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Abstract

Ž .In this paper, a low-cost load cell force sensor is presented in which the force to be measured is transformed into a fluid pressure.
The design consists of a boss, attached to a membrane, and a bucket-like structure which encloses a fluid volume. This geometry causes a
force to be transformed into a pressure. We show that this transformation only depends on the geometrical parameters of the load cell and
that it is independent of the Young’s modulus of the membrane resulting in very low creep and hysteresis. Experimental results with loads
up to 1000 kg show very good repeatability and are in close agreement with both analytical and numerical calculations. q 1999 Elsevier
Science S.A. All rights reserved.
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1. Introduction

Load cells are used in, for example, weighing bridges
for lorries, cars and trailers. Also in bulk industries, it is
necessary to measure weights as accurately as possible.
Most current load cells are made of steel. The performance
of these load cells is limited by hysteresis and creep even
when expensive high-grade steels are used.

The load cell we are aiming at has the following
specifications.

Ž .Ø maximum load: 10 000 N 1000 kg
Ø full scale accuracy: 0.03%s0.3 kg
Ø temperature range: y10 to 508C
Ø production costs: less than US$75
Ø calibration: once in 2 years

The load cell discussed in this paper is shown in Fig. 1.
It consists of a bucket in which a fluid is sealed by a
membrane. A Vitone seal is used to prevent leakage. The
force is applied to a boss which is attached to the center of

Ž .the membrane. Due to this positive force, the boss is
displaced downwards and the fluid is pressed away from
beneath the boss. As the fluid cannot escape, the pressure
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increases. This pressure and the shear force in the mem-
brane carry the force which is applied to the boss. It will
be shown that the pressure difference between the fluid
and the air is independent of the Young’s modulus of the
membrane which means that the pressure is independent of
creep and hysteresis in the membrane.

w xIn Ref. 1 , a force-to-fluid pressure transformation was
introduced for application in a new kind of load cell. This
load cell consists of a piston under which the fluid is
seated. Characteristic for this load cell is its high sensitiv-
ity. However, its sensitivity to hysteresis is probably large,
because the pressure–force relation is a function of the
Young’s modulus of the screws which are used. Another
disadvantage is that it needs a Teflon seal and a proper
surface finish of the mating steel parts to enclose the fluid.
The load cell discussed in this paper does not have these
drawbacks. It only needs a Vitone ring for sealing the
fluid. As a membrane is used to enclose the fluid, a proper
surface finish of the mating steel part is not necessary. In
Section 2, a model of the load cell is presented. In Section
2.1, the pressure–force relation is derived under the as-
sumption of incompressibility of the fluid. In Section 2.2,
the compressibility is incorporated into the calculations. In
Section 2.3, the stresses in the membrane are calculated
under the assumption of incompressibility of the fluid. The
pressure dependence on temperature is analyzed in Sec-
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Fig. 1. Layout of the force-to-fluid pressure load cell. The force presses
the boss downward. This causes a pressure increase in the fluid. The
membrane encloses the fluid in the bucket.

tions 2.4 and 2.5. Finite element calculations are presented
in Section 2.6. The realized prototype and experimental
results are presented in Section 3. Finally, conclusions are
drawn in Section 4.

2. Modeling

In this section, the load cell is modeled and analyzed
analytically and numerically.

2.1. Pressure–force relation for incompressible fluid

In Fig. 2, a schematic drawing of the deformation
profile of the membrane and the deflection of the boss for
some load F is shown. T is the shear force between the
membrane and the boss. The pressure difference P be-s

tween the fluid and the air acts on the membrane and the
boss. Equilibrium of forces for the boss is given by

TsFyP p r 2 . 1Ž .s 2

Ž .The deflection profile w r of the membrane has to satisfy
the following boundary conditions.

dw dw
w r s0, r s r s0 2Ž . Ž . Ž . Ž .1 1 2d r d r

w xUsing elasticity theory for plates 2 , it can be derived from
Ž . Ž .Eqs. 1 and 2 that

F 1yÕ2Ž .
w r s g r ,r ,rŽ . Ž .1 1 23Eh

P 1yÕ2Ž .s
q g r ,r ,r , 3Ž . Ž .2 1 23Eh

where g and g are functions of r, r and r . Õ is the1 2 1 2

Poisson’s ratio and E the Young’s modulus of the mem-
brane. By assuming incompressibility of the fluid, the
volume is constant under deformation of the membrane:

r12p r w r q 2p rw r d rs0. 4Ž . Ž . Ž .H2 2
rsr2

Ž .The pressure–force relation is derived from Eqs. 3 and
Ž .4 , yielding

F
P s ,s Aeff

p r 2
2

A seff
p

=
1y4 s2 q6 s4 y4 s6 qs8Ž .

