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Modeling of the Collector Epilayer of a 
Bipolar Transistor in the MEXTRAM Model 

H. C. de Graaff and W. J. Kloosterman 

Abstract- A new model description for the behaviour of epi- 
taxial collectors in bipolar transistors is given. This is part of 
MEXTRAM, a compact model for circuit simulation, and it 
gives the voltage drop and stored minority carrier charge in the 
collector epilayer as a function of the bias conditions. It covers 
(total) depletion and quasi-saturation for both ohmic and space 
charge conditions in the end region of the epilayer. New features 
are that the collector current and stored charge are given as 
explicit analytical functions, thus guaranteeing continuity also for 
their derivatives, and that collector current spreading is taken 
into account. 

I. INTRODUCTION 
MONG the bipolar compact models for circuit design the A Gummel-Poon model [ l ]  is up to now widely used. In 

its extended Spice versions quasi-saturation or base push-out 
effects are modeled by a modification of Q b e ,  the stored charge 
of minority carriers injected from the emitter into the base. 

Kull et al. [2] improved the Gummel-Poon model in a more 
realistic and physical way by modeling the voltage drop and 
the charge storage in the epitaxial collector region in the quasi- 
saturation situation. However, their analysis was based on the 
assumption of quasi-neutrality in the entire epitaxial collector 
region, thus excluding voltage drops due to space charge 
modulation by hot carriers. It is true that the Kull model has a 
mobility depending on the quasi-Fermi level gradient, but the 
formulation gives erroneous results for I ,  > Ih, = y.N.w,.A, 
(see e.g. Fig. 6) .  

Jeong and Fossum [3] extended the Kull model for I ,  > Ih, 
by incorporating hot-carrier modulation of the space charge. 
They approximated the drift velocity of the carriers in the 
epilayer as a function of the electric field by two straight 
lines: 'ud = ,LL . E and Ud = us, with p and U, as constants. 
This means physically that only purely ohmic behavior and 
complete velocity saturation are considered. It also implies 
that in the crossover point the derivatives of the function are 
discontinuous, leading to numerical instabilities. Moreover, the 

intemal base-collector voltage V, was written as an explicit 
analytical function of I ,  and Vcb .  The drawback was that 
this V, is not the intemal base-collector junction voltage in 
quasi-saturation when I ,  > Ih,. A consequence was that this 
V,, although it gave the right answer for the epilayer charge 
storage, could not be used for the collector depletion charge 
and a second intemal junction voltage was needed. 

In this paper we propose a new formulation of the voltage 
drop and the charge storage in the epitaxial collector region, 
more suitable to be implemented in a compact transistor model. 
It gives the collector current I ,  and the stored charge Qepl in 
explicit form, without discontinuities and for all bias situations 
(ohmic, hot carriers, total depletion and even reverse mode of 
operation). The intemal voltage V, is valid for both depletion 
and charge storage. Three-dimensional effects (sidewalls and 
current spreading) are incorporated without complicating the 
numerical solutions. For D.C. characteristics the results are 
similar to those of the Jeong-Fossum model, but the numerical 
stability is much greater. Because the higher derivatives are 
continuous, non-linear distorsion is fairly well predicted [ 121. 
At low current levels (ohmic behavior) it is identical with the 
Kull model, but much more realistic at higher current levels 
(see Fig. 6). 

The model has been implemented in a new release of 
MEXTRAM [I31 and tested in the circuit simulator Pstar 
(used within the Philips' designers community) and in the 
Hewlett-Packard's Microwave Design System. 

11. ONE-DIMENSIONAL DESCRIPTION 

Basically we can distinguish four different situations in 
the collector epilayer of a bipolar transistor in the forward 
mode of operation. These are characterized by the electric field 
distributions in the epilayer, which are sketched in Figs. 1 4  
for an npn transistor. 

solution required an iterative procedure. 
In the first version of the MEXTRAM model [4] the hot- 

carrier effects in the collector epilayer were also taken into 
account. The formulation was such that a smooth transition 
from ohmic to hot-carrier situations was guaranteed and the 

A. Depletion Plus Ohmic 
The base-collector junction is situated at z = 0 and w is 

the width of the epitaxial layer (see Fig. 1); the width of the 
depletion layer Z d  is given by [51 
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Fig. 1. Electric field distribution in the epitaxial collector for the ‘‘depletion 
plus ohmic” situation. W is the epitaxial layer thickness, zd the depletion 
layer thickness 

Fig. 3. 
The injection region is from z = 0 to 1 = I,. 

