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Abstract

Traditionally, the optimal preventive maintenance interval for an unreliable production system has been determined by maximizing its
limiting availability. Nowadays, it is widely recognized that this performance measure does not always provide relevant information for
practical purposes. This is particularly true for order-driven manufacturing systems, in which due date performance has become a more
important, and even a competitive factor. Under these circumstances, the so-called interval availability distribution is often seen as a more
appropriate performance measure. Surprisingly enough, the relation between preventive maintenance and interval availability has received
little attention in the existing literature. In this article, a series of mathematical models and optimization techniques is presented, with which
the optimal preventive maintenance interval can be determined from an interval availability point of view, rather than from a limiting
availability perspective. Computational results for a class of representative test problems indicate that significant improvements of up to 30%
in the guaranteed interval availability can be obtained, by increasing preventive maintenance frequencies somewhere between 10 and 70%.
q 1999 Elsevier Science Ltd. All rights reserved.

Keywords:Interval availability distribution; Preventive maintenance; Order-driven manufacturing systems

1. Introduction

In studying the performance of an unreliable production
system, the limiting availability does not always provide the
most relevant information for practical purposes. For exam-
ple, the amount of gas to be delivered over a finite period of
time is often contractually guaranteed in the oil industry [1].
Although short interruptions of the production process can
usually be covered by inventory backups, a loss of produc-
tion for several consecutive days might cause problems in
meeting the sales contract, involve high penalty costs,
and—in the worst case—loss of goodwill or even custo-
mers [25]. In computer and manufacturing systems, the
guaranteed performance during a finite period of time is
sometimes a more important and even competitive factor
than the average performance observed over an infinite hori-
zon [11]. In this respect, theinterval availability of a
production system is often seen as an appropriate perfor-
mance measure in a practical context. This is particularly
true for order-driven manufacturing systems, in which capa-
city planning plays a key strategical role in satisfying
contractual obligations.

Most capacity planning tools used in industry account for
random outages by computing average capacity in terms of
limiting availability. By doing so, it is immediately clear
that during a given period of time (e.g. a week), capacity
problems will occur frequently. As this is generally not
acceptable, a safety margin is usually built in, in order to
ensure satisfactory capacity in e.g. at least 95% of all cases.
However, even if this works well in practice, it underlines
the point that thinking in terms of the guaranteed capacity of
a production system during a finite period of time, is often
more appropriate than thinking about its average capacity in
the long run. In this respect, a production system with
frequent, predictable and short interruptions is to be
preferred to one with infrequent, unpredictable and long
interruptions, all other things being equal (see Fig. 1).
This is a potentially valuable insight, as random breakdowns
are one of the major sources of variability.

During the last decades, this and other factors have
resulted in an increased popularity of mathematical models
for reliability and maintenance optimization, e.g. see
[4,10,13,14,16,18,22] for extensive literature reviews.
Usually, these models focus on the optimization of system
performance in the long run. Frequently encountered
approaches include the maximization of the long run system
availability, and the minimization of the average
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(discounted) total costs per unit of time. Relevant cost
factors include the costs of preventive and corrective main-
tenance, e.g. as a result of inspections, replacements, repairs
and /or production losses. At the same time, a growing
interest can be observed in modelling the short term beha-
vior of production systems, in terms of the so-called interval
availability distribution. The reader is referred to Smith [19]
for a comprehensive and up-to-date survey on existing
literature. Surprisingly enough, the interactions between
preventive maintenance on the one hand, and interval avail-
ability on the other hand, have received little attention in
existing literature, possibly because of the inherent mathe-
matical complications.

If a production system is repaired at failure, and thus all
maintenance is corrective, consecutive up (life) and down
(repair) times are usually modelled as stochastically inde-
pendent random variables. Obviously, this modelling
assumption cannot be sustained if preventive maintenance
is carried out at regular intervals. In that case, consecutive
up and downtimes become mutually dependent random
variables, as small up times (caused by failures) are usually
followed by large downtimes (caused by repairs), and vice
versa. Obviously, this phenomenon does not make life
easier from a mathematical point of view. But even for a
two-state production system without preventive mainte-
nance, i.e. with alternating and mutually independent up
and downtimes, closed-form solutions for the interval avail-
ability distribution are not available. Pioneering work on
this subject was carried out by Taka´cs [20], who derived
an analytical expression consisting of an infinite summa-
tions of terms, each consisting of multiple convolutions of
the life and repair time distributions. As then, several
authors have tried to find reasonable approximations, as
well as lower and upper bounds for the interval availability
distribution, e.g. see [6–9,12,17,19,23–26].

