
the doctor will be inactive until either the patient returns from his
tests, or a new patient of his type arrives. The time a doctor is in-
active is therefore the minimum of two exponential times, with
parameters νj and λj respectively.

Each phase of consultation time is exponentially distributed
with rate µj for type j. Define pj the probability that the patient’s
consultation time ends after completion of a phase. Then, the
consultation time consists of a geometric number of exponential
phases, and thus it is readily derived that its probability mass
function is given by fj(x) = pjµj exp(−pjµjx). Furthermore, let Mj
be the maximum number of patients in the system for type j. The
generator Q for this process is developed in Appendix A.

4. Analytical results

Since for both patient types the analysis is the same, we will
omit most patient type subscripts in the development which
follows, using the subscript j to indicate one of the types where
necessary, and refer to ‘patient’ instead of mentioning the types.
The analysis follows the lines of e.g. [12,14].

4.1. Basic performance measures

Weobtain the stationary distributionπ of this systemby solving
πQ = 0. Using π , we can obtain average performance measures
like the expected number of patients in the queue (Nq) and system
(N), and the blocking probability Pb for both patient types:

Nq
j =


n|nj≥rj


nj − rj


· πn, Nj =


n

nj · πn,

Pb
j =


n|nj=Mj

πn.
(1)

Using Little’s formula, we can obtain the expected waiting timeWj
and sojourn time Sj of an accepted patient by:

Wj =
Nq

j

λj

1 − Pb

j

 , Sj =
Nj

λj

1 − Pb

j

 . (2)

4.2. The conditional expected sojourn time

The sojourn time of a patient consists of two stages: the time
from triage until entering the treatment room (waiting time)
and the treatment time. We determine the conditional expected
sojourn time by tagging an arriving patient and running the
Markov chain from the state the patient encountered upon arrival
until the patient leaves the system. The conditional expected
waiting time αn,j depends on the number of patients in the system
upon arrival of the tagged patient. The treatment time of the
tagged patient depends both on his consultation time, and the
(possibly varying) number of rooms his doctor uses during his
treatment time. The conditional expected treatment time τn′,j(x)
of the tagged patient is conditioned on his consultation time x
and the state of the system in which the treatment of this patient
commences. This state is not necessarily the state which the
tagged patient encountered upon arrival. Therefore, we also need
to determine the conditional transition probabilitiesψj(n,n′): the
probability that a patient arriving in state n commences his service
in state n′. The expected sojourn time of an admitted patient,
conditioned on the state of the system at the instant the patient
has arrived, is then expressed by:

Sn,j =


∞

0
σn,j(x)fj(x)dx,

with σn,j(x) = αn,j +

n′

τn′,j(x)ψj(n,n′). (3)

Here, σn,j(x) denotes the conditional sojourn time of a patient of
type j arriving in state n (including the new patient) with consul-
tation time x. Note that the sojourn time does not exist for certain
states, for example states with nj = 0. From the conditional ex-
pected sojourn time, the expected sojourn time can be obtained by:

Sj =


n|nj>0

πn−ej
n|nj>0

πn−ej
Sn,j =


n|nj>0

πn−ej

1 − Pb
j

· Sn,j,

with n−ej denoting a systemwith one patient of type j less. Eq. (3)
consists of multiple parts that can be obtained by the steps sum-
marized in Appendix B, and in more detail in [13,14]. We imple-
mented Eq. (3) and all calculation steps in MATLAB R⃝ [15] in order
to perform a numerical study.

5. Numerical results

In this section we first describe the JBH case study and
its results. Hereafter, we provide numerical results for several
illustrative cases. The policies we investigate for this queueing
model are all of threshold-type: for both specialties we define a
maximum number of rooms δj that specialty j can use in parallel.
The room assignment policies we investigate only include policies
in which all rooms could theoretically be used; for example for a
case with five rooms available the policy (δ1, δ2) = (3, 1) was not
evaluated since themaximumnumber of rooms in use is four here.
We further distinguish two different working routines per doctor:
either he visits a new patient first at phase completion (called NF),
or he returns to an existing patient first (called EF). The working
routines are therefore denoted by: EF–EF, EF–NF, NF–EF andNF–NF
(inwhich theworking routine of doctor 1 ismentioned first). For all
performancemeasures,we determine the Pareto efficient ‘working
routine+ room assignment policy’ combinations (RPCs), whichwe
denote by (working routine doctor 1, δ1,working routine doctor 2, δ2).