Electric field distribution for the “injection plus ohmic” Situation. 
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Fig. 2. Electric field distribution when total depletion occurs. 

(Nbase >> N ) .  Vj is the internal junction voltage, given by I ,  > Ih, the mobile electron charge overcompensates the fixed 
impurity charge N and the field gradient changes sign. This 
is sketched in Fig. 2. v , = V  cb - IC ’ Rev. (2) 

Equation (2) represents the ohmic voltage drop in the epilayer 
when a collector current I ,  flows. R,, is the ohmic resistance 
of the whole epilayer: 

(3) 

Here N is the epilayer dope, assumed to be constant, and A, 
is the emitter area. 

In the depletion region (0 -zd) we assume the electric field 
to be high enough to cause saturation of the drift velocity 
(vdr = U,).  The term (1 - Ic/Ihc) in (1) then represents 
the modulation of the space charge by the electrons in transit 
(I , /(q.A,.v,)) .  The quantity Ihc is related to the fixed charge 
of the ionized donors: Ihc = q . N . U ,  . A,. 

R. Total Depletion 
When in (1) Vj increases andor I ,  approches Ihc. X d  may 

become equal to W :  the epilayer is then totally depleted. If 

C. Injection Plus Ohmic 
From (1) and (2) it follows that zd  = 0 if Vcb+Vd-Ic.Rcv = 

0. This means that the base-collector junction is no longer 
reversely biased and a further increase in I ,  (or a decrease in 
V,b) causes injection of holes from the base into the collector 
epilayer. These holes will be stored in the injection region 
(O<x<z;) ,  see Fig. 3. If we assume that in this injection 
region there is no recombination ( J p  = 0) and quasi-neutrality 
( N  + p = n) [6], [7] we can write for the majority carrier 
current density J,: 

J ,  = q .  D, . (2 + !) . dP (4) 

Now we introduce normalized concentrations for p(O) ,  p ( z i )  
and p(w):  

P ( 0 ,  x i ,  w) 
N Po,i,w = 
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Using the neutrality condition we can write for the respective 
pn-products: 

Vt is the thermal voltage k.T/q  and v d  is the diffusion voltage 
(Vd = V, . ln(N/n;)').  Following Kull et al. [2]  we introduce 
the function K ( V )  

K ( V )  = JI + 4. exp{-(V + v ~ ) / K }  (6) 

and get 

KO,;,, =K(V, ,  K ,  Kb) = 2 .po,;,,  + 1 (7) 

(8) 

The voltages Vj,;,+ are the local differences between the quasi 
Fermi levels pn and ' p p .  With these normalized concentrations 
we can integrate (4) over the injection region: 

Substituting (7) and (8) and after multiplying both sides by 
the emitter area A, we get 

v,i + v, - vj 
z i / W .  Rm 

I,  = 

In ( IO)  the voltage Vj is again considered as the internal 
junction voltage and V ,  - Vj is then the small voltage drop 
across the injection region. 

As the end region (z; <z< W )  is supposed to be ohmic, 
with Jp = 0 and p + N = n, (4) can also be integrated from 
zi to W ,  leading finally to an alternative formulation of (IO): 

V,, + v c b  - V ,  
(1 - z.;/W) . R,, 

I ,  = 

K; - K ,  - In ____ 
K, + 1 

Vcb - V ,  is here the voltage drop across the ohmic end region. 
The model of Kull et al. is obtained when (4) is integrated 

over the whole epilayer, from 0 to W and by adding an extra 
term to account for non-ohmic behavior: 

Note that (10) is generally applicable whenever an injection 
region exists, in contrast with (1 1) and (12), which also require 
the existence of an ohmic end region. 

D. Injection Plus Hot Carriers 
For IC > Ih, the end region (2; <x< W )  no longer shows 

ohmic behavior; the injection region is followed by a space 
charge region filled with hot electrons: see Fig. 4. 

