

Theoretical Computer Science 230 (2000) 247-256

Theoretical Computer Science

www.elsevier.com/locate/tcs

Note

The inclusion problem for some subclasses of context-free languages

Peter R.J. Asveld, Anton Nijholt*

Department of Computer Science, Twente University of Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands

Communicated by G. Rozenberg

Abstract

By a reduction to Post's Correspondence Problem we provide a direct proof of the known fact that the inclusion problem for unambiguous context-free grammars is undecidable. The argument or some straightforward modification also applies to some other subclasses of context-free languages such as linear languages, sequential languages, and DSC-languages (i.e., languages generated by context-free grammars with disjunct syntactic categories). We also consider instances of the problem "Is $L(D_1) \subseteq L(D_2)$?" where D_1 and D_2 are taken from possibly different descriptor families of subclasses of context-free languages. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Inclusion problem; Unambiguous context-free language; (restricted) Context-free grammar; (restricted) Deterministic push-down automaton

When we change a context-free language by e.g. modifying its grammar G_1 into a new context-free grammar G_2 , the obvious questions are: What is the relationship between $L(G_1)$ and $L(G_2)$? Are they equal? Is one language a (proper) subset of the other one? Are these two languages incomparable? In answering questions of this type the (decidability of the) inclusion problem plays a principal part.

Consider two descriptors \mathbf{D}_1 and \mathbf{D}_2 of subclasses of context-free languages; e.g., \mathbf{D}_1 and \mathbf{D}_2 are two particular kinds of context-free grammars or push-down automata. Then the *inclusion* or *containment problem* for $(\mathbf{D}_1, \mathbf{D}_2)$ is the question whether for arbitrary $D_1 \in \mathbf{D}_1$ and $D_2 \in \mathbf{D}_2$ the inclusion $L(D_1) \subseteq L(D_2)$ holds. In case $\mathbf{D}_1 = \mathbf{D}_2$ we refer to this problem as the *inclusion problem* for \mathbf{D}_1 .

^{*} Corresponding author.

E-mail address: anijholt@cs.utwente.nl (A. Nijholt)

It is well known that the inclusion problem for regular languages is decidable, whereas it is undecidable for context-free languages. Originally, this latter fact has been proved in [1]; [10] contains an alternative proof, and many text books, like [11, 14, 12, 18], also provide a proof of this undecidability result.

A similar conclusion has been obtained for deterministic context-free languages [5], and it has been established in [3] that the inclusion problem for simple deterministic languages is undecidable too; see also [8]. Clearly, these facts imply the undecidability of the inclusion problem for unambiguous context-free languages.

In this note we provide an alternative, direct proof of this latter fact (Theorem 1) which consists of a reduction to Post's Correspondence Problem over two-letter alphabets. As a consequence of this proof we obtain the undecidability of the inclusion problem for linear and sequential languages (Corollary 2). A slight modification of the argument yields the undecidability of the inclusion problem for context-free grammars with disjunct syntactic categories (Theorem 3). This result also follows from the undecidability of the inclusion problem for NTS (or nonterminal separating) languages established in [16]. Finally, we consider some consequences for inclusion problems of the form ($\mathbf{D}_1, \mathbf{D}_2$) with $\mathbf{D}_1 \neq \mathbf{D}_2$ (Theorems 5–7; Table 1), and we survey the open problems in the area (Table 1).

The emphasis in this note is on the application of the proof technique used in establishing Theorem 1 and on surveying results with respect to the inclusion problem rather than deriving new results. Actually, only Corollary 2 and its consequences (see Table 1), Theorems 5–7, and the proofs of Theorems 1 and 3 seem to be new.

Theorem 1. Let G_1 and G_2 be unambiguous context-free grammars. Then the problem "Is $L(G_1) \subseteq L(G_2)$?" is undecidable.