In addition to the analytical results, we conduct a discrete event
simulation study to investigate the policies in a more realistic
setting: the arrival rates are time-dependent and obtained from
data of the JBH, see Fig. 2. We simulate 5000 days for 20 runs
such that the relative precision of the waiting and sojourn times
is always below 1%. We use common random numbers [16].

5.1. JBH case study

Data. We only consider Surgical (type 1) and Internal Medicine
(type 2) patients in our case study, which represents 66% of the
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Fig. 2. Time-dependent arrival rates obtained from JBH data.
Table 1
Input parameters for the JBH case study.

λ (h−1) µ (h−1) ν (h−1) p M

Surgical 3.15 8.57* 1.93* 0.45* 15
Internal medicine 1.26 7.09 1.93 0.30* 10
* Parameter is estimated.

non-urgent ED-patients at the JBH. Typically at an ED, arrival
rates are not constant during the day. The problem of dividing
rooms among the doctors ismost prevalent during the peak-hours.
Therefore, we take the average arrival rate between 10 a.m. and
5 p.m. as input for the model, and refer to this rate as the ‘peak
arrival rate’. All input parameters are obtained from JBH data or
estimated when not available, and are displayed in Table 1.

In the current working routine of the JBH, there is no policy for
the assignment of rooms and both doctors visit new patients first.
There are eight available treatment rooms at the ED. In our study,
since we only consider 66% of the patients, we assume that there
are only five treatment rooms. For five treatment rooms, there exist
19 allowed room assignment policies: (5, 5), (5, 4), (5, 3), (5, 2),
(5, 1), (4, 5), (4, 4), (4, 3), (4, 2), (4, 1), (3, 5), (3, 4), (3, 3), (3, 2),
(2, 5), (2, 4), (2, 3), (1, 5), (1, 4). There are two possible working
routines for eachdoctor, thus the total number of RPCs investigated
is 19 × 4 = 76.
Basic performance measures. We refer to the RPC (NF, 5, NF, 5)
as the current situation; both doctors visit new patients first
and are allowed to use all treatment rooms in parallel. From
the analytical model we obtain that for the current situation the
expected sojourn time equals 3.4 h for Surgical patients, and 3.9 h
for InternalMedicine patients. These values are significantly higher
than the measured average sojourn times, as was expected since
the peak-arrival rate is used in the analytical model. In order to
determine the Pareto efficient RPCs, we consider six objectives:
three performance measures for both patient types. For each
performance measure we therefore determine the Pareto front
from all RPCs; if an RPC is Pareto efficient it is impossible to
establish an improvement for one patient type without increasing
the blocking probability, the expected waiting time and/or the
expected sojourn time for the other type. All RPCs that are not
Pareto efficient are said to be dominated. There exist RPCs for
which all three performance measures are Pareto efficient, which
we denote by ‘efficient ’ RPCs.

The Pareto front for the expected waiting time is depicted in
Fig. 3. Here all markers indicate one or multiple RPCs and the
different marker-types indicate the different working routines.
Onemarker can indicatemultiple RPCs; for example for the routine
where both doctors treat existing patients first (EF–EF, marker
square), both doctors will by assumption never occupy more than
two rooms in parallel, resulting in the same expected waiting time
for all policies with δj ≥ 2.
Both for the blocking probability and the expected sojourn
time the Pareto-front consists of a single (Pb

1 , P
b
2)- and (S1, S2)-

coordinate respectively, and this optimum is attained in the poli-
cies (δ1, δ2) ∈ {(3, 3); (3, 2); (2, 3)} for all working routines.

For the JBH case study, the efficient RPCs and the resulting
performance measures are given in Table 2. It appears that the
improvements when efficient policies are used are significant,
especially for type 1 patients. The efficient policies all require both
doctors to visit new patients first when a patient finishes (a phase
of) his treatment. This policy implies that both doctors occupy as
many treatment rooms in parallel as possible, which is beneficial
for the waiting time of patients. The optimal room assignment
policies indicate in all cases that one doctor should never use less
than two rooms in parallel, which ensures that the doctor does
not have to be inactive while waiting for test results. The room
assignment policies (3, 2) and (2, 3) ensure that each doctor has
his own treatment rooms, and no rooms are used by both doctors.
For this case study sharing all the available rooms, which is the
current room assignment policy at the JBH, appears to result in
higher blocking probability, waiting time and/or sojourn time for
patients.
Simulation results. From the simulation study, as expected, it
appears that the value of all performance indicators decreases
when time-varying arrival rates are incorporated. For example, for
the current policy the average sojourn time in the simulation is
1.1 h for type 1 patients and 1.6 h for type 2 patients, and the
average sojourn times with the Pareto efficient RPCs are 1.0 h
and 1.2 h respectively. The improvement achieved with the Pareto
efficient RPCs is less than in the analytical results: −6% and −26%
respectively.