Poisson's equation reads as [7 ] :  

dE - 9 . N  - ds - - t (1 - 2) 
We integrate this twice over the region from z; to W and get, 
with E(x ; )  = -vs/pn as boundary condition 

where HR,, = W2/(2  . E . w, . A , )  is the hot carrier 
epilayer resistance. Usually is HR,, > RCu. The quantity 
z;/W follows from (10). As an extra condition to solve for V ,  
we now require that the electric field is continuous at z = z;, 
equals --wS/pn of the injection region and space charge region. 
Finally, this leads to (see Appendix A) 

Equations (IO), (13), and (14) establish a relationship between 
I,, V,b and Vj,  so the problem is in principle solved. So far 
the treatment is simular to that of Jeong and Fossum [3] but 
for some details. The relationship is not well suited for being 
part of a compact model for circuit simulation for it needs an 
iterative procedure and it possess discontinuous derivatives at 
the transition point IC = IhC. We will simplify the model by 
the following approximations; 

1) From (7), (IO), ( l l ) ,  and (12) we obtain 

In all practical cases we have either p, << 1 and pi << 1 
(normal forward mode) or pi  M p ,  (hard saturation or 
inverse mode of operation). So, approximately VO; zz 
Vow and V,, = Vow - Voi M 0. 

2) From (5) and (14) we have 

V, = - v d  - V, . ln(p0 . (PO + I)} M - V d  

So, roughly, V; NN V j  
With the approximations 1. and 2. ( 1  3 )  becomes 

and (10) changes into 

Equations (15) and (16) give I ,  implicitly as a function of 
Vj and V,b in the injection plus hot carrier situation. Fig. 5 
compares the exact solution with the approximated model. In 
this picture we use a regional model below and above Ih, with 
discontinuous derivatives at the transition point. This will be 
eliminated in the next section. 

n 
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Fig. 5.  Comparison between the exact solution (full model) of (IO),  (13), 
and (14) and the approximation of (15) and (16). A smooth transition between 
ohmic and hot carrier situations is not yet depicted. 

Merging the ohmic and hot carrier formulas: In situation 
C. (injection plus ohmic) we will call I ,  now IQ and choose 
( 1 1 )  together with the approximations 1. and 2., as the 
appropriate expression: 

We define a current I,,,, as 

which sets a limit (ItLc) to IQ.  If we transform the current I ,  
in (15) into 

we get a smooth transition from I ,  = IQ for IQ << Ihc to 

Vcb - 4 - Ihc . Ret, ' (1 - xz/w) 
HR,, . (1 - Z , / W ) ~  IC = Ihc + 

for IQ >> Ihc. Together with x t /W = VoW/(Ic . R,,,) from 
(16), ( I  7), (1 8), and (19) give I,( V, , Vcb) for all four situations 
A, B, C and D. If injection does not occur (situation A and 
B) Vow = 0 and z, = 0, but (1 9) remains valid, as the reader 
may easily verify. 

In Fig. 6 the behavior of the MEXTRAM, Kull and Jeong- 
Fossum models are shown. The MEXTRAM results differ 
around I ,  x Ihc appreciable from those of the Jeong-Fossum 
model and we derive an explicit function, without solving a 
set of non-linear equations. Moreover, their solution shows 
discontinuities in the first and higher order derivatives at 
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Fig. 6.  
layer voltage drop ( I k b  - 
Jeong-Fossum models. 

Normalized collector current ( I ,  / I , ! c )  versus the normalized epi- 
. Ret) for the MEXTRAM, Kull and 

buried layer 

Fig. 7. 
sions are L ,  x H,  . o is the current spreading angle. 

Three-dimensional sketch of the transistor structure. Emitter dimen- 

I ,  = Ihc, caused by the drift velocity not being an analytical 
function of the electric field. 

111. THREE-DIMENSIONAL EXTENSION 

In this section we will account for sidewall effects and for 
the current spreading in the collector epilayer in a simple and 
approximative way. The situation is sketched in Fig. 7: L,  and 
He are the emitter dimensions, a is the spreading angle. 

The total collector current IC consist of the bulk and the 
sidewall components (IbU = .JbU . H ,  . L,, I,,, = 2 . Jaw . 
( H e  + L e ) )  so: 

IC 
Ibu = 

1 + 2 . ~ , .  (&+&) 
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where Y, = J,,/Jb, is the ratio of the sidewall and bulk 
current densities [14]. Due to the current spreading the bulk 
current density Jbu becomes position-dependent: 

* J b u ( X )  = 
Ae . { 1 + 2 .  Y, (+ + d) } . ( 1  + a. z) 

The ohmic resistance of the total epilayer now becomes 

l W  
Rc, = - 

IC 
P .  J b U ( 2 )  dz. 