Proof. Let *I* be an instance of Post's Correspondence Problem (PCP) over a two-letter alphabet, i.e., $I = (\alpha_1, ..., \alpha_n; \beta_1, ..., \beta_n)$ with $\alpha_i, \beta_i \in \Delta^+$ $(1 \le i \le n)$ and $\Delta = \{a, b\}$. Let Θ be an alphabet of *n* new symbols, say $\Theta = \{a_1, ..., a_n\}$, and define the homomorphism $h: (\Theta \cup \Delta)^* \to \Delta^*$ by

 $h(a_i) = \lambda$ for all $i \ (1 \le i \le n)$, h(a) = a, h(b) = b,

(λ denotes the empty word). Consider the context-free grammar $G_I = (V, \Sigma, P_I, S)$ with $\Sigma = \Theta \cup \Delta \cup \{c\}, V = \Sigma \cup \{S\}$ and P_I consists of the productions

$$S \to a_i \alpha_i S \beta_i^R$$
 for all $i \ (1 \le i \le n)$,
 $S \to a_i \alpha_i c \beta_i^R$ for all $i \ (1 \le i \le n)$,

where R is the reversal or mirror operation. Then we have

$$L(G_I) = \{a_{i_1} \alpha_{i_1} \cdots a_{i_k} \alpha_{i_k} c(\beta_{i_1} \cdots \beta_{i_k})^R \mid k \ge 1, 1 \le i_j \le n, \text{ for all } j \text{ with } 1 \le j \le k\}$$

Table	1

UI LI	Regular	Linear	Unambiguous	Sequential	Deterministic	Simple deterministic	Real-time strict deterministic	Super- deterministic	LL(k)	NTS	DSC	Context-free
Regular	TD	?	D [0]	?	D [11]	D [11*]	D [11*]	D [11*]	D [11*]	D [11*]	?	U [11]
Linear	TD	U [0]	U [0]	U [0]	U [0]	?	?	U [4*]	?	?	U [0]	U [11*]
Unambiguous	TD	U [0]	U [5*]	U [0]	U [5*]	U [3*]	U [3*]	U [4*]	U [3*]	U [16*]	U [16*]	U [5*]
Sequential	TD	U [0]	U [0]	U [0]	U [0]	?	?	U [4*]	?	?	U [0]	U [11*]
Deterministic	TD	U [0]	U [5*]	U [0]	U [5]	U [3*]	U [3*]	U [4*]	U [3*]	U [16*]	U [16*]	U [11*]
Simple deterministic	TD	U [0]	U [3 [*]]	U [0]	U [3*]	U [3]	U [3*]	U [0]	U [3*]	?	U [0]	U [11*]
Real-time strict deterministic	TD	U [0]	U [3*]	U [0]	U [3*]	U [3*]	U [3*]	U [0]	U [3*]	?	U [0]	U [11*]
Super- deterministic	TD	U [0]	U [4*]	U [0]	U [4*]	?	?	U [4]	?	?	U [0]	U [11*]
LL(k)	TD	U [0]	U [3*]	U [0]	U [3*]	U [3*]	U [3*]	U [4*]	U [3*]	?	U [0]	U [11*]
NTS	TD	U [0]	U [16*]	U [0]	U [16*]	?	?	U [4*]	?	U [16*]	U [16*]	U [11*]
DSC	TD	U [0]	U [16*]	U [0]	U [16*]	?	?	U [4*]	?	U [16*]	U [16*]	U [16*]
Context-free	TD	U [0]	U [5*]	U [0]	U [5*]	U [3*]	U [3*]	U [4*]	U [3*]	U [16*]	U [16*]	U [1]

TD = trivially decidable, D = decidable, U = undecidable, ? = open problem.

and G_I is unambiguous. Next we define the context-free grammar $G = (V_0, \Sigma, P, S)$ with alphabet $V_0 = \Sigma \cup \{S, A, B, C, D\}$ and P consisting of the productions

(1) $S \rightarrow Aa | Ab$ (2) $A \rightarrow Aa | Ab | D$ (3) $S \rightarrow \xi aB | \xi bB$ (4) $B \rightarrow \xi aB | \xi bB | D$ (5) $D \rightarrow \xi aDa | \xi bDb | \xi aDb | \xi bDa | c$ (6) $S \rightarrow C$ (7) $C \rightarrow \xi aCa | \xi bCb | \xi aDb | \xi bDa$ with $\xi \in \{\lambda\} \cup \Theta$. It is easy to see that

$$L(G) = \{wcv \mid w \in ((\Theta \cup \{\lambda\}) \varDelta)^+, v \in \varDelta^+, h(w) \neq v^R\},\$$

as well as the following facts: for each $wcv \in L(G)$ we have

- (a) |h(w)| < |v| if and only if *wcv* has been derived using the rules (1), (2) and (5) only,
- (b) |h(w)| > |v| if and only if we has been derived using the rules (3)–(5) only,
- (c) |h(w)| = |v| if and only if were has been derived using the rules (5)–(7) only,

where as usual |x| denotes the length of the string x. Using this observation it is straightforward to show that G is unambiguous.

