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Abstract

By a reduction to Post’s Correspondence Problem we provide a direct proof of the known

fact that the inclusion problem for unambiguous context-free grammars is undecidable. The argu-

ment or some straightforward modi�cation also applies to some other subclasses of context-free

languages such as linear languages, sequential languages, and DSC-languages (i.e., languages

generated by context-free grammars with disjunct syntactic categories). We also consider in-

stances of the problem “Is L(D1) ⊆ L(D2)?” where D1 and D2 are taken from possibly di�erent

descriptor families of subclasses of context-free languages. c© 2000 Elsevier Science B.V. All

rights reserved.
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When we change a context-free language by e.g. modifying its grammar G1 into

a new context-free grammar G2, the obvious questions are: What is the relationship

between L(G1) and L(G2)? Are they equal? Is one language a (proper) subset of the

other one? Are these two languages incomparable? In answering questions of this type

the (decidability of the) inclusion problem plays a principal part.

Consider two descriptors D1 and D2 of subclasses of context-free languages; e.g.,

D1 and D2 are two particular kinds of context-free grammars or push-down automata.

Then the inclusion or containment problem for (D1;D2) is the question whether for

arbitrary D1 ∈D1 and D2 ∈D2 the inclusion L(D1)⊆L(D2) holds. In case D1=D2 we

refer to this problem as the inclusion problem for D1.
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It is well known that the inclusion problem for regular languages is decidable,

whereas it is undecidable for context-free languages. Originally, this latter fact has

been proved in [1]; [10] contains an alternative proof, and many text books, like

[11, 14, 12, 18], also provide a proof of this undecidability result.

A similar conclusion has been obtained for deterministic context-free languages [5],

and it has been established in [3] that the inclusion problem for simple deterministic

languages is undecidable too; see also [8]. Clearly, these facts imply the undecidability

of the inclusion problem for unambiguous context-free languages.

In this note we provide an alternative, direct proof of this latter fact (Theorem 1)

which consists of a reduction to Post’s Correspondence Problem over two-letter al-

phabets. As a consequence of this proof we obtain the undecidability of the inclusion

problem for linear and sequential languages (Corollary 2). A slight modi�cation of the

argument yields the undecidability of the inclusion problem for context-free grammars

with disjunct syntactic categories (Theorem 3). This result also follows from the un-

decidability of the inclusion problem for NTS (or nonterminal separating) languages

established in [16]. Finally, we consider some consequences for inclusion problems of

the form (D1;D2) with D1 6=D2 (Theorems 5–7; Table 1), and we survey the open

problems in the area (Table 1).

The emphasis in this note is on the application of the proof technique used in

establishing Theorem 1 and on surveying results with respect to the inclusion problem

rather than deriving new results. Actually, only Corollary 2 and its consequences (see

Table 1), Theorems 5–7, and the proofs of Theorems 1 and 3 seem to be new.

Theorem 1. Let G1 and G2 be unambiguous context-free grammars. Then the prob-

lem “Is L(G1)⊆L(G2)?” is undecidable.

Proof. Let I be an instance of Post’s Correspondence Problem (PCP) over a two-letter

alphabet, i.e., I =(�1; : : : ; �n; �1; : : : ; �n) with �i ; �i ∈�
+ (16i6n) and �= {a; b}. Let

� be an alphabet of n new symbols, say �= {a1; : : : ; an}, and de�ne the homomor-

phism h : (�∪�)∗→�∗ by

h(ai)= � for all i (16i6n);

h(a)= a;

h(b)= b;

(� denotes the empty word). Consider the context-free grammar GI =(V; �; PI ; S) with

�=�∪�∪{c}; V =�∪{S} and PI consists of the productions

S→ ai�iS�
R
i for all i (16i6n);

S→ ai�ic�
R
i for all i (16i6n);

where R is the reversal or mirror operation. Then we have

L(GI )= {ai1�i1 · · · aik�ik c(�i1 · · ·�ik )
R | k¿1; 16ij6n; for all j with 16j6k}
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Table 1

and GI is unambiguous. Next we de�ne the context-free grammar G=(V0; �; P; S) with

alphabet V0=�∪{S; A; B; C; D} and P consisting of the productions

(1) S→Aa |Ab

(2) A→Aa |Ab |D

(3) S→ �aB | �bB

(4) B→ �aB | �bB |D

(5) D→ �aDa | �bDb | �aDb | �bDa | c

(6) S→C

(7) C→ �aCa | �bCb | �aDb | �bDa

with �∈{�}∪�. It is easy to see that

L(G)= {wcv |w∈ ((�∪{�})�)+; v∈�+; h(w) 6= vR};

as well as the following facts: for each wcv∈L(G) we have
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(a) |h(w)|¡|v| if and only if wcv has been derived using the rules (1), (2) and (5)

only,

(b) |h(w)|¿|v| if and only if wcv has been derived using the rules (3)–(5) only,

(c) |h(w)|= |v| if and only if wcv has been derived using the rules (5)–(7) only,

where as usual |x| denotes the length of the string x. Using this observation it is

straightforward to show that G is unambiguous.