Similar to the results of the analytical model, in the simulation
results a single (Pb

1 , P
b
2)-coordinate forms the Pareto front for the

blocking probability. For the average sojourn time, three Pareto
efficient coordinates exist; of these coordinates two are uniquely
attained and one is attained in 30 RPCs.

For 94% of the (3 indicators × 76 RPCs =) 228 performance
indicators, the conclusion whether the indicator is Pareto efficient
is the same in the simulation results and analytical results. From
the analytical model three RPCs appear to be efficient (see Table 2),
but only (NF, 3, NF, 3) is efficient in the simulation results.
Conditional performance measures. We study the conditional ex-
pected sojourn timewhen the doctors both visit a new patient first
at phase completion, since the JBH already works according to this
routine, and from the analytical model it appears to be the only
routine with Pareto efficient RPCs. Figs. 4 and 5 display the condi-
tional expected sojourn time of both patient types for different sys-
tem states with n2 = 5, r2 = 1, i2 = 1 (a typical example) when,
respectively, room assignment policies (3, 3) and (4, 2) would be
implemented and both doctors see new patients first.
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Fig. 3. Analytical (left) and simulated (right) waiting times for different policies for the JBH case study, non-dominatedmarked blue, efficient marked red. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Conditional sojourn time for states with n2 = 5, r2 = 1, i2 = 1, RPC (NF, 3, NF, 3).
Fig. 5. Conditional sojourn time for states with n2 = 5, r2 = 1, i2 = 1, RPC (NF, 4, NF, 2).
Table 2
Waiting times for the current situation (1st line) and the efficient RPCs, all with routine NF–NF.

δ1 δ2 W1 W2 S1 S2 Pb
1 Pb

2

5 5 2.56 2.27 3.39 3.89 0.18 0.19
3 3 0.75 (−71%) 1.30 (−43%) 1.34 (−60%) 2.53 (−35%) 0.01 (−94%) 0.07 (−64%)
3 2 0.67 (−74%) 1.59 (−30%) 1.34 (−60%) 2.53 (−35%) 0.01 (−94%) 0.07 (−64%)
2 3 0.84 (−67%) 1.23 (−46%) 1.34 (−60%) 2.53 (−35%) 0.01 (−94%) 0.07 (−64%)
The conditional expected sojourn time for type 1 patients in-
creases with the number of patients present upon arrival, and de-
creases with the number of rooms that the type 1 doctor occupies
for states with relatively few type 1 patients. The conditional ex-
pected sojourn time of a type 2 patient is almost equal for all sys-
tem states in Fig. 4. However, for policies that are not efficient, there
is a difference for states with relatively many rooms; compare for
example states with n1 = 6 and r1 = 3, 4 in Fig. 5. From this figure
it also appears that the expected sojourn time of type 2 patients is
higher when there are few type 1 patients at arrival, because for
these states the type 2 doctor can take an additional room and as
a consequence the sojourn time of all existing patients increases.
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Table 3
Input parameters for cases with eight treatment rooms.

Case λ1 µ1 ν1 p1 M1 λ2 µ2 ν2 p2 M2

1 6.00 12.00 2.00 0.67 15 2.00 7.50 2.00 0.33 10
2 6.25 9.26 2.00 0.90 15 2.00 7.50 2.00 0.33 10
3 2.00 7.50 2.00 0.33 10 2.00 7.50 2.00 0.33 10
4 6.00 12.00 2.00 0.67 15 2.00 7.50 1.00 0.33 10
Table 4
Results from the analytical model for eight treatment rooms.