Now suppose the instance I has a solution. Thus there exists a sequence $a_{i_1}a_{i_2}\cdots a_{i_k}$ such that

$$h(a_{i_1}\alpha_{i_1}\cdots a_{i_k}\alpha_{i_k})=\beta_{i_1}\cdots \beta_{i_k}.$$

This means that $L(G_I) - L(G) \neq \emptyset$, and consequently $L(G_I)$ is not included in the language L(G).

Conversely, suppose $L(G_I)$ is not included in L(G). Then there exists a string wcv in $L(G_I)$ with $h(w) = v^R$. But then the sequence of symbols from Θ that occur from left to right in w determines a solution for I.

Summarizing, we have that the inclusion problem for unambiguous context-free grammars is reducible to PCP. Hence it is undecidable. \Box

Notice that both grammars constructed in the proof are linear and sequential. Remember that a context-free grammar $G = (V, \Sigma, P, S)$ is called *sequential* [6] if $V - \Sigma$ can be provided with a linear order \leq such that for each rule $A \rightarrow w$, $A \leq B$ holds for all nonterminal symbols *B* that occur in *w*. (The linear order for the grammar *G* in our proof is: $S \leq A \leq B \leq C \leq D$). Therefore we have

Corollary 2. Let G_1 and G_2 be unambiguous sequential linear context-free grammars. Then the problem "Is $L(G_1) \subseteq L(G_2)$?" is undecidable.

Next we turn to context-free grammars that possess disjunct syntactic categories or that satisfy the NTS (nonterminal separating) property. A *DSC-grammar* or a *context-free grammar with disjunct syntactic categories* is a context-free grammar $G = (V, \Sigma, P, X)$ with $X \subseteq V - \Sigma$, such that for all $A, B \in V - \Sigma$, $A \neq B$ implies $L(G, A) \cap L(G, B) = \emptyset$, where for each $A, L(G, A) = \{w \in V^* | A \Rightarrow^* w\}$. The language generated by a DSC-grammar $G = (V, \Sigma, P, X)$ is defined by $L(G) = \{w \in \Sigma^* | A \Rightarrow^* w \text{ for some } A \in X\}$.

A context-free grammar $G = (V, \Sigma, P, X)$ with $X \subseteq V - \Sigma$ is an *NTS-grammar* (or satisfies the nonterminal separating property [2, 16]) if for all $A \in V - \Sigma$, and for all $w \in V^*, A \Rightarrow^* w$ holds if, and only, if $A \Leftrightarrow^* w$, where \Leftrightarrow^* is the reflexive and transitive closure of the union of \Rightarrow and its converse relation \Leftarrow . So, roughly spoken, $A \Leftrightarrow^* w$ means that w may be obtained from A by using the productions of P in both directions. The language generated by an NTS-grammar $G = (V, \Sigma, P, X)$ is defined by $L(G) = \{w \in \Sigma^* | A \Rightarrow^* w \text{ for some } A \in X\}$.

Each NTS-grammar has disjunct syntactic categories [2]; but the converse does not hold.¹ For instance, the language $\{a^n b^n | n \ge 1\} \cup \{a^n b^{2n} | n \ge 1\}$ is not an NTS-language [2], but it is easy to show that this language can be generated by a DSC-grammar. The inclusion problem for NTS-grammars is undecidable [16], which also implies the undecidability of the inclusion problem for DSC-grammars. Here we provide a direct proof of this latter statement.

Theorem 3. Let G_1 and G_2 be context-free grammars with disjunct syntactic categories. Then the problem "Is $L(G_1) \subseteq L(G_2)$?" is undecidable.

