Theoretical
Computer Science

Theoretical Computer Science 230 (2000) 247-256

www.elsevier.com/locate/tcs

Note
The inclusion problem for some subclasses
of context-free languages

Peter R.J. Asveld, Anton Nijholt*

Department of Computer Science, Twente University of Technology, P.O. Box 217,
7500 AE Enschede, The Netherlands

Communicated by G. Rozenberg

Abstract

By a reduction to Post’s Correspondence Problem we provide a direct proof of the known
fact that the inclusion problem for unambiguous context-free grammars is undecidable. The argu-
ment or some straightforward modification also applies to some other subclasses of context-free
languages such as linear languages, sequential languages, and DSC-languages (i.e., languages
generated by context-free grammars with disjunct syntactic categories). We also consider in-
stances of the problem “Is L(D;) C L(D;)?” where D and D, are taken from possibly different
descriptor families of subclasses of context-free languages. (©) 2000 Elsevier Science B.V. All
rights reserved.

Keywords: Inclusion problem; Unambiguous context-free language;
(restricted) Context-free grammar; (restricted) Deterministic push-down automaton

When we change a context-free language by e.g. modifying its grammar G, into
a new context-free grammar G,, the obvious questions are: What is the relationship
between L(Gy) and L(G,)? Are they equal? Is one language a (proper) subset of the
other one? Are these two languages incomparable? In answering questions of this type
the (decidability of the) inclusion problem plays a principal part.

Consider two descriptors D; and D, of subclasses of context-free languages; e.g.,
D, and D, are two particular kinds of context-free grammars or push-down automata.
Then the inclusion or containment problem for (D;,D,) is the question whether for
arbitrary D; € Dy and D, € D, the inclusion L(D;) C L(D;) holds. In case D; =D, we
refer to this problem as the inclusion problem for Dj.

* Corresponding author.
E-mail address: anijholt@cs.utwente.nl (A. Nijholt)

0304-3975/00/$ - see front matter (©) 2000 Elsevier Science B.V. All rights reserved.
PII: S0304-3975(99)00113-9

248 P.RJ. Asveld, A. Nijholt| Theoretical Computer Science 230 (2000) 247-256

It is well known that the inclusion problem for regular languages is decidable,
whereas it is undecidable for context-free languages. Originally, this latter fact has
been proved in [1]; [10] contains an alternative proof, and many text books, like
[11, 14,12, 18], also provide a proof of this undecidability result.

A similar conclusion has been obtained for deterministic context-free languages [5],
and it has been established in [3] that the inclusion problem for simple deterministic
languages is undecidable too; see also [8]. Clearly, these facts imply the undecidability
of the inclusion problem for unambiguous context-free languages.

In this note we provide an alternative, direct proof of this latter fact (Theorem 1)
which consists of a reduction to Post’s Correspondence Problem over two-letter al-
phabets. As a consequence of this proof we obtain the undecidability of the inclusion
problem for linear and sequential languages (Corollary 2). A slight modification of the
argument yields the undecidability of the inclusion problem for context-free grammars
with disjunct syntactic categories (Theorem 3). This result also follows from the un-
decidability of the inclusion problem for NTS (or nonterminal separating) languages
established in [16]. Finally, we consider some consequences for inclusion problems of
the form (D;,D,) with D; #D, (Theorems 5-7; Table 1), and we survey the open
problems in the area (Table 1).

The emphasis in this note is on the application of the proof technique used in
establishing Theorem 1 and on surveying results with respect to the inclusion problem
rather than deriving new results. Actually, only Corollary 2 and its consequences (see
Table 1), Theorems 5-7, and the proofs of Theorems 1 and 3 seem to be new.

Theorem 1. Let Gy and G, be unambiguous context-free grammars. Then the prob-
lem “Is L(G1) C L(G,)?” is undecidable.