Now suppose the instance I has a solution. Thus there exists a sequence ai1ai2 · · ·

aik such that

h(ai1�i1 · · · aik�ik )= �i1 · · ·�ik :

This means that L(GI )−L(G) 6= ∅, and consequently L(GI ) is not included in the lan-

guage L(G).

Conversely, suppose L(GI ) is not included in L(G). Then there exists a string wcv

in L(GI ) with h(w)= v
R. But then the sequence of symbols from � that occur from

left to right in w determines a solution for I .

Summarizing, we have that the inclusion problem for unambiguous context-free

grammars is reducible to PCP. Hence it is undecidable.

Notice that both grammars constructed in the proof are linear and sequential. Re-

member that a context-free grammar G=(V; �; P; S) is called sequential [6] if V−�

can be provided with a linear order 6 such that for each rule A → w, A6B holds

for all nonterminal symbols B that occur in w. (The linear order for the grammar G

in our proof is: S6A6B6C6D). Therefore we have

Corollary 2. Let G1 and G2 be unambiguous sequential linear context-free grammars.

Then the problem “Is L(G1)⊆L(G2)?” is undecidable.

Next we turn to context-free grammars that possess disjunct syntactic categories or

that satisfy the NTS (nonterminal separating) property. A DSC-grammar or a context-

free grammar with disjunct syntactic categories is a context-free grammar G=(V; �;

P; X ) with X ⊆V −�, such that for all A; B∈V −�; A 6=B implies L(G; A)∩L(G; B)

= ∅, where for each A, L(G; A)= {w∈V∗ |A⇒∗w}. The language generated by a DSC-

grammar G=(V; �; P; X ) is de�ned by L(G)= {w∈�∗ |A⇒∗w for some A∈X }.

A context-free grammar G=(V; �; P; X ) with X ⊆V − � is an NTS-grammar (or

satis�es the nonterminal separating property [2, 16]) if for all A∈V−�, and for all

w∈V∗; A⇒∗w holds if, and only, if A⇔∗w, where ⇔∗ is the re
exive and tran-

sitive closure of the union of ⇒ and its converse relation ⇐. So, roughly spoken,

A⇔∗w means that w may be obtained from A by using the productions of P in both

directions. The language generated by an NTS-grammar G=(V; �; P; X ) is de�ned by

L(G)= {w∈�∗ |A⇒∗w for some A∈X }.
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Each NTS-grammar has disjunct syntactic categories [2]; but the converse does

not hold. 1 For instance, the language {anbn | n¿1}∪ {anb2n | n¿1} is not an NTS-

language [2], but it is easy to show that this language can be generated by a DSC-

grammar. The inclusion problem for NTS-grammars is undecidable [16], which also

implies the undecidability of the inclusion problem for DSC-grammars. Here we pro-

vide a direct proof of this latter statement.

Theorem 3. Let G1 and G2 be context-free grammars with disjunct syntactic cate-

gories. Then the problem “Is L(G1)⊆L(G2)?” is undecidable.

Proof. We slightly change the proof of Theorem 1. First, we observe that GI is

trivially a DSC-grammar. Secondly, we replace the grammar G in that proof by

G0=(V0; �; P0; X0) with �=�∪�∪{c}; �= {a; b}; V0=�∪{S; T; C; D; E}; X0= {S;

T; C; D} and P0 consists of the productions

S→ �aS | �bS | �aC | �bC | �aD | �bD | �aE | �bE

T→ Ta |Tb |Ca |Cb |Da |Db |Ea |Eb

C→ �aCa | �bCb | �aDa | �bDb

D→ �aDb | �bDa | �aCb | �bCa | �aEb | �bEa

E→ �aEa | �bEb | c

with �∈{�}∪�. Then it is easy to see that

L(G0; S)= {wcv |w∈ ((�∪{�})�)∗; v∈�∗; |h(w)|¿|v|};

L(G0; T )= {wcv |w∈ ((�∪{�})�)∗; v∈�∗; |h(w)|¡|v|};

L(G0; C) = {wcv |w∈ ((�∪{�})�)∗; v∈�∗; |h(w)|= |v|¿1 ; h(w) 6= vR; 1 : h(w)=

1 : vR};

L(G0; D)= {wcv |w∈ ((�∪{�})�)∗; v∈�∗; |h(w)|= |v|¿1 ; 1 : h(w) 6=1 : vR};

L(G0; E)= {wcv |w∈ ((�∪{�})�)∗; v∈�∗; h(w)= vR};

where 1 : x denotes the �rst symbol of the string x. Hence G0 is a DSC-grammar.