W1 (h) W2 (h) S1 (h) S2 (h) Pb
1 (h) Pb

2 (h)

Case 1 Current 0.33 0.35 0.69 1.85 0.025 0.033
Efficient (0.19, 0.30) (0.28, 0.53) 0.52 1.74 0.004 0.027

Case 2 Current 0.37 0.24 0.59 1.76 0.018 0.028
Efficient (0.24, 0.29) (0.28, 0.94) 0.47 1.74 0.003 0.027

Case 3 Current 0.49 0.49 1.94 1.94 0.039 0.039
Efficient (0.33, 0.55) (0.33, 0.55) 1.74 1.74 0.027 0.027

Case 4 Current 0.33 0.36 0.69 1.90 0.025 0.035
Efficient (0.17, 0.30) (0.28, 0.54) 0.52 1.77 0.004 0.027
Table 5
Efficient policies for eight treatment rooms with working routine NF–NF.

Case Policies (δ1, δ2)

1 (6, 6)* , (6, 5), (6, 4), (5, 6)* , (4, 6)* , (3, 6), (2, 6)
2 (6, 6)* , (6, 5)* , (6, 4)* , (6, 3), (6, 2), (5, 6)* , (4, 6), (3, 6)* , (2, 6)
3 (6, 6)* , (6, 5)* , (6, 4), (5, 6), (4, 6)
4 (6, 6)* , (6, 5), (6, 4), (5, 6), (4, 6)* , (3, 6)* , (2, 6)
* RPC is also efficient according to simulation results.

Moreover, the conditional expected sojourn time of a type 2 pa-
tient is higher when the type 1 doctor occupies more rooms at the
instant the patient arrives.

The national norm on the sojourn time, including time for
triage, is 3 h. From Fig. 4 we may conclude that the expected
sojourn time of type 1 patients will exceed the norm if they arrive
when there are already 10 patients of their type present and the ED
doctorswould both visit newpatients first and use atmost 3 rooms
in parallel. In order to provide insight about the effect of using the
optimal room assignment policy, we simulated the system for all
room assignment policies and the same working routine (NF–NF).
The results for room assignment policy (4, 2) are displayed in Fig. 5,
which is a typical result for a non-optimal policy. For the (4, 2)
policy, the norm will be exceeded for type 1 patients arriving in
a system with 12 patients of their type present. For both policies,
type 2 patientswill never have an expected sojourn time exceeding
the norm, but as the conditional expected sojourn time depends
more on the number of type 2 patients in the system, itmay exceed
the norm for other values of (n2, r2, i2).

5.2. Additional insights

We investigated several additional parameter settings in
systems with a different number of rooms, in order to determine
whether the insights found for the JBH case study also hold in
general. In this subsection we present the most insightful results,
based on a system with eight treatment rooms for four cases (see
Table 3). In cases 1 and 2 the expected consultation time of type 1
patients is equal, but in case 2 the expected number of visits by the
doctor is lower. In case 3 both types 1 and 2 patients have exactly
the same characteristics. Case 4 is equal to case 1 except for ν2.

From the analytical results it appears that also for the system
with a different number of treatment rooms, the Pareto-front for
the blocking probability and sojourn time consists of one coordi-
nate. The results for all cases of Table 3 are displayed in Table 4, in
which ‘Current’ implies (δ1, δ2) = (8, 8) and the extreme values of
the Pareto-front of the expected waiting time are given instead of
all individual coordinates. The efficient working routine is NF–NF in
all cases, and the efficient room assignment policies are displayed
in Table 5.

From Table 4 it appears that for both patient types it is better if
one of them requires less phases that each take longer, compare
cases 1–3. However, when the rooms are divided according to
the efficient assignment policies there is only an improvement for
type 1 patients. When type 2 patients have to wait longer for the
test results, this only increases their expected waiting and sojourn
times and does not affect type 1 patients. From Table 5 it appears
that all doctors should get at least two treatment rooms in parallel.

For all cases the performance of the system significantly
improves when the efficient room assignment policies are used.
In cases 1, 2 and 4 the expected sojourn time of type 1 patients
decreases more than 20% and the blocking probability more than
80%. For case 3 the decrease is 10% for the expected sojourn time
and 31% for the blocking probability.