Proof. We slightly change the proof of Theorem 1. First, we observe that G_I is trivially a DSC-grammar. Secondly, we replace the grammar G in that proof by $G_0 = (V_0, \Sigma, P_0, X_0)$ with $\Sigma = \Delta \cup \Theta \cup \{c\}, \Delta = \{a, b\}, V_0 = \Sigma \cup \{S, T, C, D, E\}, X_0 = \{S, T, C, D\}$ and P_0 consists of the productions

$$S \rightarrow \xi aS | \xi bS | \xi aC | \xi bC | \xi aD | \xi bD | \xi aE | \xi bE$$

$$T \rightarrow Ta | Tb | Ca | Cb | Da | Db | Ea | Eb$$

$$C \rightarrow \xi aCa | \xi bCb | \xi aDa | \xi bDb$$

$$D \rightarrow \xi aDb | \xi bDa | \xi aCb | \xi bCa | \xi aEb | \xi bEa$$

$$E \rightarrow \xi aEa | \xi bEb | c$$

with $\xi \in \{\lambda\} \cup \Theta$. Then it is easy to see that

$$\begin{split} L(G_0, S) &= \{wcv \mid w \in ((\Theta \cup \{\lambda\}) \varDelta)^*, v \in \varDelta^*, |h(w)| > |v|\}, \\ L(G_0, T) &= \{wcv \mid w \in ((\Theta \cup \{\lambda\}) \varDelta)^*, v \in \varDelta^*, |h(w)| < |v|\}, \\ L(G_0, C) &= \{wcv \mid w \in ((\Theta \cup \{\lambda\}) \varDelta)^*, v \in \varDelta^*, |h(w)| = |v| \ge 1, h(w) \neq v^R, 1 : h(w) = 1 : v^R\}, \\ L(G_0, D) &= \{wcv \mid w \in ((\Theta \cup \{\lambda\}) \varDelta)^*, v \in \varDelta^*, |h(w)| = |v| \ge 1, 1 : h(w) \neq 1 : v^R\}, \\ L(G_0, E) &= \{wcv \mid w \in ((\Theta \cup \{\lambda\}) \varDelta)^*, v \in \varDelta^*, h(w) = v^R\}, \end{split}$$

where 1:x denotes the first symbol of the string x. Hence G_0 is a DSC-grammar. Moreover, it is straightforward to prove that $L(G_0) = L(G)$. \Box

¹ This latter observation and the following example are due to Jan Anne Hogendorp.

Although G_I is an NTS-grammar, it is unlikely that this proof can be modified in order to provide an alternative way of establishing the undecidability of the inclusion problem for NTS-grammars [16]. More concretely, $L(G_0)$ is probably not an NTS-language.

We assume the reader to be familiar with the notion of deterministic PDA (pushdown automaton) and restricted variants such as simple deterministic PDA and real-time strict deterministic PDA; cf. [8] for an excellent survey. However, we will recall the definition of the somewhat less known concept of super-deterministic PDA [4, 7].

Definition. Let $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ be a deterministic push-down automaton with $F \subseteq Q \times (\Gamma \cup \{\lambda\})$ rather than $F \subseteq Q$. For each rule (q, a, A, p, y) in δ , the pair (q, A) is called the *mode* of the rule with input *a*; if $a = \lambda$, this is a λ -rule. If no rule is defined for (q, A) in $Q \times \Gamma$, it is a *blocking mode*; (q, λ) is also called a blocking mode. The elements of *F* are called *accepting modes*. A pair (q, yA) with $q \in Q$, $y \in \Gamma^*$, and $A \in \Gamma$ is a *configuration of M with mode* (q, A), for which we use the notation m(q, yA) = (q, A). A configuration (q, yA) is in *reading mode*, if no λ -rule is defined for mode (q, A), and (q, A) is not a blocking mode.

M is *super-deterministic* if it is finite delay and for all accessible configurations in reading mode (q, s_1) , (q, s_2) , (q_1, t_1) and (q_2, t_2) in $Q \times \Gamma^*$ and $a \in \Sigma$, if $(q, s_1) \vdash^a (q_1, t_1)$ and $(q, s_2) \vdash^a (q_2, t_2)$, then $q_1 = q_2$ and $|s_1| - |t_1| = |s_2| - |t_2|$.