,2 4 2 4 6w x w x3.82ln s s ys q0.95 1ys ys qsŽ .Ž .
r1

ss . 5Ž .
r2

Ž .A is called the effective area. Eq. 5 shows that theeff

pressure–force relation only depends on the geometrical
dimensions and not on the Young’s modulus of the mem-
brane. The change of these parameters is a only a second-

Ž .order effect which is not shown by first-order linear
elasticity theory. Therefore, it can be expected that the
force-to-fluid pressure transformation has low sensitivity
to creep and hysteresis in the membrane. An impression of
the effective area in comparison to the total area of the

Ž .bucket sarea bossqarea membrane and the area of the
boss is shown in Fig. 3. From this figure, it can be
concluded that the effective area lies somewhere between
the area of the boss and the area of the bucket, because
p r 2 -A -p r 2. For a ratio r rr approaching one, the2 eff 1 1 2

2 Ž .effective area approaches p r so that from Eqs. 1 and2
Ž .5 , it follows that the shear force T in the membrane
becomes zero. For the parameters given in the caption of
Fig. 4, the pressure–force sensitivity is calculated from Eq.
Ž .5 giving EP rEFs47.9086 ParN. The values of thes

geometric parameters will be explained in Section 2.2 to
Section 2.5.

Ž .Fig. 2. Deformation of the membrane. w r represents the deflection of
the membrane at position r.
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Fig. 3. Effective area divided by the area of the bucket and effective area
divided by the area of the boss as a function of the ratio ss r r r .1 2

Ž .The expression for the deflection w r of the membrane
Ž . Ž .follows from Eqs. 3 and 5 giving

F Õ2 y1 rŽ . 1
w r s l ss ,r ,r , 6Ž . Ž .13 ž /rEh 2

Ž .where l r rr ,r ,r is a rather complex function. An1 2 1

impression of the deformation of the membrane for some
chosen parameters is shown in Fig. 4 where the membrane
is assumed to be made of steel.

2.2. Pressure–force relation for compressible fluid

w x Ž .By including compressibility of the fluid 3 , Eq. 4
becomes

r P1 s2p r w r q 2p rw r d rsDVsV , 7Ž . Ž . Ž .H2 2 0 Ersr Õ2

where E is the bulk compressibility modulus, V theÕ 0

initial volume and DV the decrease in volume of the
compressed fluid. For water, E s2.24 GNrm2. The ef-Õ

fective area is calculated the same way as before, giving

16V Eh3
02 4 6 61y3s q3s ys q s6 2½ 5p E r Õ y1Ž .Õ 12A sp r .eff 2 2 4w x3.82ln s s q0.95 1ysŽ .

8Ž .

We see that the Young’s modulus appears in this equation,
16V Eh3

0
therefore the term must be made as small6 2p E r Õ y1Ž .Õ 1
as possible. The simplest method to reduce this term is by
taking a very small initial fluid volume. For the parameters
in the caption of Fig. 4, the pressure sensitivity now equals

EP rEFs47.9082 ParN which only deviates 0.0008%s

from the incompressible case. So it is concluded that the
assumption of incompressibility can be maintained. From
now on, it will be assumed in the analytical calculations
that the fluid is incompressible.

2.3. Mechanical stresses in the membrane

As the membrane is rather thin, it must be checked
whether the yield stress is not exceeded, because this
would lead to plastic deformation of the membrane.

In the membrane, three stresses are present: radial,
tangential and shear stress which is acting in the direction

Ž .of force F s , s and t , respectively . The first two arer t
w xcalculated from their corresponding moments 2 and they

have a maximum on the top and bottom sides of the
membrane. As all three stresses occur at the same place in
the membrane, the Von Mises stress criterion is used to

w xdetermine the maximum allowable stress. It is given by 4

1 2 2 2 2s s s ys qs qs q6t . 9Ž . Ž .(V r t t r2

ŽA plot of all the stresses is shown in Fig. 5 the parameters
.shown in Fig. 4 are used . The yield stress of steel is about

w x1.5 Gpa 5 , so it should be possible to bear a load of
10 000 N.