A three-state production system that is maintained
according to an age replacement strategy, is a special case
of the class of repairable systems whose state space can be
partitioned into a set of up-states and a set of down-states.
Csenki [6,7] has shown that these systems can be modelled
as semi-Markov chains, for which the cumulative uptime
distribution (and hence the interval availability distribution)
can be obtained by numerically solving a system of integral

equations. His general framework has the advantage of high
flexibility to model a wide variety of repairable systems. A
drawback of his approach, however, is that the approxima-
tion error may be significant. Further, the numerical method
requires a lot of computational effort, even considerably
more than simulation [7].

In this article, we focus on the optimization of preventive
maintenance for a three-state production system. Our main
objective and contribution is to provide insight into the
effect of short term availability fluctuations on the optimal
preventive maintenance strategy. Up to our knowledge, this
phenomenon has not been analyzed before in literature.
Maintenance optimization means that we have to evaluate
a wide range of cumulative uptime distributions for various
preventive maintenance strategies. Hence, a numerically
efficient method is very important. Therefore, we present
a dedicated numerical method for a three-state system,
although we are aware of the fact that a more general—
but computationally expensive—framework is available
[7]. In Section 4.5, we will relate our modelling approach
to this more general framework.

2. General approach

Consider an unreliable production system which is
repaired upon failure, and maintained preventively as soon
asu . 0 time units have elapsed since the last maintenance
action, either preventive or corrective. After preventive and/
or corrective maintenance, the system can be considered as
good as new. The time to failure or lifetimeL of the produc-
tion system is described by a cumulative distribution func-
tion F(·), with probability density functionf(·), and
corresponding meanmL . 0 and variances2

L $ 0 . More-
over, the preventive maintenance timeP is described by a
cumulative distribution functionG(·), with meanmP . 0
and a variances2

P $ 0 . Finally, the corrective maintenance
(repair) timeR is described by a cumulative distribution
function H(·), with meanmR . 0 and variances2

R $ 0 .
As in most maintenance optimization models, we assume
that both L, P and R are mutually independent random
variables.
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2.1. Limiting availability

The limiting availabilityA∞ is defined as the fraction of
time that the production system is operational (up), if
observed over an infinite period of time. If we denote with
Tup a continuous period of time during which the system is
operational, and withTdown a continuous period of time
during which the system is not operational, then it follows
from renewal theory [5] that the limiting availabilityA∞ is
determined as:

A∞ �
E{ Tup}

E{ Tup} 1 E{ Tdown}

Depending on the length of the preventive maintenance
intervalu . 0 , the following expressions can be derived for
E{ Tup} and E{ Tdown}. Here, we denote�F�u� � 1 2 F�u� for
notational convencience:

E{ Tup} � u �F�u�1
Zu

0
tf �t�dt

E{ Tdown} � mP
�F�u�1 mRF�u�

If u! ∞, this yieldsE{ Tup} � mL, E{ Tdown} � mR, and
thusA∞ � mL=�mL 1 mR�. Traditionally, the optimal preven-
tive maintenance for a production system has been deter-
mined in view of maximizing its limiting availability.
Unfortunately, this performance measure does not always
provide sufficient and relevant information for practical
purposes. Sometimes, the so-called interval availability is
seen as a more appropriate performance measure.

2.2. Interval availability

The interval availability is defined as the fraction of time
that a production system is operational during a given time
interval of finite length. Of course, it depends on the initial
state of the system at the beginning of this interval, which
type of behavior will be observed. From now on, we will
assume—without loss of generality—that the production
system starts as new at timet � 0. If we denote withUt

the cumulative uptime during the interval [0,t], then the
interval availability At during this interval is defined as
follows:

At � Ut

t
:

With Tu � inf{ tuUt $ u} , we denote the time required to
attain a cumulative uptime ofu time units. As bothUt andTu

are random variables, we are mainly interested in their
cumulative distribution functions P�Ut # u� and
P�Tu # t�. By observing thatP�Ut # u� � P�Tu $ t� , it is
sufficient to determine eitherP�Ut # u� or P�Tu # t�.
Nevertheless, it is known from previous studies into interval
availability [15,7] thatP�Tu # t� is to be preferred from a
theoretical point of view, as the corresponding analytical

expressions are mathematically more tractable (see also
Section 3).

To avoid confusion, we will refer toP�Ut # u� as the
interval availability distribution, and toP�Tu # t� as the
availability interval distribution. Simply stated,P�Tu # t�
reflects the probability of completing a cumulative work-
load ofu time units withint units of calendar time. Nowa-
days, this performance measure could be of considerable
interest in e.g. due date determination and order acceptation,
as it may provide useful information about the probability
that a certain amount of workload will be completed within
a certain amount of time.