We may put 

with 

x ( 1  + 2 .  1 a. W )  

With respect to the one-dimensional case, the effective emitter 
area has increased and R,, has decreased. From the compar- 
ison with exact spreading resistance calculations [8] we leam 
that the angle cy x 40’. 

We retum to situation D (injection plus hot carriers, see 
Fig. 4). Poisson’s equation in the end region (zi < z < W )  
now reads as 

Integrating twice again gives 

The difference with (13) in the one-dimensional case is the 
multiplication with the spreading factor S. For this function 
S we get, after rather extensive mathematical manupulations 
(see appendix B), 

Although this approximation is derived for a .  W < 1, it is also 
reasonably good for a . W > 1, see Fig. 8. 

This S differs from the spreading factor (1 + ( l / 2 )  . a . W )  
in the ohmic case (23) in that 

Solid line: exact formula 
Doshed line: approx imot ion 

0.0 0.2 0.4 0.6 0.8 1.0 
Xi/W 

Fig. 8. Comparison between the exact spreading factor and the approxima- 
tion (26) for large values of a . It’. 

it depends on z,: for 2, = 0, S FZ 1 + 1/3 .  a .  W 
the spreading angle is usually larger than 40” at these 

We follow the same procedure as in the one-dimensional 
case and change in (25) V ,  into V,, define I ,  and I,,, as in 
(17) and (18) and take S.I,, x Il,, and w,.W/p, FZ I,,.R,,. 
Then we end up with 

high current levels above I,, 

(27) In  - I,,,, R,, 
I,  = I,,, + (1 + b ’ 22/W) ’ .- 

1 - X i / W  SCR,, 

with 

The main differences with (19) are the extra factor 1 + b . 
zi /W,  SCR,, replacing the HR,, and R,, being defined 
by (22) instead of (3).From this three dimensional derivation 
we see how the epilayer parameters scale with the device 
geometry. The dominant effect is Rc, and SCR,, having 
their 3-D values; the factor ( 1  + h . Q / W )  is of minor 
importance. However, when avalanche multiplication has to 
be implemented in a complete transistor model, the spreading 
parameter b is very important, because the maximum electric 
field resides at the buried layer and is strongly decreased by 
this current spreading. But this is beyond the scope of this 
3aper and will not be treated. 
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Iv. CHARGE STORAGE IN THE EPILAYER 
In the situations "injection plus ohmic" (C) and "Injection 

plus hot carriers" (D) we have a stored charge of minority 
carriers in the injection region: 

Q e p z = s . A e . L  p . d r  
XI 

To calculate Qepz it is most convenient to use the Moll-Ross 
formula [9] twice: once with Qept included and once without 
Q W Z  

and 

In these formulas is &bo the fixed base charge, QT the sum of 
the emitter and collector depletion charges and Q b  the stored 
charge in the base. From the foregoing we can easily derive 
that 

Near the origin of the ( I c ,  VCe) characteristics we have Vj M 

Vcb and le M 0, so (28) will cause numerical problems there. 
Substitution of (12) in (28) and taking V, M v,b the stored 
epilayer charge becomes 

where use has been made of ( 5 ) ,  (7) and (8). Equations (28) 
and (29) require no additional parameters; Qbo is already a 
given MEXTRAM parameter [4]. 

V. IMPLEMENTATION IN MEXTRAM 

The topology of the relevant parts in the equivalent circuit 
of MEXTRAM is sketched in Fig. 9. In this figure is R,, the 
constant resistance of the buried layer, RbC the constant resis- 
tance of the extrinsic base, Rbv the bias-dependent resistance 
of the base under the emitter and R, the constant emitter series 
resistance. There are 5 internal nodes: el - bl - L2 - e1 and 
c2; Vc262 replaces here the internal junction voltage V, of 
the preceding sections, V ~ l 6 2  corresponds with Vcb and Iqc2 
with I ,  in (27). 

To solve for the epilayer current Ic1c2 (27) we normalize 
with respect to Ihc and introduce the following quantities: 

2 . b  
Sf =l+b 

Vcb  - 
Ihc . RCU 

- v C l b 2  - V ~ 2 b 2  
V I -  - 

Ihc ' R,, 

B Y Rbc 

Fig. 9. Simplified topology of the MEXTRAM equivalent circuit. 