We validated the results again by means of the simulation
model with time-varying arrival rates. Most of the Pareto efficient
RPCs are also found in the simulation results; 94% of the conclu-
sions whether a RPC is optimal for a performance measure is the
same in the results of both models. As expected, all performance
measures are lower in the simulation results. The improvements
by introducing an efficient RPC are in cases 1, 2 and 4 over 60% for
the blocking probability and over 8% for the expected sojourn time
of type 1 patients. For case 3 the decrease is over 10% for the block-
ing probability and 3% for the expected sojourn time. In addition to
the efficient policies in Table 5, the simulation results indicate that
policy (NF, 8, NF, 3) and all policies with δ1 = 7 and δ2 ≥ 2 for rou-
tine NF–EF are efficient. We postulate that also for other parameter
settings the performance measures can be improved significantly
by implementing an RPC, and the efficient RPCs found by means of
the analytical model are also found to be efficient in a systemwith
time-varying arrival rates.

6. Discussion

The assignment of treatment rooms among doctors at EDs is
often unbalanced, which possibly affects the blocking probability
and waiting and sojourn times of patients. From the results of
this study, we conclude that introducing threshold policies that
indicate the maximum number of rooms that one doctor can use
in parallel, can significantly improve the performance of the ED for
all relevant performance measures. When two doctors interact on
sharing treatment rooms, theworking routine to visit newpatients
first is found to result in the best performance.
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Q

n;n′


=



λ1 n′
= (n1 + 1, r1, 1; n2, r2, 1)

λ2 n′
= (n1, r1, 1; n2 + 1, r2, 1)

p1µ11{n1=r1} n′
= (n1 − 1, r1 − 1, 1; n2, r2, 1)

p1µ11{n1>r1} n′
= (n1 − 1, r1, 1; n2, r2, 1)

p2µ21{n2=r2} n′
= (n1, r1, 1; n2 − 1, r2 − 1, 1)

p2µ21{n2>r2} n′
= (n1, r1, 1; n2 − 1, r2, 1)

(1 − p1)µ11{n1>r1,r1<δ1,r1+r2<K} n′
= (n1, r1 + 1, 1; n2, r2, 1)

(1 − p2)µ21{n2>r2,r2<δ2,r1+r2<K} n′
= (n1, r1, 1; n2, r2 + 1, 1)

(1 − p1)µ11{n1=r1∥r1=δ1∥r1+r2=K} + (1 − p2)µ21{r2=δ2∥n2=r2∥r1+r2=K} n′
= (n1, r1, 1; n2, r2, 1)

Box I.
We analytically expressed the expected sojourn time of a pa-
tient conditioned on the state of the system this patient encounters
upon arrival. This conditional waiting and sojourn times informa-
tionmay be provided to the patients to inform themabout their ex-
pected length of stay at the ED, which adds to patient satisfaction.

One limitation of the analytical model is that it suffers from an
‘exploding state space’; it could be extended to incorporate more
patient types, but for determining the conditional sojourn time this
will make the state space too large and/or computation time very
long.

In the analytical model we assume stationary arrival rates,
which is typically not the case at an ED. Our simulation study in-
dicates that this assumption does not affect the decisions whether
a policy is optimal or not. Other limiting assumptions made in this
model are: (1) no emergency arrivals, (2) doctors visiting their pa-
tients in random order, (3) when a doctor occupies two or more
treatment rooms in parallel, the test results will be ready before
the next phase completion of one of his patients, (4) the probabil-
ity that a patient can go home after a phase completion is equal
for all phases, and (5) the duration of one phase of service is Expo-
nentially distributed. These assumptions are included for analytical
tractability. Dropping any or all of these assumptions would be an
interesting topic of further research.
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Appendix A. The generator

We will illustrate part of the generator matrix of the system
described in Section 3 for the working routine in which both
doctors visit a new patient first at phase completion. For all other
working routines and generator entries, the generator matrix can
be obtained in similar ways. Define additional parameters:

• K = total number of rooms,
• Mj = maximum number of patients in system, j = 1, 2,
• δj = the maximum number of rooms occupied, j = 1, 2,
• ν = the parameter of the exponential time a resident has to

wait on test results.

There are six possible events when the system is in state
(n1, r1, 1; n2, r2, 1): arrival, departure and phase completion for
both patient types. In this paper, 1{x} equals 1 if event x is true
and 0 otherwise; 1{x,y} equals 1 if both x AND y are true; and 1{x∥y}
equals 1 if xOR y is true. Letn = (n1, r1, 1; n2, r2, 1) be a statewith
1 < n1 < M1 and 1 < n2 < M2, then: Q

n;n′


is given in Box I.