Proof. Let / be an instance of Post’s Correspondence Problem (PCP) over a two-letter
alphabet, i.e., I =(ot1,...,0%; P1,...,0,) with o, f; € AT (1<i<n) and 4={a,b}. Let
O be an alphabet of n new symbols, say @ ={ay,...,a,}, and define the homomor-
phism 4: (O U 4)* — 4™ by

h(a;))=A for all i (1<i<n),
h(a)=a,
h(b)=b,

(A denotes the empty word). Consider the context-free grammar G; = (V, 2, P;,S) with
2=0UAdU{c}, V=2U{S} and P; consists of the productions

S — a;o:SPR - for all i (1<i<n),
S — aoucfR for all i (1<i<n),
where R is the reversal or mirror operation. Then we have

L(Gr)={aiou, - - - azou,c(Biy -+ Bi) | k=1,1<i;<n, for all j with 1 <<k}

P.RJ. Asveld, A. Nijholt| Theoretical Computer Science 230 (2000) 247-256 249

Table 1
Ul % o ke
= 2 2182 -2 3
S | 5| 2 2l 02| % &
5 — ..%D g g o é g é , é ?I<
= A -} v = no | Ko | - 4 A O
Regular D | ? D ? D D D D D D ? u
(0] (11 | [UUFF) [UI5]) (%]) (ur*g) (] (1]
Linear TD|U | U U | U ? ? U ? ? U U
(0] | [0] [0]] [O] [4%] [0] [11%]
Unambiguous TOD| U | U U (U U U U U U U U
[0] | [5*] | [01 | [5%] | [3*] | [3*] | [4*] | [3*] | [16*]| [16%]| [5*]
Sequential TD| U | U U | U ? ? U ? ? U U
(0] | [0] [0]] [0] [47] (0] [117]
Deterministic TD|U |U U |U U U U U U U U
[0] | [5*1 | [0]] [5] [3*] | [3%] | [4%] [[(3%] | [16¥]| [16*] | [11%]
Simple ™| U (U . U |U 8} U U ? U U
deterministic (o1 | 3*1 | 01 3*1 | 131 [3*1 | [0] [3*] [0] [11*]
Real-time strict TD| U (U U | U U U U U ? U U
deterministic (o1 | 3*3 | o1 13*1 | 13*1 | 13*1 | [0] [3*] [0] [11%]
Super- TD|U (U U |U ? ? U ? ? 8} U
deterministic [0] | [4*] | [0]]| [4%*] [4] [0] [11%]
LL(k) TD|U |U U |[U U U U U ? U U
[0 [[3*1 | [0] | [3*] | [3*] | 3*] | [4*1 | [3*] [0] [11%]
NTS ™D | U U U |U ? ? U ? U U U
[0] | [16¥]] [0] | [16*] [4%] [16¥] | [16%] | [117]
DSC T™D|U |U U (U ? ? 6] ? U U U
[0] | [16*]] [0] | [16¥] [4%] [16%] | [16¥] | [16¥]
Context-free TD (U |U U |U U 0) U U U U U
(01 | [5*] | [0] | [5*] | [3*1 | [3%] |[4*] |[[3*] | [16"]1] [16¥]]| [1]

TD = trivially decidable, D = decidable, U = undecidable, ? =open problem.

and Gy is unambiguous. Next we define the context-free grammar G = (V), 2, P, S) with
alphabet Vo =2U{S,4,B,C,D} and P consisting of the productions

(1) S — Aa|Ab

(2) A— Aa|Ab|D

(3) S—¢&aB|tbB

(4) B— ¢aB| ébB|D

(5) D— ¢&aDa | EbDb | EaDb | EbDa | ¢

6) S—C

(7) C— &aCal EDCh | EaDb | EbDa

with £€ {A} U O. It is easy to see that

L(G)={wev|we (OU{i})M)*t, ved®, h(w)#v"},

as well as the following facts: for each wcv € L(G) we have

250 P.RJ. Asveld, A. Nijholt| Theoretical Computer Science 230 (2000) 247-256

(a) |m(w)|<|v| if and only if wev has been derived using the rules (1), (2) and (5)
only,

(b) |A(w)|>|v| if and only if wcv has been derived using the rules (3)—(5) only,

(¢) |A(w)|=|v| if and only if wcv has been derived using the rules (5)—(7) only,
where as usual |x| denotes the length of the string x. Using this observation it is
straightforward to show that G is unambiguous.