Equation (27) is rewritten and 
equation for IC1 c2 /Ihc: 

finally we arrive at a cubic 

nl  . (2) + uo = 0 (30) 

with 

v + T . Y 2  + e 
a2= - 2 . e -  

1 + II 
e 2 .  (3 + T I )  + 2 .  e .  U - " f .  e .  T .  v2 

l + v  
e2 . ( e  + U )  

l + V  

Ul = 

U0 = 

The solution for IqC2  as a function of Vc1bp and Vc2b2 
is the real root of this cubic equation. If the current spreading 
parameter b is put to zero, sf becomes zero, but in (30) only 
the coefficient al will change somewhat. The epilayer stored 
charge Qepi resides on a capacitor between the internal nodes 
c2 and b2, see Fig. 9. In the Kull's model [2] Qrpi is devided 
into a charge Qo between c2 and b2, depending on P O ,  and a 
charge Qw between c1 and b2 depending on p, .  The difference 
with our topology (Fig. 9) is negligible because in the normal 
forward situation Q,, M 0 and in hard saturation and in the 
reverse mode of operation the voltage difference V c l c ~  M 0. 

VI. PARAMETER EXTRACTION 
At the onset of quasi-saturation is x z / W  still very small 

and the intemal junction voltage V, is around the diffusion 
voltage. In this situation we can therefore substitute in (27) 
xt/W M 0 and V, M -Vd, leading to 

Vcb + v d  , (l I Rcv Vcb f v d )  

Vcb + v d  SCRct, Ihc' Rcv  ' 

Ihhc ' Rcu 

I ,  . R,, M 

I+- 
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If ( K b  + v d )  << . R,,, the ohmic case (C), we get 

whereas in the hot carrier case (D) when V c b  + Vd >> I,, . R,,, 
we get 

This onset of quasi-saturation can be determined from mea- 
suring the different bias points (I,..V,b) where maxima of 
the low-frequency third harmonic distorsion occurs [lo]. The 
parameters R,, and v d  are then extracted for the ohmic case, 
and Ihc and SCR,, for the hot carrier case. Apart from the 
third harmonic measurements, also the  FE and f~ fall-off 
at high current can be used for extracting R,,, v d ,  Ihc and 
SCR,,. If the emitter dimensions We and Le,  the epilayer 
thickness W and epilayer dope N are known, the parameters 
can be calculated and in most case fine tuning of v d  and R,, is 
sufficient to describe accurately the transistor characteristics. 
The parameter b can be obtained from the avalanche current at 
high collector currents: it determines the shape of the Ic(Vce) 
characteristics near the sustaining voltage SV,,, 

VII. RESULTS 
The MEXTRAM model with the new collector epilayer 

description has been in use now for more than a year in our 
in-house circuit simulator Pstar. To illustrate its accuracy we 
will give here one example, where model calculations are 
compared with measurements. The transistor is a 12 GHZ 
transistor, made in the Qubic process [ 111. The epilayer model 
parameters for this transistor are: Ihc = 0.4 mA, R,, = 900 
0, SCR,, = 70000, v d c  = 720 mV and the spreading factor 
b = 0.33. 

In Fig. 10 the I,(V,,, I b )  characteristics are given, modeled 
as well as measured. Also indicated is the onset of quasi- 
saturation (dashed line). One can see that a substantial part of 
the characteristics is in the quasi-saturation region. To illustrate 
the excellent scaling properties of this compact model, Fig. 1 1  
shows the influence of the epilayer thickness on the collector 
current at a fixed bias point ( V c b  = 0 V, v b e  = 0.9 V) in the 
quasi-saturion. The compact model results are compared with 
Medici 1-D and 2-D device simulations of the same Qubic 
transistor from Fig. 10. We see that for We,i << He there 
is hardly any difference between 1-D and 2-D results, but if 
Wepi M He the 2-D current becomes about twice as high as the 
1-D current. To decribe the 2-D Medici results the MEXTRAM 
epilayer compact model parameters are computed with tan( a )  
= 1 and Y, = 0.1 pm. Both the 1-D and 2-D results can 
be described accurately with the MEXTRAM model. In Fig. 
12 a simular comparison is made: now the emitter width He 
is varied and the epilayer thickness We,i and the emitter 
area He . Le are kept constant. The same values for tan(a) 
and Yc are used to compute the epilayer parameters. Here 
too there is excellent agreement between MEXTRAM and 
the Medici calculations. For large He values the 2-D current 

;,+/+-+- 

0.oOoolt:. I .  I .  I .  I .  I .  I . I  
0 1 2 3 4 5 6 7  

Vce(V) 

Fig. 10. Comparison between measured and modeled characteristics. 
for 3 different values of I b .  dashed line: quasi-saturation onset. 