For a state with n1 = r1 = n2 = r2 = 1 we have:

Q

n;n′


=



λ11{i1=0,r1<δ1,r1+r2<K} n′
= (n1 + 1, r1 + 1, 1; n2, r2, i2)

λ11{i1=1∥r1=δ1∥r1+r2=K} n′
= (n1 + 1, r1, i1; n2, r2, i2)

λ21{i2=0,r2<δ2,r1+r2<K} n′
= (n1, r1, i1; n2 + 1, r2 + 1, 1)

λ21{i2=1∥r2=δ2∥r1+r2=K} n′
= (n1, r1, i1; n2 + 1, r2, i2)

p1µ11{i1=1,{i2=1∥r2=δ2}} n′
= (n1 − 1, r1 − 1, 0; n2, r2, i2)

p1µ11{i1=1,i2=0,r2<δ2}
n′

= (n1 − 1, r1, 0; n2, r2 + 1, 1)

p2µ21{i2=1,{i1=1∥r1=δ1}} n′
= (n1, r1, i1; n2 − 1, r2 − 1, 0)

p2µ21{i2=1,i1=0,r1<δ1}
n′

= (n1, r1 + 1, 1; n2 − 1, r2, 0)

(1 − p1)µ11{i1=1} n′
= (n1, r1, 0; n2, r2, i2)

(1 − p2)µ21{i2=1} n′
= (n1, r1, i1; n2, r2, 0)

ν11{i1=0} n′
= (n1, r1, 1; n2, r2, i2)

ν21{i2=0} n′
= (n1, r1, i1; n2, r2, 1).

Here, the first four lines represent arrivals; lines 5–8 represent
departures; lines 9 and 10 represent phase completions without
departures; and the last two lines represent the residents returning
to their patients after waiting for the test results.

The generator-entries for other states are obtained following
the same reasoning. The diagonal entries of Q are such that all row
sums equal zero.

Appendix B. Conditional performance measures

We next summarize the steps in obtaining the conditional
expected sojourn time of a patient.More details on thismethod can
for example be found in [12,14]. Recall that the expected sojourn
time of an admitted patient, conditioned on the state of the system
at the instant the patient has arrived, is expressed by

Sn,j =


∞

0
σn,j(x)fj(x)dx,

with σn,j(x) = αn,j +

n′

τn′,j(x)ψj(n,n′).

The following subsections respectively describe the analysis of the
conditional expected waiting time αn, the conditional expected
treatment time τn(x), and the transition probabilities ψ(n,n′).

B.1. The conditional expected waiting time

The conditional expectedwaiting time of a tagged type j patient
that has just arrived, and upon arrival encountered a certain state
n, can be determined by considering an alternative system equal
to the original system, but with the arrival rate of type j patients
equal to zero. The time it takes for the alternative system to reach
a state in which the queue for type j patients is empty equals the
waiting time of a type j patient in the original system, since this
implies the tagged patient will start his service.
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For completeness, we summarize the resultsmentioned in [12].
Let Q̃ denote the generator of the process obtained by letting λj =

0, and removing all states with an empty type j queue. The states
with no type j patients queued represent the absorbing set. The
time until absorption can then readily be determined by defining
α̃n := −1/diag(Q̃), with diag(Q̃) the diagonal of Q̃. Let P̃ be the
one-step transition probabilitymatrix of the embedded jumpchain

of the process described by generator Q̃. Then, αn =


I − P̃

−1
α̃n,

with I an identity-matrix of appropriate size. The inverse of
I − P̃


exists since P̃ is by definition a substochastic matrix.

B.2. The conditional expected treatment time

The expected treatment time of a tagged patient with
consultation time x entering a treatment room in state n, τn(x),
can be described by a system of differential equations, in whichwe
assume that the tagged patient cannot leave the system for some
small time ∆. We augment the state space by z ∈ {0, 1}, where
z = 1 indicates the doctor is with the tagged patient.

We now formulate the differential equations for the conditional
expected treatment time by conditioning on a small time∆ during
which the tagged patient cannot complete its treatment. Note
that the doctor still occasionally visits the tagged patient as if it
were a regular patient, but after a visit the tagged patient will
not leave the system. For the conditional expected treatment of
a type 1 patient that is currently seen by the doctor in state ñ =

(n1, r1, i1; n2, r2, 1; 1) with n1, n2 > 1, r1 + r2 < K (K the total
number of treatment rooms), we get

τñ(x) = ∆ + λ11τñ+e1(x − O(∆))

+ (1 − p1)µ21τñ+e2−e7(x − O(∆)) + λ21τñ+e4(x − O(∆))

+ p2µ21τñ−e4(x − O(∆)) + (1 − p2)µ21τñ+e5(x − O(∆))

+ (1 − λ1 − (1 − p1)µ1 − λ2 − µ2)1τñ(x − ∆) + o(∆).