As an illustrative example, consider a customer order of
10 h processing time which must be completed within 3
days. Moreover, suppose that already 50 h of workload
have been accepted for other customers, with their own
due dates as well. In case of a first-in-first-out (FIFO)
service discipline, which is completely natural in such a
setting, this would imply that on-time delivery of this new
customer order can be realized with probability
P�T50110 # 3 × 24� � P�T60 # 72�. Of course, it is up to
management to decide whether or not this is acceptable.
Nevertheless, our model could provide useful decision
support in this respect. Moreover, it could also be used to
explore the opportunities for, and consequences of changing
priorities between customer orders.

2.3. Outline

As a starting point, we investigate the initial behavior of
the system in Section 3. To be specific, an analytical expres-
sion is derived for the probabilityP0�Tu # t� of at leastu
units of cumulative uptime during the interval [0,t]. Subse-
quently, we investigate the limiting behavior of the produc-
tion system in Section 4, by deriving an analytical
expression for the probabilityP∞�Tu # t� of at least u
units of cumulative uptime during an arbitrary interval of
length t . 0 in a stabilized situation. In Section 5, some
explicit formulas are derived for a production system with
Gamma distributed repair and fixed maintenance times, and
a simple but efficient algorithm is presented with which the
optimal maintenance interval can be determined to a suffi-
cient level of detail. Subsequently, a series of numerical
experiments is presented in Sections 6 and 7. Computational
results indicate that significant improvements can be
obtained in practice, if the optimal preventive maintenance
interval is determined from an interval availability rather
than a limiting availability point of view. Finally, Section
8 summarizes some conclusions, and identifies some oppor-
tunities for further research.

3. Initial behavior of the system

As a starting point, we consider the case where the
production system starts with an uptime at timet � 0, and
preventive maintenance is carried out as soon as the system
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has been operational (up) foru . 0 time units. In this
respect, a clear distinction must be made between the case
u . u , and the caseu # u , as the latter requires much
simpler modelling techniques.

3.1. Model without preventive maintenance (u# u )

If the required cumulative uptimeu # u , it is immedi-
ately clear that no preventive maintenance actions will be
involved. As a consequence, all maintenance (if any) will be
corrective, and our analysis becomes similar to the well-
known failure-based model [20]. As life timesL and repair
times R are stochastically independent random variables,
with corresponding cumulative distribution functionsF(·)
andH(·), this yields the following expression forP0�Tu #
t� :

P0�Tu # t� �
X∞
n�0

Hn�t 2 u�{ Fn�u�2 Fn11�u�}

Here, Fn�·� and Hn�·� denote then-fold Stieltjes convolu-
tions of F(·) andH(·) respectively, i.e.F1�u� � F�u� and
Fn�u� �

Ru
0 f �v�Fn21�u 2 v�dv . More specifically,Fn�u�2

Fn11�u� denotes the probability of exactlyn failures during
the firstu units of cumulative uptime, whereas the accumu-
lated downtime of these failures does not exceed the amount
of t 2 u time units with probabilityHn�t 2 u� . Obviously,
this analysis cannot be sustained as soon as subsequent up
and downtimes become mutually dependent random vari-
ables. Of course, this happens if preventive maintenance is
carried out at regular intervals. In that case, the correlation
between consecutive up and downtimes usually drops below
zero, as typically small (corrective) uptimes go together
with large (corrective) downtimes, and large (preventive)
uptimes go together with small (preventive) downtimes.

3.2. Model with preventive maintenance (u. u )

If the required cumulative uptime satisfiesu . u , our
analysis proceeds as follows. First of all, we determine the
probability j0

u�m; n� of exactly m preventive maintenance
actions andn corrective maintenance actions during the
first u units of cumulative uptime. Obviously, not all values
of mandn correspond to non-zero probabilitiesj0

u�m; n� . As
a starting point, as each preventive maintenance action
corresponds to exactlyu units of uptime, the number of
preventive maintenance actionsm should at least satisfy
mu , u . Moreover, as each corrective maintenance action
corresponds to at mostu units of uptime, the number of
preventive and corrective maintenance actionsm1 n
should also satisfy�m1 n 1 1�u $ u .