Vbe=0.9 V 0 

Vbc=O V 

Parameters Mextrom 2D: tan(a)=l Yc=O. l  u m  
1 D: ton(o)=O Yc=O. 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 

We pi( u m) 

Fig. 1 1. Influence of the thickness of the epilayer on the collector current in 
quasi-saturation. Solid line: MEXTRAM model calculations. Markers: Medici 
1D/2D device simulation. 

comes below the 1-D current because of current crowding due 
to the increased base resistance. 

VIII. CONCLUSION 
A new compact model description for the behavior of epi- 

taxial collectors in bipolar transistors is given. It substantially 
improves previous published models of Kull [2] and Jeong 
and Fossum [3]. The model of Kull is restricted to ohmic 
current flow and the model of Jeong and Fossum is implicit 
(formulated as a set of three nonlinear equations with three 
unknowns) and the first derivative is discontinuous, may lead 
to numerical instabilities in a circuit simulator. In our model 
the current through the epilayer is an explicit and continuous 
function of the intemal and extemal base-collector junction 
voltages. The model covers all possible modes of operation 
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Vbe=0.9 V 

Wepi=O.Sum 
Parameters Mextrom 2D: tan(a)=l Yc=O.l urn 

1 D: ton(a)=O Yc=O. 

0.0 
0.0 0.5 1.0 1.5 2.0 2.5 

He(um) 

Fig. 12. Influence of the emitter width on the collector current in 
quasi-saturation. Solid line: MEXTRAM model calculations. Markers: Medici 
1D/2D device simulation. The emitter area H ,  L ,  is kept constant. 

such as ohmic current flow, saturated current flow and base 
push out both in the forward and reverse mode of operation. 
The model is derived assuming one dimensional current flow. 
By comparison with 2-D device simulations it is shown that the 
change of the collector current due to variation of the emitter 
width and epilayer thickness can be described accurately 
by an appropriate scaling of the epilayer model parameters. 
These scaling rules are derived in the paper. The model has 
been implemented in a new release of MEXTRAM and is 
available for the public domain. Detailed information about 
the MEXTRAM model can be found in [ 131. 

APPENDIX A 

The electric field at z = z; is [6]: 

Using (4) gives 

- - I ,  . R C V  - 
W .  (1 + 2 . p z )  ’ 

So field continuity at z = 2, then leads to 

V s  I h c .  Rcu - IC . R r u  

Pn W W . ( l f 2 . p , )  
- - -~ - 

or 

- = 1 + 2 .  p ,  = K,  = J1 + 4 .  t ~ p { - ( K  + V d ) / & }  
1, 

I h c  

see (5) and (6). 

APPENDIX B 

once and get, with E ( x ; )  = - I J , / ~ ,  as boundary condition: 
The derivation of (26) goes as follows: we integrate (24) 

IJS  9 . N  E ( x )  = - - + - ’ (z - 52) 

Pn 6 

q . N  I ,  1 S a . z  
a . €  I,, l + a . x t  

. In -. - - . -  

The voltage drop (Vcb  - &) is obtained from 

V c b - K =  - s,”; E ( x )  . dx 

q . N  I ,  l + a . x ;  +-.-.- 
t I,, a2 

r l + a . W l l + a . x ,  

In y . dy 
. I 1  

q ’  (W - 5 ; ) Z  - - . (W - Xi) - - 
P n  2 . E  
V S  . - 

So the spreading function S-’ is given by 

2 .  (1 + a  . X i )  1 + a .  W 1 f a . W  
a2 ’ (W - .i)2 1 + a .  52 l + a . z ;  

- - . { ~. In (-) 

We rewrite (1 + a .  W ) / (  1 +..xi) as 1 + a .  (W - xi)/( 1 +a.zi)  
and make a series expansion of the logarithm. For a . W (and 
a . x i )  < 1 we then obtain 

l + a . z ;  

3 .  (1 + a  .xi) 

1 + 2 ’ a . z ;  
- 1  

J 

S= 
a . P - 2 , )  1-  _ . a . ( W - 4 . z ; )  1 -  

‘ri 1 s ~ l + j . a . W ’ ( 1 + 2 . ~  1 . 

This is the approximation for S as given in (26). 
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