A simple expression for s can be obtained by neglect-Õ

ing the shear stress t . It can be shown that this stress is
very small in comparison to s and s . For a ratior t

ssr rr approaching one, at the boss, t even becomes1 2
Ž .zero, because as was already concluded the shear force T

becomes zero. It is seen that the maximum stresses occur

ŽFig. 4. Deformation of the steel membrane Fs10 000 N, Es210 GPa,
Õs0.3, hs0.5 mm, r s10 cm, r s6.21 cm, ds1 mm and as2.51 2

.cm .
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Fig. 5. Radial, tangential, shear and Von Mises stresses in the membrane.

at rsr . Therefore, the maximum Von Mises stress in the2

membrane is approximately given by

2(3F 1yÕyÕŽ .
s s g s ,Ž .V ,max 24p h

4ln s s4 y5s4 q8ln s s2 q4 s2 q1Ž . Ž .Ž .
g s s . 10Ž . Ž .2 41y2 s qsŽ .

Ž .The function g s is drawn in Fig. 6. It is concluded that
the maximum stress can be reduced for a large membrane
thickness and a ratio ssr rr approaching one.1 2

2.4. Dependence of effectiÕe area on temperature

For describing the effective area as a function of the
temperature change T , r and r must be written as a1 2

function of temperature. For a thermal expansion coeffi-
cient a of the boss and membrane, they arebossrmembrane

given by

r sr 1qa TŽ .1 1,0 boss r membrane

and
r sr 1qa T , 11Ž .Ž .2 2,0 boss r membrane

where r and r are the radii for Ts0. Then, from1,0 2,0
Ž . Ž .Eqs. 5 and 11 , it follows that for small temperature

changes,

d Aeff

dT s2a . 12Ž .boss r membraneAeff

The resulting maximum error for a maximum temperature
increase T is given bymax

´ s2a T . 13Ž .A boss r membrane maxeff

For a steel boss and membrane a s12=10y6
bossrmembrane

8Cy1 so that for a maximum temperature increase T smax

308C, the error is only 0.07%. This error can be compen-
sated for by measuring the temperature.

2.5. Dependence of pressure on temperature due to differ-
ence in thermal expansion coefficients of bucket and fluid

Another temperature effect is caused by the difference
in thermal expansion coefficients of the bucket and fluid.

Ž .In order to model this effect, Eq. 4 is changed to
r12p r w rsr q 2p rw r d rŽ .Ž . H2 2

rsr2

syV 3 a ya T . 14Ž . Ž .0 fluid bucket

Ž .By setting F equal to zero, it follows from Eqs. 3 and
Ž .14 that the pressure–temperature sensitivity is given by

d P s6h3E a ya VŽ .s fluid bucket 0
s15.29 . 15Ž .2 6 6 4 2dT 1yÕ r s y3s q3s y1Ž . Ž .1

Ž .The pressure variation error which is introduced by
temperature variations is considered with respect to the

Ž .pressure at full load F s10 000 N . Therefore, inmax

minimizing the temperature error, one has to minimize

d Ps
Tmaxž /dT

´ s . 16Ž .D a d Ps
Fmaxž /d F

Ž . Ž . Ž .Substitution of Eqs. 5 and 15 in Eq. 16 gives

16T V a ya Eh3Ž .max 0 fluid bucket
´ s k s,Õ ,Ž .D a 4F rmax 1

s4

k s,Õ s .Ž . 2 4 2 2 21yÕ s y 1yÕ ln s s y1qÕŽ . Ž . Ž .Ž .
17Ž .

So, it can be concluded that the fluid volume and Young’s
modulus should be minimized and that both thermal ex-

Ž .Fig. 6. Von Mises stress parameter g s .
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pansion coefficients must match as close as possible. It
could also be concluded that h must be decreased, r1

increased and s increased. However, one has to take into
account that the change of these parameters leads to a

Ž Ž ..change in the maximum Von Mises stress see Eq. 10 .
So, one has to incorporate the maximum Von Mises stress

Ž . Ž .in Eq. 17 , which is done by solving h from Eq. 10 ,
resulting in

DT F V a ya EŽ .(max max 0 fluid bucket 2´ s b s,Õ . 18Ž . Ž .D a 1.5 4s rV ,max 1

Ž 2 2 .The function b s,Õ s0.3 is plotted in Fig. 7. It is
concluded that the ratio ssr rr should be chosen close1 2

to one and r as large as possible. For water at 208C,1

a s207=10y6
8Cy1. Then, for T s308C, the er-water max

ror equals 0.07%. In this calculation, the parameters shown
in Fig. 4 are used and it is assumed that the bucket is made

Ž .of steel. Again this small error can be compensated for
by measuring the temperature.