In all other cases, it is possible to derive an expression for
j0

u�m;n� . By the complete randomness of consecutive main-
tenance actions, i.e. preventive with probability�F�u� and
corrective with probabilityF�u� , the probabilityj0

u�m;n�

must be equal to

m1 n

m

 !
times the probability that exactlym consecutive preventive
maintenance actions are followed by exactlyn consecutive
corrective maintenance actions within the firstu units of
cumulative uptime. If we denote with~F�t� � P�L # tuL #
u� � min{1;F�t�=F�u�} the conditional cumulative lifetime
distribution function, this yields the following expression
for j0

u�m;n� . Here, ~Fn�·� denotes then-fold Stieltjes convo-
lution of ~F�·� , i.e. ~F1�x� � ~F�x�; and ~Fn�x� �Rx

0
~f �y� ~Fn21�x 2 y�dy for all n . 1:

j0
u�m; n� �

m1 n

m

 !
�F�u�mF�u�n

� ~Fn�u 2 mu�2 F�u� ~Fn11�u 2 mu��
2 �F�u� ~Fn�u 2 �m1 1�u�g:
The first term between curly brackets reflects the prob-

ability that the firstm preventive andn corrective mainte-
nance actions are completed within the firstu units of
cumulative uptime. Similarly, the second and third term
reflect the probability that the next i.e. (m1 n 1 1)st main-
tenance action, which is preventive with probability�F�u�
and corrective with probabilityF�u�, is also completed
within the remaining uptime. Together, these terms denote
the probability that the firstu units of cumulative uptime are
attained somewhere between the�m1 n�st and the
�m1 n 1 1�st maintenance action, provided that the first
m maintenance actions are preventive and the followingn
maintenance actions are corrective. For notational conveni-
ence, and without loss of generality, we will use the notation
of j0

u�m;n� in deriving analytical expressions forP0�Tu # t�
in the sequel.

3.3. Stochastic repair and stochastic maintenance times

Given the number of preventive maintenance actionsm
and corrective maintenance actionsn, observed with prob-
ability j0

u�m;n� , the corresponding downtimes do not accu-
mulate to more thant 2 u time units with probability
Gm+Hn�t 2 u� . Here,G+H�x� � Rx

0 g�y�H�x 2 y�dy denotes
the well-known Stieltjes convolution for computing the sum
of independent stochastic variables. Summarizing, this
yields the following expression forP0�Tu # t�:
P0�Tu # t� �

X
mu,u#�m1 n1 1�u

j0
u�m;n�Gm+Hn�t 2 u�:

Following a similar argument, the first and higher moments
of Tu can be derived in a rather straightforward manner, as
long as the corresponding moments of the maintenance and
repair time distributions are available. For example, the first
two moments ofTu 2 u, given that the system starts with an
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uptime at timet � 0, are determined as follows:

E0{ Tu 2 u} �
X

mu,u#�m1 n1 1�u
j0

u�m;n�{ mmP 1 nmR}

E0{ �Tu 2 u�2} �
X

mu,u#�m1 n1 1�u
j0

u�m;n�{ ms2
P 1 ns2

R

1 �mmP 1 nmR�2} :

From the transparancy of these expressions, it is immedi-
ately clear that the calculation ofP0�Tu # t� for different
values of t, is to be preferred above the calculation of
P0�Ut # u� for different values ofu, at least in view of the
inherent mathematical complications.

3.4. Stochastic repair and deterministic maintenance times

If the time required for preventive maintenance is fixed
�sP � 0� , the number of preventive maintenance actionsm
must satisfymmP # t 2 u . In that case,Gm+Hn�t 2 u� �
Hn�t 2 u 2 mmP� , and thus an alternative expression can
be derived forP0�Tu # t� :

P0�Tu # t� �
X

mu,u#�m1 n1 1�u;mmp#t 2 u

j0
u�m;n�Hn�t 2 u

2 mmP�:
If no failures occur during the firstu units of cumulative
uptime, the number of preventive maintenance actions
equals u=u 2 1d e with probability one. Moreover, we know
for sure that the corresponding downtimes accumulate to
u=u 2 1d emP time units. As each maintenance action is
preventive with probability�F�u� and corrective with prob-
ability F�u� , this yields the following additional and a priori
information with respect to the cumulative distribution
functionP0�Tu # t�:
P0�Tu � u 1 u=u 2 1d emP� � �F�u� u=u21d e �F�u 2 u=u 2 1d eu�

A typical example of deterministic maintenance times,
but stochastic repair times, can be found in the replacement
of single components and/or complete (sub) systems. In
general, preventive replacements require a fixed amount
of time, as they are perfectly plannable. Corrective replace-
ments, however, often require an additional waiting time, as
the required resources are not always readily available on
request.