Moreover, it is straightforward to prove that L(G0)=L(G):

1 This latter observation and the following example are due to Jan Anne Hogendorp.
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Although GI is an NTS-grammar, it is unlikely that this proof can be modi�ed in

order to provide an alternative way of establishing the undecidability of the inclusion

problem for NTS-grammars [16]. More concretely, L(G0) is probably not an NTS-

language.

We assume the reader to be familiar with the notion of deterministic PDA (push-

down automaton) and restricted variants such as simple deterministic PDA and real-time

strict deterministic PDA; cf. [8] for an excellent survey. However, we will recall the

de�nition of the somewhat less known concept of super-deterministic PDA [4, 7].

De�nition. Let M =(Q;�; �; �; q0; Z0; F) be a deterministic push-down automaton with

F ⊆Q×(�∪{�}) rather than F ⊆Q. For each rule (q; a; A; p; y) in �, the pair (q; A) is

called the mode of the rule with input a; if a= �, this is a �-rule. If no rule is de�ned

for (q; A) in Q × �, it is a blocking mode; (q; �) is also called a blocking mode.

The elements of F are called accepting modes. A pair (q; yA) with q∈Q; y∈�∗,

and A∈� is a con�guration of M with mode (q; A), for which we use the notation

m(q; yA)= (q; A). A con�guration (q; yA) is in reading mode, if no �-rule is de�ned

for mode (q; A), and (q; A) is not a blocking mode.

M is super-deterministic if it is �nite delay and for all accessible con�gurations in

reading mode (q; s1); (q; s2); (q1; t1) and (q2; t2) in Q×�
∗ and a∈�, if (q; s1) ⊢

a (q1; t1)

and (q; s2) ⊢
a (q2; t2), then q1= q2 and |s1| − |t1|= |s2| − |t2|.

The language T (M) accepted by M by �nal state (accepting mode) is

T (M)= {w∈�∗ | (q0; Z0) ⊢
w (q; s) and m(q; s)∈F};

and the language L(M) accepted by M by �nal state and empty store is

L(M)= {w∈�∗ | (q0; Z0) ⊢
w (q; �) and (q; �)∈F}:

A language L0 over �0 is super-deterministic if there is a super-deterministic PDA M

such that either L0= T (M) or L0$=T (M) for some symbol $ not in �0.

The inclusion problem for super-deterministic PDAs highly depends on the way in

which a language is accepted; viz.

Theorem 4 (Greibach and Friedman [7] and Friedman and Greibach [4], respectively).

The inclusion problem is decidable for languages accepted by super-deterministic

PDAs by �nal state and empty store. In case of acceptance by �nal state only;

the inclusion problem is undecidable.

Next we consider a few consequences for inclusion problems of the form (D1;D2)

in which D1 may di�er from D2. In the sequel we restrict our attention to super-

deterministic PDAs that accept by �nal state.

Theorem 5. Let D1 and D2 be equal to one of the following descriptors:

• linear context-free grammar;
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• sequential context-free grammar;

• unambiguous context-free grammar;

• deterministic push-down automaton;

• context-free grammar with disjunct syntactic categories;

• context-free grammar.

Then the inclusion problem for (D1;D2) is undecidable. The same conclusion holds

if D1 is taken equal to “NTS-grammar”.

Proof. These statements directly follow from the proofs of the previous results and

the fact that L(G1) is an NTS-language.

It remains an open problem whether “super-deterministic push-down automaton (ac-

ceptance by �nal state)” can be added to the list in Theorem 5; cf. Theorem 6.

Note that in [4] a variant of PCP – viz. the so-called variant correspondence problem

or VCP – is used to establish the undecidability of the inclusion problem for super-

deterministic PDAs. An instance I of such a VCP consists of two lists of n (n¿1)

nonempty words over �: I =(�1; : : : ; �n; �1; : : : ; �n), where |�1|¡|�1|, and |�i|6|�i| for

each i (26i6n). For a symbol a in �, I has an a-marked solution (i1; : : : ; it), if

x1xi1 · · · xita is a pre�x of y1yi1 · · ·yit and 26i1; : : : ; it6n. And the question whether

such an a-marked solution exists is undecidable [4]. From the argument in [4], it

follows that the symbol a does not occur in the string x1xi1 · · · xit . We will use this

observation in the proof of Theorem 6(b).

Theorem 6. (a) Let D1 be equal to one of the following descriptors:

• simple deterministic push-down automaton;

• real-time strict deterministic push-down automaton;

• LL(k)-grammar;

• super-deterministic push-down automaton;

and let D2 be equal to either “linear context-free grammar”, “sequential grammar”, or

“context-free grammar with disjunct syntactic categories”. Then the inclusion problem

for (D1;D2) is undecidable.