2.6. Finite element calculations

In order to support the analytical calculations, the load
cell is also analyzed in the finite element program Ansys

Ž .5.3. For the compressible fluid, FLUID79 elements are
taken. The point force is applied in the center of the boss.
The element mesh is shown in Fig. 8. The numerical
calculated pressure–force sensitivity varies in all elements

Žbetween 45.4 and 48.8 ParN the analytical value for the
compressible and incompressible case equals EP rEFss

.47.9 ParN . This is due to the small height of the fluid.
The elements deform too much which causes the spread.
But when ds1 cm is taken, then for all elements, EP rEFs

s47.90"0.01 ParN is obtained.

Ž 2 2 .Fig. 7. Error parameter b s,Õ s0.3 .

Fig. 8. Element mesh. For sake of clarity, the dimensions are not the
same as in Fig. 4. In actual simulations, much more elements were used.

The temperature effect which was discussed in Section
2.4 cannot be checked in Ansys, because the numerical
error is larger than this error. However, the temperature
effect discussed in Section 2.5 can be analyzed in Ansys.
This is done by taking ds1 cm. Then Ansys calculates a
pressure–temperature sensitivity of EP rETs112.3"0.05s

Ž .Par8C. The analytical value follows from Eq. 15 , giving
EP rETs116.6 Par8C.s

From the numerical calculations, it is concluded that the
analytical formulas are correct and that they can be used to
dimension the load cell.

3. Realization and experiments

In order to test the theory, a prototype has been realized
in which the membrane and bucket are made of steel and

Ž .are sealed with a rubber ring Vitone . Bolts are used to

Fig. 9. Output Wheatstone bridge of the pressure sensor.



( )R.A.F. Zwijze et al.rSensors and Actuators 78 1999 74–80 79

Fig. 10. Absolute value of the repeatability error in the output of the
pressure sensor.

connect the different parts. The parameters are Es210
GPa, Õs0.3, hs0.5 mm, r s10 cm, r s6.21 cm,1 2

Ž .ds1 mm and as2.5 cm see also Fig. 4 . The pressure
was measured with a commercially available silicon pres-
sure sensor, model Honeywell 24PCF. Repeatability and
hysteresis of this sensor are within "0.15% and its linear-
ity within "1.0% of full scale.

The load cell was tested by loading the load cell twice.
Each loading was done for 60 s and each second, the
pressure was measured. Weights were available in steps of

Ž .100 kg "2.5 kg up to 1000 kg. As each measurement
Ž .only took 120 s including zero load measurement , tem-

perature effects were eliminated. Longer measurements
were not possible because of the temperature dependence
of the pressure sensor. However, in practical situations,
longer measuring times may be necessary. The average

Ž .output difference between loading and unloading of the
pressure sensor is shown in Fig. 9. The load cell behaves
linearly and the experimental pressure sensitivity equals
48.1 ParN which is in close agreement with the analytical

Ž .and numerical result 49.7 ParN . The repeatability error
as a percentage of the output at maximum load is shown in
Fig. 10. It is seen that this error is within 0.025%. This is a
good result. It is not known how much of this error is
caused by the pressure sensor. Measurements with a very
accurate pressure sensor are necessary to reveal this.

4. Conclusions

The design and modeling of a force-to-fluid pressure
load cell has been described. It is proven that the
pressure–force relation is in first order only depending on
the geometrical parameters of the load cell and is indepen-
dent of the Young’s modulus of the membrane under the
assumption of an incompressible fluid.

By including compressibility of the fluid, the pressure–
force relation deviates only 0.0008% from the incompress-
ible case.

The analytical calculated temperature error which is
caused by the change in effective area equals for a steel
boss and a steel membrane and a temperature increase of
308C only 0.07%. This error can be compensated for by
measuring the temperature.

By making the ratio r rr close to one, the temperature1 2

error due to the difference in thermal expansion coeffi-
cients of the fluid and bucket is minimized. The error can
also be minimized by matching these coefficients or by
reducing the height d of the fluid. For the realized load
cell, the analytical calculated error is 0.07%.

Analytical, numerical and experimental calculated pres-
sure–force relations are in very close agreement with each
other so that the analytical expressions can be very well
used for designing purposes.

In order to eliminate the temperature dependence, un-
loading and loading the load cell was performed in 120 s.
The experiments show a repeatability error of less than
0.025% which indicates that the desired accuracy of 0.03%
is feasible. This repeatability was obtained by using a
pressure sensor with a repeatability error within "0.15%.
Measurements with a very accurate pressure sensor have to
be performed to find out how much creep and hysteresis
exactly are.
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