The language T(M) accepted by M by final state (accepting mode) is

$$T(M) = \{ w \in \Sigma^* \mid (q_0, Z_0) \vdash^w (q, s) \text{ and } m(q, s) \in F \},\$$

and the language L(M) accepted by M by final state and empty store is

$$L(M) = \{ w \in \Sigma^* \mid (q_0, Z_0) \vdash^w (q, \lambda) \text{ and } (q, \lambda) \in F \}.$$

A language L_0 over Σ_0 is *super-deterministic* if there is a super-deterministic PDA M such that either $L_0 = T(M)$ or $L_0 \$ = T(M)$ for some symbol \$ not in Σ_0 .

The inclusion problem for super-deterministic PDAs highly depends on the way in which a language is accepted; viz.

Theorem 4 (Greibach and Friedman [7] and Friedman and Greibach [4], respectively). *The inclusion problem is decidable for languages accepted by super-deterministic PDAs by final state and empty store. In case of acceptance by final state only, the inclusion problem is undecidable.*

Next we consider a few consequences for inclusion problems of the form $(\mathbf{D}_1, \mathbf{D}_2)$ in which \mathbf{D}_1 may differ from \mathbf{D}_2 . In the sequel we restrict our attention to superdeterministic PDAs that accept by final state.

Theorem 5. Let **D**₁ and **D**₂ be equal to one of the following descriptors: • linear context-free grammar,

- sequential context-free grammar,
- unambiguous context-free grammar,
- deterministic push-down automaton,
- context-free grammar with disjunct syntactic categories,
- context-free grammar.

Then the inclusion problem for $(\mathbf{D}_1, \mathbf{D}_2)$ is undecidable. The same conclusion holds if \mathbf{D}_1 is taken equal to "NTS-grammar".

Proof. These statements directly follow from the proofs of the previous results and the fact that $L(G_1)$ is an NTS-language. \Box

It remains an open problem whether "super-deterministic push-down automaton (acceptance by final state)" can be added to the list in Theorem 5; cf. Theorem 6.

Note that in [4] a variant of PCP – viz. the so-called *variant correspondence problem* or VCP – is used to establish the undecidability of the inclusion problem for superdeterministic PDAs. An instance *I* of such a VCP consists of two lists of n ($n \ge 1$) nonempty words over Δ : $I = (\alpha_1, ..., \alpha_n; \beta_1, ..., \beta_n)$, where $|\alpha_1| < |\beta_1|$, and $|\alpha_i| \le |\beta_i|$ for each i ($2 \le i \le n$). For a symbol a in Δ , *I* has an a-marked solution ($i_1, ..., i_t$), if $x_1x_{i_1} \cdots x_{i_t}a$ is a prefix of $y_1y_{i_1} \cdots y_{i_t}$ and $2 \le i_1, ..., i_t \le n$. And the question whether such an a-marked solution exists is undecidable [4]. From the argument in [4], it follows that the symbol a does not occur in the string $x_1x_{i_1} \cdots x_{i_t}$. We will use this observation in the proof of Theorem 6(b).

Theorem 6. (a) Let \mathbf{D}_1 be equal to one of the following descriptors:

- simple deterministic push-down automaton,
- real-time strict deterministic push-down automaton,
- LL(k)-grammar,
- super-deterministic push-down automaton,

and let \mathbf{D}_2 be equal to either "linear context-free grammar", "sequential grammar", or "context-free grammar with disjunct syntactic categories". Then the inclusion problem for $(\mathbf{D}_1, \mathbf{D}_2)$ is undecidable.

(b) The inclusion problem for $(\mathbf{D}_1, \mathbf{D}_2)$ is undecidable in case \mathbf{D}_1 equals "simple deterministic push-down automaton" or "real-time strict deterministic push-down automaton", and \mathbf{D}_2 is "super-deterministic push-down automaton".