4. Limiting behavior of the system

In this section, we consider the case where the production
system starts in an arbitrary state at timet � 0, and preven-
tive maintenance is carried out as soon as the system has
been operational (up) foru . 0 time units. As a starting
point of our analysis, we observe that the following situa-
tions can occur (see Fig. 2):

1. the system starts in a preventive uptime,
2. the system starts in a corrective uptime,
3. the system starts in a preventive downtime,
4. the system starts in a corrective downtime.

Here, a preventive (corrective) uptime is defined as a
continuous period of time during which the system is opera-
tional (up), and which isterminatedby a preventive (correc-
tive) maintenance action. This distinction will appear to be
convenient when deriving expressions for the availability
interval distribution. Similarly, a preventive (corrective)
downtime is defined as a continuous period of time during
which the system is not operational (down), and which is
initiated by a preventive (corrective) maintenance action. If
we denote with ~mL �

Ru
0 1 2 ~F�t�dt the mean length of a

corrective uptime, it is easily verified that the corresponding
limiting probabilitiesp1, p2, p3 andp4 are interrelated as
follows. Here,p k denotes the long run average fraction of
time that the system remains in statek:

p1 : p2 : p3 : p4 � uF�u� : ~mLF�u� : mPF�u�
: mRF�u�

Together with the normalization condition
P

k pk � 1;
this yields the required and unique values forp k (1 # k #
4). Let us now denote withPk(Tu # t) the probability of at
leastu units of cumulative uptime during an arbitrary inter-
val of t time units, given that the system starts in statek.
Then obviously, the probabilityP∞(Tu # t) of at leastu units
of cumulative uptime during an arbitrary interval oft time
units, given that the system starts in a stationary state, is
given by:

P∞�Tu # t� �
X4
k�1

pkPk�Tu # t�

In a similar way, the first two momentsE∞{ Tu 2 u} and
E∞{( Tu 2 u)2} of Tu 2 u can be determined. In the following
Sections 4.1 to 4.4, we will elaborate on these expressions in
more detail. In Section 4.5, we will show that the production
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system under consideration can also be modelled as a semi-
Markov process.

4.1. Start in preventive uptime (k� 1)

If the system starts in statek � 1, the remaining preven-
tive uptime is described by a random variableR1 [ �0; u�
with cumulative distribution functionF1(·):

F1�t� � P�R1 # t� � t

u
; 0 # t # u:

As a starting point, let us determine the probabilities
j1

u�m;n� of exactly m preventive andn corrective mainte-
nance actions during the firstu units of cumulative uptime,
given that the system starts in a preventive uptime (k � 1).
First of all, we observe that no maintenance occurs if the
remaining uptime exceeds the amount ofu time units. In all
other cases, the first maintenance action must be preventive
by assumption. In formula, this yieldsj1

u�0;0� � 1 2 F1�u�;
andj1

u�0;n� � 0 for all n $ 1: For all other values ofm $ 1
andn $ 0; j1

u�m; n� yields an expression which is similar to
j0

u�m;n�:

j1
u�m;num $ 1� �

m1 n 2 1

m2 1

 !
F�u�m21F�u�n

� F1+ ~Fn�u 2 �m2 1�u 2 F�u�F1+ ~Fn11�u 2 �m2 1�u��
2 F�u�F1+ ~Fn�u 2 mu�g:

Given the number of preventive maintenance actionsm
and corrective maintenance actionsn, the corresponding
downtimes do not accumulate to more thant 2 u time
units with probability Gm+Hn�t 2 u�: As a consequence,
we arrive at the following expression forP1�Tu # t� :
P1�Tu # t� �

X
m;n

j1
u�m;n�Gm+Hn�t 2 u�

4.2. Start in corrective uptime (k� 2)

If the system starts in statek� 2, the remaining corrective
uptime is described by a random variableR2 [ �0; u� with
cumulative distribution functionF2�·� :

F2�t� � P�R2 # t� � 1
�mL

Zt

0
1 2 ~F�v�dv; 0 # t # u:

In a similar way, we can determine the probabilitiesj2
u�m;n�

of exactly m preventive andn corrective maintenance
actions during the firstu units of cumulative uptime,
given that the system starts in a preventive uptime (k �
2). As the first maintenance action must be corrective by
assumption, we findj2

u�0;0� � 1 2 F2�u�; andj2
u�m;0� � 0

for all m $ 1. For all other values ofm $ 0 andn $ 1,
j2

u�m;n� yields an expression which is similar toj0
u�m;n� and

j1
u�m; n�:

j2
u�m; nun $ 1� �

m1 n 2 1

n 2 1

 !
�F�u�mF�u�n21

� F2+ ~Fn21�u 2 mu�2 F�u�F2+ ~Fn�u 2 mu��
2 �F�u�F2+ ~Fn21�u 2 �m1 1�u�} g
Given the number of preventive maintenance actionsm

and corrective maintenance actionsn, the corresponding
downtimes do not accumulate to more thant 2 u time
units with probabilityGm+Hn�t 2 u�: This yields the follow-
ing expression forP2�Tu # t� :
P2�Tu # t� �

X
m;n

j2
u�m; n�Gm+Hn�t 2 u�:

Of course, our analysis leads to similar expressions for
P1�Tu # t� and P2�Tu # t� , as their only difference orgi-
nates from the remaining uptimes, with corresponding
distribution functionsF1(·) andF2(·). Note that the combina-
tions ofP1�Tu # t� andP2�Tu # t� would not simplify these
expressions. In fact, the distinction between preventive and
corrective uptimes certainly facilitated their derivation.

4.3. Start in preventive downtime (k� 3)

If the system starts in statek � 3, the remaining preven-
tive downtime is described by a random variableR3 [
�0;∞l with cumulative distribution functionF3(·):

F3�t� � P�R3 # t� � 1
mP

Zt

0
1 2 G�v�dv; t $ 0:

As a starting point, we observe that the first uptime starts as
soon as preventive maintenance is completed. Therefore
j0

n�m; n� denotes the probability of exactlym preventive
and n corrective maintenance actions during the firstu
units of cumulative uptime. Given the number of preventive
maintenance actionsm and corrective maintenance actions
n, the corresponding downtimes do not accumulate to more
than t 2 u time units with probabilityF3+Gm+Hn�t 2 u�:
This yields the following expression forP3�Tu # t� :
P3�Tu # t� �

X
m;n

j0
u�m; n�F3+Gm+Hn�t 2 u�:

4.4. Start in corrective downtime (k� 4)

If the system starts in statek� 4, the remaining corrective
downtime is described by a random variableR4 [ �0;∞l
with cumulative distribution functionF4(·):

F4�t� � P�R4 # t� � 1
mR

Zt

0
1 2 H�v�dv; t $ 0

In a similar way, we observe that the first uptime starts as
soon as corrective maintenance is completed. Given the
number of preventive maintenance actionsmand corrective
maintenance actionsn, with probability j0

u�m;n�; the
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corresponding downtimes do not accumulate to more than
t 2 u time units with probabilityF4+Gm+Hn�t 2 u�: This
yields the following expression forP4�Tu # t�:
P4�Tu # t� �

X
m;n

j0
u�m;n�F4+Gm+Hn�t 2 u�

Once again, these expressions forP3�Tu # t� andP4�Tu # t�
are very similar, as their only difference originates from
remaining down times, with corresponding distribution
functionsF3(·) andF4(·).

4.5. An equivalent semi-Markov model

As mentioned in the introduction, the system can also be
modelled as a semi-Markov process [7]. To this end, we
define three system states, namely the up-state (k � 1),
preventive maintenance (k� 2) and corrective maintenance
(k � 3). Note that there is no need to distinguish between
preventive and corrective up times now. The semi-Markov
process is defined by the kernel matrixQ(t) � { qkl(t)},
where qkl�t� � rklFkl�t�: Here, rkl represents the one-step
transition probability from statek to state l. Moreover,
Fkl�t� denotes the cumulative distribution function of the
holding time in statek, given that a transition to statel is
made next. The specification ofrkl andFkl�t� for the produc-
tion system under consideration is given below. Here,IS(t)
reflects the indicator function, i.e.IS�t� � 1 if t [ S, and
IS�t� � 0 otherwise.

r11 r12 r13

r21 r22 r23

r31 r32 r33

0BB@
1CCA �

0 12 F�u� F�u�
1 0 0

1 0 0

0BB@
1CCA

F11�t� F12�t� F13�t�
F21�t� F22�t� F23�t�
F31�t� F32�t� F33�t�

0BB@
1CCA

�
0 I�u;∞l�t� F�min{ t; u} �=F u� �

G�t� 0 0

H�t� 0 0

0BB@
1CCA:

As a next step, the system states are partitioned into a set of
up statesU� {1} and a set of down statesD� {2, 3}. In the
terminology of Csenki [7], our interest goes out to the func-
tion Pk{ Tu # t} �WMAk�u; t 2 u�; where WMAk�t1; t2�
denotes the so-called Work Mission Availability. The latter
function is defined as the probability that no more thant2
units of time are spent in the set of down statesD for a
mission of lengtht1, given that the system just entered
statek at time t � 0. The Work Mission Availability for a
given set of initial statesS is given by the vectorWMA S(t1,
t2). These vector values can be obtained by solving the
following set of integral equations numerically.