Now suppose the instance / has a solution. Thus there exists a sequence a; a;, - - -

such that

Cl,'k

h(ail &y =+ aikaik):ﬁil T ﬁik'

This means that L(G;)—L(G) # (), and consequently L(Gy) is not included in the lan-
guage L(G).

Conversely, suppose L(G;) is not included in L(G). Then there exists a string wcv
in L(G;) with A(w)=®. But then the sequence of symbols from @ that occur from
left to right in w determines a solution for /.

Summarizing, we have that the inclusion problem for unambiguous context-free
grammars is reducible to PCP. Hence it is undecidable. []

Notice that both grammars constructed in the proof are linear and sequential. Re-
member that a context-free grammar G =(V, 2, P,S) is called sequential [6] if V—2X
can be provided with a linear order < such that for each rule 4 — w, 4 <B holds
for all nonterminal symbols B that occur in w. (The linear order for the grammar G
in our proof is: S<A<B<C<D). Therefore we have

Corollary 2. Let G| and G, be unambiguous sequential linear context-free grammars.
Then the problem “Is L(G1) C L(G,)?” is undecidable.

Next we turn to context-free grammars that possess disjunct syntactic categories or
that satisfy the NTS (nonterminal separating) property. A DSC-grammar or a context-
free grammar with disjunct syntactic categories is a context-free grammar G =(V, 2,
P,X) with X CV — 2, such that for all 4,BeV — 2, A# B implies L(G,4A)NL(G,B)
= (), where for each 4, L(G,A)={w € V* |4 ="w}. The language generated by a DSC-
grammar G = (V,2,P,X) is defined by L(G)={w e 2*|4="w for some 4 € X}.

A context-free grammar G=(V,2,P,X) with X CV — X is an NTS-grammar (or
satisfies the nonterminal separating property [2,16]) if for all 4€ V-2, and for all
weE V*,4="w holds if, and only, if 4<*w, where <™ is the reflexive and tran-
sitive closure of the union of = and its converse relation <. So, roughly spoken,
A<*w means that w may be obtained from 4 by using the productions of P in both
directions. The language generated by an NTS-grammar G =(V,2,P,X) is defined by
L(G)={weX*|A="w for some 4 € X}.

P.RJ. Asveld, A. Nijholt| Theoretical Computer Science 230 (2000) 247-256 251

Each NTS-grammar has disjunct syntactic categories [2]; but the converse does
not hold.! For instance, the language {a"d" |n>1}U{a"b*" |n>1} is not an NTS-
language [2], but it is easy to show that this language can be generated by a DSC-
grammar. The inclusion problem for NTS-grammars is undecidable [16], which also
implies the undecidability of the inclusion problem for DSC-grammars. Here we pro-
vide a direct proof of this latter statement.

Theorem 3. Let Gy and G, be context-free grammars with disjunct syntactic cate-
gories. Then the problem “Is L(G1) C L(G,)?” is undecidable.

Proof. We slightly change the proof of Theorem 1. First, we observe that Gj is
trivially a DSC-grammar. Secondly, we replace the grammar G in that proof by
Go=(Vy,2,Py,Xp) with X=AUOU{c},4={a,b},Vo=2U{S,T,C,D,E}, X, ={S,
T,C,D} and Py consists of the productions

S — &aS| EbS | EaC | EbC | EaD | EbD | EaE | EBE

T —Ta|Th|Ca|Ch|Da|Db|Ea|Eb

C — &aCa| EbCh | EaDa | EbDb

D — EaDb | EbDa | £aCh | EbCa | EaED | EbEa

E — faEa | EbED | ¢

with ¢ € {4} U ©®. Then it is easy to see that

L(Go,S) = {wev|we (O U{2}A)*, ve 4%, [h(w)|>[v]},

L(Go, T)={wev|we (O U{IHA)*, ve 4%, |h(w)| <vl},

L(Go, C) = {wev|we (O U{A})M)*, ve 4%, [h(w)| =[] > 1, h(w) # v*, 1:h(w) =
Lo},

L(Go, D)= {wev|we (OU{ZNN)*, ve 4™, [h(w)| =[v|> 1, 1:h(w) # 1},

L(Go, E)={wev|we (O U{I}))A)*, ve A%, h(w) ="},

where 1:x denotes the first symbol of the string x. Hence Gy is a DSC-grammar.
Moreover, it is straightforward to prove that L(Gy)=L(G). [J

! This latter observation and the following example are due to Jan Anne Hogendorp.