(b) The inclusion problem for (D1;D2) is undecidable in case D1 equals “simple

deterministic push-down automaton” or “real-time strict deterministic push-down au-

tomaton”, and D2 is “super-deterministic push-down automaton”.

Proof. (a) Once again we adapt the proof of Theorem 1; viz. we construct a deter-

ministic push-down automaton M1 that accepts the language L(GI ). The set of rules �

of MI =({q}; �; �∪{Z0}; �; q; Z0; F) is de�ned by

(q; ai ; Z0; q; �iai�
R
i ) for each i (16i6n);

(q; x; x; q; �) for each x in �;

(q; aj ; ai ; q; �jaj�
R
j ) for each i and j (16i; j6n);

(q; c; ai ; q; �) for each i (16i6n):
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The push-down automaton MI accepts the language L(GI ) by �nal state and empty

stack. It is straightforward to show that MI is simple deterministic (F = {q}) as well

as super-deterministic (F = {(q; �)}).

(b) It su�ces to show that the language

L1= {ait · · · ai1a1�1�i1 · · · �ita | t¿1; 26i1; : : : ; it6n}

is simple deterministic; cf. [4]. Note that �ij ∈�
∗

0 with �0=�−{a} (16j6t); �0 ∩�1
= ∅; and a =∈ �0 ∪�1 with �1= {a1; : : : ; an}. The deterministic push-down automaton

M1=({q}; �∪�1; �∪�1 ∪{Z0}; �1; q; Z0; {q}), where �1 is de�ned by

(q; ai ; Z0; q; a�
R
i ai) for each i (26i6n);

(q; x; x; q; �) for each x in �− {�};

(q; aj ; ai ; q; �
R
j aj) for each i and j (26i; j6n);

(q; a1; ai ; q; �
R
1 ) for each i (26i6n);

accepts L1 by �nal state and empty stack. Clearly, M1 is simple deterministic.

In Table 1 we summarize known results with respect to the inclusion problem; it

also includes the cases considered in the present paper to which we refer by [0]. A

reference in Table 1 provided with an asterisk, e.g. [n∗], means that the result is not

mentioned in [n] explicitly, but it follows from [n]: either trivially, or it can be inferred

from the argument in [n] by observing that for the languages Li in [n], it is obvious

to construct descriptors Di (Di ∈Di ; i=1; 2) such that L(Di)=Li : An example of a

slightly less obvious construction is the proof of Theorem 6(b): rather than proving

that the language L1 is super-deterministic as in [4], we now show that L1 is simple

deterministic and, consequently, real-time strict deterministic.

Of course, Table 1 may be viewed as an extension of the appropriate row from Fig.

14.2 on p. 230 in [11]. A table similar to Table 1 surveying the equivalence problem

for some subclasses of context-free languages can be found in [9].

Finally, we will discuss some decidable cases from Table 1. The inclusion problem

for (D1;D2), where D2 is any descriptor for the regular languages, is trivially decidable

in the following sense; see also p. 204 in [12]. Let Di ∈Di (i=1; 2), and R= L(D2)

be regular. Because for each D1 in Table 1, we can e�ectively construct a context-free

grammar G1 such that L(G1)=L(D1), we have

“L(D1)⊆R?” ⇔ “L(G1)⊆R?” ⇔ “L(G1)∩ �R= ∅?”:

The latter question is decidable, since (i) the complement �R of R is regular, (ii) the

family of context-free languages is e�ectively closed under intersection with regular

sets, and (iii) the emptiness problem for context-free languages is decidable.

Theorem 7. The inclusion problem for (D1;D2) is decidable in case D2 equals “un-

ambiguous context-free grammar” and D1 is any descriptor of the regular languages.
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Proof. Let R be a regular language and let L0 be an unambiguous context-free lan-

guage. Clearly, R⊆L0 holds, if and only if R∩L0=R. Now the language R∩L0
is unambiguous by Theorem 6.4.1 from [8]. Then the result follows from the fact

that the question “Is L=R?” is decidable for regular R and unambiguous L [15]; see

also [9].

For the complexity of some (trivially) decidable entries mentioned in Table 1, we

refer to [13, 17]. Even for the simplest case of Table 1 – viz. the inclusion problem

for D, where D is any descriptor of the regular languages, i.e., the case correspond-

ing to the left-upper corner of Table 1 – the inclusion problem is PSPACE-complete.

Deterministic polynomial time-bounded algorithms have only been obtained for

restricted cases of this entry, viz. for unambiguous descriptors, and for descriptors

with bounded ambiguity; see [17] for details.
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