WMA U�t1; t2� � �1 2 F�t1��I�0;ul�t1�

1
Zt1

0

Zt2

0
JUU�w1;w2�WMA U

�t1 2 w1; t2 2 w2�dw1 dw2

WMA D�t1; t2� �
G�t2��1 2 F�t1��I�u;∞l�t1�
H�t2��1 2 F�t1��I�u;∞l�t1�

 !

1
Zt1

0

Zt2

0
JDD�w1;w2�WMA D

�t1 2 w1; t2 2 w2�dw1 dw2

Here, the matrix functionsJUU andJDD are defined as:

JUU�t1; t2� � G�t2��1 2 F�u�I�u;∞l�t1�1 H�t2�F�min{ t1; u} �

JDD�t1; t2� �
G�t2��1 2 F�u��I�u;∞l�t1� G�t2�F�min{ t1; u} �
H�t2��1 2 F�u��I�u;∞l�t1� H�t2�F�min{ t1; u} �

 !

This implies that two systems of one resp. two integral
equations should be solved numerically, compared to our
dedicated approach which requires numerical evaluation of
single expressions only. From a computational point of
view, the latter is to be preferred in this specific situation,
where we aim for optimization of the preventive
maintenance interval. In Sections 5 and 6, we will show
that our numerical experiments clearly confirm this
hypothesis.

5. The optimal maintenance interval

So far, we have considered the preventive maintenance
interval u to be a given constant. In this section, we will
present a rather straightforward algorithm with which an
optimal preventive maintenance intervalu* can be deter-
mined from an interval availability point of view. To this
end, a plausible choice for an objective function is
presented first. Subsequently, the objective function
under consideration is evaluated for a production system
with Gamma distributed repair and fixed maintenance
times. In that case, explicit formulas can be derived,
which strongly reduce the complexity of the optimization
problem.

5.1. Objective functions

In classical maintenance theory, an optimal preventive
maintenance intervalu0 , ∞ for a production system is
usually determined by maximizing its limiting availability
A∞ (see Section 2.1). In our setting here, a similar approach
would be to minimize the expected timeE∞{ Tu} required to
attain a cumulative uptime ofu time units, given that the
system starts in an arbitrary state at timet � 0. In general,
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these objectives are not equivalent, i.e.E∞{ Tu} : A∞ ± u , in
particular if u is relatively small compared to the expected
lifettime of the production system. Anyhow, none of these
objectives accounts for the fact thatVar{ Tu} is also a value
of great interest, as it provides information about the short
term behavior of the production system. As an alternative,
we have chosen to minimize thev -percentileof the avail-
ability interval Tu, where 0, v , 1 is a user-defined
constant. This is quite natural, as it provides information
about the one-sided confidence interval for the required
time to complete a cumulative workload ofu time units.
In line with this, our objective becomes to minimize
fv�uuu�; with parametersu andv :

fv�uuu� � inf{ t $ uuP∞�Tu # tuu� $ v} :

5.2. Function evaluation

Unfortunately, the evaluation offv�uuu� for a given value
of u is rather complicated from a mathematical point of
view. As a starting point, numerical approximations for
the convolutions~Fn;F1+ ~Fn; andF2+ ~Fn have to be calcu-
lated, in order to determinej0

u�m; n�; j1
u�m;n� and j2

u�m;n�
for all m;n $ 0: In this respect, an upper boundM respec-
tively N on the number of preventive respectively corrective
maintenance actionsm respectivelyn has to be identified, in
order to truncate the infinite summations appearing in
Pk�Tu # t�: For k� 0, this can be done in a rather straight-
forward manner, if one realizes that the following relation
holds for allM;N $ 0 :

P0�Tu # t�2
XM
m�0

XN
n�0

j0
u�m;n�Gm+Hn�t 2 u�

# 1 2
XM
m�0

XN
n�0

j0
u�m;n�:

In other words,M and N can be increased in a stepwise
manner, until this restriction is satisfied. Obviously, similar
results can be obtained for other values ofk, which yields
the desired result. Subsequently, the stationary probabilities
pk�1 # k # 4�; as well as the convolutionsF3+Gm+Hn and
F4+Gm+Hn , have to be numerically approximated in order to
evaluateP∞�Tu # t� for a given value oft. Finally, a one-
dimensional search procedure (e.g. bi-section) has to be
carried out in order to identify the smallest value oft for
which P∞�Tu # t� $ v: In general, i.e. for arbitrary distri-
bution functionsF�·�;G�·� and H(·), this yields a complex
procedure which requires a large amount of computational
effort. Under some special conditions, however, the
complexity of evaluatingfv�uuu� can be reduced signifi-
cantly, in particular if repair times are Gamma distributed
random variables, and preventive maintenance times are
fixed.