Proof. (a) Once again we adapt the proof of Theorem 1; viz. we construct a deterministic push-down automaton M_1 that accepts the language $L(G_I)$. The set of rules δ of $M_I = (\{q\}, \Sigma, \Sigma \cup \{Z_0\}, \delta, q, Z_0, F)$ is defined by

 $\begin{array}{ll} (q, a_i, Z_0, q, \beta_i a_i \alpha_i^R) & \text{ for each } i \ (1 \leq i \leq n), \\ (q, x, x, q, \lambda) & \text{ for each } x \ \text{ in } \Delta, \\ (q, a_j, a_i, q, \beta_j a_j \alpha_j^R) & \text{ for each } i \ \text{ and } j \ (1 \leq i, j \leq n), \\ (q, c, a_i, q, \lambda) & \text{ for each } i \ (1 \leq i \leq n). \end{array}$

The push-down automaton M_I accepts the language $L(G_I)$ by final state and empty stack. It is straightforward to show that M_I is simple deterministic $(F = \{q\})$ as well as super-deterministic $(F = \{(q, \lambda)\})$.

(b) It suffices to show that the language

$$L_1 = \{a_{i_t} \cdots a_{i_1} a_1 \alpha_1 \alpha_{i_1} \cdots \alpha_{i_t} a \mid t \ge 1; \ 2 \le i_1, \dots, i_t \le n\}$$

is simple deterministic; cf. [4]. Note that $\alpha_{i_j} \in \Sigma_0^*$ with $\Sigma_0 = \Delta - \{a\}$ $(1 \le j \le t)$, $\Sigma_0 \cap \Sigma_1 = \emptyset$, and $a \notin \Sigma_0 \cup \Sigma_1$ with $\Sigma_1 = \{a_1, \dots, a_n\}$. The deterministic push-down automaton $M_1 = (\{q\}, \Delta \cup \Sigma_1, \Delta \cup \Sigma_1 \cup \{Z_0\}, \delta_1, q, Z_0, \{q\})$, where δ_1 is defined by

$$\begin{array}{ll} (q,a_i,Z_0,q,a\alpha_i^Ra_i) & \text{for each } i \ (2 \le i \le n), \\ (q,x,x,q,\lambda) & \text{for each } x \ \text{in } \Delta - \{\alpha\}, \\ (q,a_j,a_i,q,\alpha_j^Ra_j) & \text{for each } i \ \text{and } j \ (2 \le i, j \le n), \\ (q,a_1,a_i,q,\alpha_1^R) & \text{for each } i \ (2 \le i \le n), \end{array}$$

accepts L_1 by final state and empty stack. Clearly, M_1 is simple deterministic. \Box

In Table 1 we summarize known results with respect to the inclusion problem; it also includes the cases considered in the present paper to which we refer by [0]. A reference in Table 1 provided with an asterisk, e.g. $[n^*]$, means that the result is not mentioned in [n] explicitly, but it follows from [n]: either trivially, or it can be inferred from the argument in [n] by observing that for the languages L_i in [n], it is obvious to construct descriptors D_i ($D_i \in \mathbf{D}_i$, i=1,2) such that $L(D_i) = L_i$. An example of a slightly less obvious construction is the proof of Theorem 6(b): rather than proving that the language L_1 is super-deterministic as in [4], we now show that L_1 is simple deterministic and, consequently, real-time strict deterministic.

Of course, Table 1 may be viewed as an extension of the appropriate row from Fig. 14.2 on p. 230 in [11]. A table similar to Table 1 surveying the equivalence problem for some subclasses of context-free languages can be found in [9].

Finally, we will discuss some decidable cases from Table 1. The inclusion problem for $(\mathbf{D}_1, \mathbf{D}_2)$, where \mathbf{D}_2 is any descriptor for the regular languages, is trivially decidable in the following sense; see also p. 204 in [12]. Let $D_i \in \mathbf{D}_i$ (i = 1, 2), and $R = L(D_2)$ be regular. Because for each \mathbf{D}_1 in Table 1, we can effectively construct a context-free grammar G_1 such that $L(G_1) = L(D_1)$, we have

$$``L(D_1) \subseteq R?" \Leftrightarrow ``L(G_1) \subseteq R?" \Leftrightarrow ``L(G_1) \cap \overline{R} = \emptyset?".$$

The latter question is decidable, since (i) the complement \overline{R} of R is regular, (ii) the family of context-free languages is effectively closed under intersection with regular sets, and (iii) the emptiness problem for context-free languages is decidable.