Here ek denotes a vector with value 1 at position k and zeros
elsewhere. The second and fourth line on the right-hand side
respectively represent that in time ∆ an arrival of type 1 and 2
has occurred, to a state with one additional type 1 patient (ñ+ e1)
and one additional type 2 patient (ñ + e4). Line three refers to a
completion of the current phase of the tagged patient, where the
doctor gets an extra room and the service of the tagged patient is
temporarily paused (ñ+ e2 − e7). Line five represents a departure
of type 2 (ñ−e4), and line six a phase completion of a type 2 patient
where the type 2 doctor treats a new patient in an additional
treatment room (ñ+e5). The last two lines represent, respectively,
that nothing happens and that two events happen in time ∆. The
equations for states with z = 0 and boundary states can be
obtained in similar ways. We then obtain the derivative of τñ(x)
by rearranging terms and letting ∆ → 0.

This system of differential equations may equivalently be
written in matrix notation. To this end, we introduce generator
Q∗, which is identical to Q excluding all states with nj = 0 and
the departure ratemodified such that the permanent patient never
leaves the system. All diagonal elements of Q∗ are such that each
row sums to zero. Since there are states in which the service rate
of the tagged patient equals 0, we reorder the states such that the
state space can be split into states with z = 1 (subscript +) and
with z = 0 (subscript 0). We write Q∗ as follows:

Q∗
=


Q∗

+ Q∗

+0
Q∗

0+ Q∗

0


.

The system of differential equations can then be written as

∂

∂x
τ+(x) = 1 + Q∗

+0τ0(x) + Q∗

+τ+(x), (B.1)
with 1 a vector with all entries equal to one. The initial condi-
tion of this system is τ+(0) = 0, which indicates that the con-
ditional expected treatment time of a patient with consultation
time zero equals zero almost surely. Here τ0, τ+ are vectors con-
taining τ ñ for states with z = 0 and z = 1 respectively, and
τ(x) = (τ+(x), τ0(x)). This system is similar to a system with one
permanent patient.

Letπ∗
+ be a stationary distribution obtained by solvingπ∗

+Q
∗
+ =

0. Then, the conditional expected treatment time of a patient with
consultation time x is given by:

τ+(x) = x1 +

I − exp


x

Q∗

+ − Q∗

+0(Q
∗

0)
−1Q∗

0+


γ, (B.2)

τ0(x) = −(Q∗

0)
−1 

1 + Q∗

0+τ+(x)

,

with γ the unique solution of

−

Q∗

+ − Q∗

+0(Q
∗

0)
−1Q∗

0+

γ = Q∗

+0(Q
∗

0)
−11,

π∗

+γ = 0.

Following the derivation in [12], we may show that (B.1) has a
unique solution, and it is readily checked that (B.2) is the solution.

B.3. Transition probabilities

The conditional expected access and treatment time have to be
linked together by the probability that a patient arriving in state n
starts his service in state n′. By analogy with the derivation above,
we obtain the probability matrix ψ by tagging a patient and aug-
menting the state space with the location l of the tagged patient,
which equals zero if the patient is no longer queued. In this sys-
tem, all states where the tagged patient is no longer queued form
an absorbing set. For completeness, we summarize these results
from [12]. Denote with P• the one-step probability matrix of the
embedded jump chain of the augmented Markov chain. Then, for
all states n in the absorbing set P•(0,n; 0,n) = 1. For all other
states, P•(l,n, l′,n′) is non-zero only if Q(n,n′) > 0 and there is a
transition from l to l′. P• can be written as

P•
≡


I O
P•

0 P•

+


,

with O the null-matrix, P•
0 a stochastic submatrix corresponding

to transitions from the recurrent states into the absorbing set, and
P•

+ transitions among the recurrent states. We obtain the prob-
ability matrix ψ using ψ(n,n′) = ψ•(l,n; 0,n′), and ψ•

=
I − P•

+

−1 P•
0 , where the inverse always exists since P•

0 is sub-
stochastic, see [12].
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