252 P.RJ. Asveld, A. Nijholt| Theoretical Computer Science 230 (2000) 247-256

Although G; is an NTS-grammar, it is unlikely that this proof can be modified in
order to provide an alternative way of establishing the undecidability of the inclusion
problem for NTS-grammars [16]. More concretely, L(Gy) is probably not an NTS-
language.

We assume the reader to be familiar with the notion of deterministic PDA (push-
down automaton) and restricted variants such as simple deterministic PDA and real-time
strict deterministic PDA; cf. [8] for an excellent survey. However, we will recall the
definition of the somewhat less known concept of super-deterministic PDA [4, 7].

Definition. Let M =(Q, 2, I’,9,q0,Z, F') be a deterministic push-down automaton with
F COx(I'U{A}) rather than F C Q. For each rule (¢,a,4, p, y) in 0, the pair (¢,4) is
called the mode of the rule with input a; if a =4, this is a A-rule. If no rule is defined
for (q,A) in Q x I', it is a blocking mode; (q,A) is also called a blocking mode.
The elements of F are called accepting modes. A pair (q, yA) with g€ Q, y e I'*,
and 4 €I is a configuration of M with mode (q,A), for which we use the notation
m(q, yA)=(q,A). A configuration (g, y4) is in reading mode, if no /-rule is defined
for mode (¢,4), and (¢,A4) is not a blocking mode.

M is super-deterministic if it is finite delay and for all accessible configurations in
reading mode (g, s1), (¢,52), (¢1,t1) and (¢2,) in OxI'* and a € X, if (g,51) F (g1, 1)
and (¢,52) F¢ (g2, 1), then g1 =g, and |si| — || =|s2] — |t2].

The language T'(M) accepted by M by final state (accepting mode) is

T(M)={weX"|(g0.20) " (¢.5) and m(q,s) € F},

and the language L(M) accepted by M by final state and empty store is
L(M)={we X*|(q0,20) " (¢,2) and (q,A) € F}.

A language Ly over X is super-deterministic if there is a super-deterministic PDA M

such that either Lo=T(M) or Ly$ =T (M) for some symbol $ not in 2.

The inclusion problem for super-deterministic PDAs highly depends on the way in
which a language is accepted; viz.

Theorem 4 (Greibach and Friedman [7] and Friedman and Greibach [4], respectively).
The inclusion problem is decidable for languages accepted by super-deterministic
PDAs by final state and empty store. In case of acceptance by final state only,
the inclusion problem is undecidable.

Next we consider a few consequences for inclusion problems of the form (D, D;)
in which D; may differ from D,. In the sequel we restrict our attention to super-
deterministic PDAs that accept by final state.

Theorem 5. Let Dy and D, be equal to one of the following descriptors:
e linear context-free grammar,

P.RJ. Asveld, A. Nijholt| Theoretical Computer Science 230 (2000) 247-256 253

e sequential context-free grammar,

e unambiguous context-free grammar,

e deterministic push-down automaton,

e context-free grammar with disjunct syntactic categories,

e context-free grammar.

Then the inclusion problem for (Dy,D,) is undecidable. The same conclusion holds
if Dy is taken equal to “NTS-grammar”.

Proof. These statements directly follow from the proofs of the previous results and
the fact that L(G;) is an NTS-language. [

It remains an open problem whether “super-deterministic push-down automaton (ac-
ceptance by final state)” can be added to the list in Theorem 5; cf. Theorem 6.

Note that in [4] a variant of PCP — viz. the so-called variant correspondence problem
or VCP — is used to establish the undecidability of the inclusion problem for super-
deterministic PDAs. An instance / of such a VCP consists of two lists of n (n>1)
nonempty words over A: I =(o,...,%; P1,---,), where |og|<|pi|, and |oy| <|p;| for
each i (2<i<n). For a symbol a in 4, I has an a-marked solution (iy,...,#), if
x1x;, - --x;,a is a prefix of y;y;, ---y;, and 2<ij,...,i;<n. And the question whether
such an a-marked solution exists is undecidable [4]. From the argument in [4], it
follows that the symbol a does not occur in the string x;x; ---x;. We will use this
observation in the proof of Theorem 6(b).