Theorem 7. The inclusion problem for $(\mathbf{D}_1, \mathbf{D}_2)$ is decidable in case \mathbf{D}_2 equals "unambiguous context-free grammar" and \mathbf{D}_1 is any descriptor of the regular languages. **Proof.** Let *R* be a regular language and let L_0 be an unambiguous context-free language. Clearly, $R \subseteq L_0$ holds, if and only if $R \cap L_0 = R$. Now the language $R \cap L_0$ is unambiguous by Theorem 6.4.1 from [8]. Then the result follows from the fact that the question "Is L = R?" is decidable for regular *R* and unambiguous *L* [15]; see also [9]. \Box

For the complexity of some (trivially) decidable entries mentioned in Table 1, we refer to [13, 17]. Even for the simplest case of Table 1 – viz. the inclusion problem for **D**, where **D** is any descriptor of the regular languages, i.e., the case corresponding to the left-upper corner of Table 1 – the inclusion problem is PSPACE-complete. Deterministic polynomial time-bounded algorithms have only been obtained for restricted cases of this entry, viz. for unambiguous descriptors, and for descriptors with bounded ambiguity; see [17] for details.

Acknowledgements

We are indebted to Rieks op den Akker and Jan Anne Hogendorp for some remarks on an earlier version of this note.

References

- Y. Bar-Hillel, M. Perles, E. Shamir, On formal properties of simple phrase-structure grammars, Z. Phonetik, Sprachwiss. Kommunikationsforsch. 14 (1961) 143–172. Reprinted as Chapter 9 in Y. Bar-Hillel: Language and Information, Addison-Wesley, Reading, MA, 1964, pp. 116–150.
- [2] L. Boasson, G. Sénizergues, NTS languages are deterministic and congruential, J. Comput. System Sci. 31 (1985) 332–342.
- [3] E.P. Friedman, The inclusion problem for simple languages, Theoret. Comput. Sci. 1 (1976) 297-316.
- [4] E.P. Friedman, S.A. Greibach, Superdeterministic DPDAs: the method of accepting does affect decision problems, J. Comput. System Sci. 19 (1979) 79–117.
- [5] S. Ginsburg, S.A. Greibach, Deterministic context-free languages, Inform. and Control 9 (1966) 620–648.
- [6] S. Ginsburg, H.G. Rice, Two families of languages related to ALGOL, J. Assoc. Comput. Mach. 9 (1962) 350-371.
- [7] S.A. Greibach, E.P. Friedman, Superdeterministic PDAs: a subcase with a decidable inclusion problem, J. Assoc. Comput. Mach. 27 (1980) 675–700.
- [8] M.A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.
- [9] M.A. Harrison, I.M. Havel, A. Yehudai, On equivalence of grammars through transformation trees, Theoret. Comput. Sci. 9 (1979) 173–205.
- [10] J. Hartmanis, Context-free languages and Turing machine computations, in: J.T. Schwartz (Ed.), Mathematical Aspects of Computer Science, Proc. Symp. in Appl. Math., vol. XIX, American Mathematical Society, Providence, RI, 1967, pp. 42–51.
- [11] J.E. Hopcroft, J.D. Ullman, Formal Languages and their Relation to Automata, Ch. 14, Addison-Wesley, Reading, MA, 1969.
- [12] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, MA, 1979.
- [13] H.B. Hunt III, D.J. Rosenkrantz, T.G. Szymanski, On the equivalence, containment, and covering problems for the regular and context-free languages, J. Comput. System Sci. 12 (1976) 222–268.
- [14] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

256

- [15] A.L. Semenov, Algorithmic problems for power series and context-free grammars, Soviet Math. Dokl. 14 (1973) 1319–1322.
- [16] G. Sénizergues, The equivalence and inclusion problems for NTS languages, J. Comput. System Sci. 31 (1985) 303–331.
- [17] R.E. Stearns, H.B. Hunt III, On the equivalence and containment problems for unambiguous regular expressions, regular grammars and finite automata, SIAM J. Comput. 14 (1985) 598-611.
- [18] D. Wood, Theory of Computation, Harper & Row, New York/Wiley, New York, 1987.