Theorem 6. (a) Let Dy be equal to one of the following descriptors:
e simple deterministic push-down automaton,
e real-time strict deterministic push-down automaton,
o LL(#)-grammar,
e super-deterministic push-down automaton,
and let D, be equal to either “linear context-free grammar”, “sequential grammar”, or
“context-free grammar with disjunct syntactic categories”. Then the inclusion problem
for (Dy,D,) is undecidable.

(b) The inclusion problem for (Di,D,) is undecidable in case Dy equals “simple
deterministic push-down automaton” or “real-time strict deterministic push-down au-
tomaton”, and D, is “super-deterministic push-down automaton”.

Proof. (a) Once again we adapt the proof of Theorem 1; viz. we construct a deter-
ministic push-down automaton M; that accepts the language L(Gj). The set of rules ¢
of M\i=({q},2,2U{Z},0,q,Z,F) is defined by

(g,ai, 20,9, ﬁiaiocf) for each i (1<i<n),

(q:xaxa q:i) fOI‘ eaCh X in A,

(¢.a;,a1,q, Bja;ef) for each i and j (1<i,j<n),
(q,c,ai,q,7) for each i (1<i<n).

254 P.RJ. Asveld, A. Nijholt| Theoretical Computer Science 230 (2000) 247-256

The push-down automaton M; accepts the language L(G;) by final state and empty
stack. It is straightforward to show that M; is simple deterministic (F ={q}) as well
as super-deterministic (F = {(g,4)}).

(b) It suffices to show that the language

Ly={a; - -ajayoqo; - -oalt=1; 2<iy,...,i;<n}
is simple deterministic; cf. [4]. Note that o;, € X7 with Xo=A—{a} (1<j<1), 29N 2,
=0, and a ¢ XyU 2, with X1 ={ay,...,a,}. The deterministic push-down automaton

M, =({q}, AU X2, 402, U{Z},01,9,Z0,{q}), where 6, is defined by

(g,ai,Zo,q, aafa,-) for each i (2<i<n),

(¢,x,x,q,1) for each x in 4 — {a},
(q,aj,ai,q,ocfaj) for each i and j (2<i,j<n),
(qaal,ai,q,ocf) for each i (2<i<n),

accepts L; by final state and empty stack. Clearly, M, is simple deterministic. []

In Table 1 we summarize known results with respect to the inclusion problem; it
also includes the cases considered in the present paper to which we refer by [0]. A
reference in Table 1 provided with an asterisk, e.g. [#n*], means that the result is not
mentioned in [n] explicitly, but it follows from [#]: either trivially, or it can be inferred
from the argument in [n] by observing that for the languages L; in [n], it is obvious
to construct descriptors D; (D; € D;, i=1,2) such that L(D;)=L;. An example of a
slightly less obvious construction is the proof of Theorem 6(b): rather than proving
that the language L, is super-deterministic as in [4], we now show that L; is simple
deterministic and, consequently, real-time strict deterministic.

Of course, Table 1 may be viewed as an extension of the appropriate row from Fig.
14.2 on p. 230 in [11]. A table similar to Table 1 surveying the equivalence problem
for some subclasses of context-free languages can be found in [9].

Finally, we will discuss some decidable cases from Table 1. The inclusion problem
for (D, D;), where D, is any descriptor for the regular languages, is trivially decidable
in the following sense; see also p. 204 in [12]. Let D, €D; (i=1,2), and R=L(D;)
be regular. Because for each D; in Table 1, we can effectively construct a context-free
grammar G, such that L(G;)=L(D;), we have

“IL(D\)CRY’ & “L(G))CRY < “L(G))NR=0?".

The latter question is decidable, since (i) the complement R of R is regular, (ii) the
family of context-free languages is effectively closed under intersection with regular
sets, and (iii) the emptiness problem for context-free languages is decidable.

Theorem 7. The inclusion problem for (Dy,D;) is decidable in case D, equals “un-
ambiguous context-free grammar” and Dy is any descriptor of the regular languages.

P.RJ. Asveld, A. Nijholt| Theoretical Computer Science 230 (2000) 247-256 255

Proof. Let R be a regular language and let Ly be an unambiguous context-free lan-
guage. Clearly, RC Ly holds, if and only if RNLy=R. Now the language RNLy
is unambiguous by Theorem 6.4.1 from [8]. Then the result follows from the fact
that the question “Is L =R?” is decidable for regular R and unambiguous L [15]; see
also [9]. [

For the complexity of some (trivially) decidable entries mentioned in Table 1, we
refer to [13, 17]. Even for the simplest case of Table 1 — viz. the inclusion problem
for D, where D is any descriptor of the regular languages, i.e., the case correspond-
ing to the left-upper corner of Table 1 — the inclusion problem is PSPACE-complete.
Deterministic polynomial time-bounded algorithms have only been obtained for
restricted cases of this entry, viz. for unambiguous descriptors, and for descriptors
with bounded ambiguity; see [17] for details.

Acknowledgements

We are indebted to Rieks op den Akker and Jan Anne Hogendorp for some remarks
on an earlier version of this note.

References

[11 Y. Bar-Hillel, M. Perles, E. Shamir, On formal properties of simple phrase-structure grammars,
Z. Phonetik, Sprachwiss. Kommunikationsforsch. 14 (1961) 143-172. Reprinted as Chapter 9 in
Y. Bar-Hillel: Language and Information, Addison-Wesley, Reading, MA, 1964, pp. 116-150.

[2] L. Boasson, G. Sénizergues, NTS languages are deterministic and congruential, J. Comput. System Sci.
31 (1985) 332-342.

[3] E.P. Friedman, The inclusion problem for simple languages, Theoret. Comput. Sci. 1 (1976) 297-316.

[4] E.P. Friedman, S.A. Greibach, Superdeterministic DPDAs: the method of accepting does affect decision
problems, J. Comput. System Sci. 19 (1979) 79-117.

[5] S. Ginsburg, S.A. Greibach, Deterministic context-free languages, Inform. and Control 9 (1966)
620-648.

[6] S. Ginsburg, H.G. Rice, Two families of languages related to ALGOL, J. Assoc. Comput. Mach. 9
(1962) 350-371.

[7] S.A. Greibach, E.P. Friedman, Superdeterministic PDAs: a subcase with a decidable inclusion problem,
J. Assoc. Comput. Mach. 27 (1980) 675-700.

[8] M.A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.

[9] M.A. Harrison, .M. Havel, A. Yehudai, On equivalence of grammars through transformation trees,
Theoret. Comput. Sci. 9 (1979) 173-205.

[10] J. Hartmanis, Context-free languages and Turing machine computations, in: J.T. Schwartz (Ed.),
Mathematical Aspects of Computer Science, Proc. Symp. in Appl. Math., vol. XIX, American
Mathematical Society, Providence, RI, 1967, pp. 42-51.

[11] J.E. Hopcroft, J.D. Ullman, Formal Languages and their Relation to Automata, Ch. 14, Addison-Wesley,
Reading, MA, 1969.

[12] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-
Wesley, Reading, MA, 1979.

[13] H.B. Hunt III, D.J. Rosenkrantz, T.G. Szymanski, On the equivalence, containment, and covering
problems for the regular and context-free languages, J. Comput. System Sci. 12 (1976) 222-268.

[14] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

256 P.RJ. Asveld, A. Nijholt| Theoretical Computer Science 230 (2000) 247-256

[15] A.L. Semenov, Algorithmic problems for power series and context-free grammars, Soviet Math. Dokl.
14 (1973) 1319-1322.

[16] G. Sénizergues, The equivalence and inclusion problems for NTS languages, J. Comput. System Sci.
31 (1985) 303-331.

[17] R.E. Stearns, H.B. Hunt III, On the equivalence and containment problems for unambiguous regular
expressions, regular grammars and finite automata, SIAM J. Comput. 14 (1985) 598—-611.

[18] D. Wood, Theory of Computation, Harper & Row, New York/Wiley, New York, 1987.