5.3. Gamma distributed repair and fixed maintenance times

In this section, we will restrict ourselves to the case where
repair times are Gamma distributed random variables with
parametersa � m2

Rs
22
R and b � m21

R s2
R; and preventive

maintenance requires a fixed amount of timemP . 0 (i.e.
sP� 0). Under these assumptions, explicit formulas can be
derived forGm+Hn;F3+Gm+Hn andF4+Gm+Hn; which appear
in the definitionsPk�Tu # t�: As a starting point, we define
Ca ,b(·) for notational convenience:

Ca;b�t� ;
Zt

0
Ga;b�v�dv� tGa;b�t�2 abGa11;b�t�

Lemma 1. If repair times are Gamma distributed random
variables with parametersa andb , i.e.mR� ab ands2

R �
ab2

; and preventive maintenance requires a fixed amount of
time mP . 0, then Gm+Hn�t 2 u�;F3+Gm+Hn�t 2 u� and
F4+Gm+Hn�t 2 u� can be derived analytically by means of
the following explicit formulas:

Gm+Hn�t 2 u� � Gna;b�t 2 u 2 mmp�

F3+Gm+Hn�t 2 u�

� Cna;b�t 2 u 2 mmP�2 Cna;b�t 2 u 2 �m1 1�mP�
mP

F4+Gm+Hn�t 2 u�

� Cna;b�t 2 u 2 mmP�2 C�n11�a;b�t 2 u 2 mmP�
mR

For a proof of this lemma, we refer to Appendix A. Here, we
only mention that efficient computer programming codes
are available for the calculation of Gamma distributions,
e.g. see [21]. Hence, the only convolutions that need to be
numerically approximated are~Fn;F1+ ~Fn; andF2+ ~Fn; which
appear in the definitions ofj0

u�m;n�; j1
u�m; n�; andj2

u�m;n�:
As ~F�u� � F1�u� � F2�u� � 1 by definition, and thus
~F�·�;F1�·� andF2�·� all have finite support, these convolu-
tions can be determined to a sufficient level of detail within
reasonable computational times.

In this respect, another but intuitively less attractive
possibility, is to model both preventive and corrective main-
tenance times as Gamma distributed random variables with
the same shape parameterb . This would imply, however,
that either average preventive maintenance times are larger
than average corrective maintenance times (mP . mR), or the
coefficient of variation of preventive maintenance times is
larger than the coefficient of variation of corrective main-
tenance times (sP/mP . sR/mR). As none of these alterna-
tives is likely to occur in practice, these assumptions would
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leave us with a theoretical exercise of almost no practical
relevance.

5.4. Optimization algorithm

Our optimization algorithm starts with observing that
fv�uuu� has an infinite number of discontinuities of the
form u � u=k�k $ 1�; because the number of preventive
maintenance actions equalsu=ub c or u=ub c if no failures
occur during the required interval ofu units cumulative
uptime. Therefore, and to avoid the risk of sub-optimization,
we decomposed our global optimization procedure into a
series of consecutive local optimization procedures within
disjunct ranges of the form�u=�k 1 1�; u=kl: As a starting
point, however, we determine the optimal maintenance
interval u0 , ∞ from a limiting availability point of view
[2], and assume thatu* # u0. In line with this, our first
range under consideration becomes�u=�k0; u0l; wherek0 �
u=u0d e:

Our optimization algorithm is now based on the assump-
tion that fv�uuu� is a piecewise unimodal function within
each of the previously mentioned ranges. As a starting
point, we determine the optimal preventive maintenance
interval uk0

* within the range�u=k0; u0l with the use of
golden section search [3]. In a similar way, and starting
with k� k0, we determine the optimal maintenance interval
uk* within the range�u=�k 1 1�;u=kl; and at the same time
keep track of the best-so-far maintenance intervalu* within
the range�u=�k 1 1�; u0l: As soon as the optimal mainten-
ance intervalu* does not change in two consecutive itera-
tions, the algorithm is terminated. Obviously, this stop
criterion is based on the underlying assumption that
fv�uk11* uu� $ fv�uk* uu� implies thatu* $ uk11* :

Under some weak conditions, it can be shown that this
procedure would lead to the optimal preventive mainten-
ance interval, if we were concerned with the limiting

availability of the production system [2]. Unfortunately,
we have not been able to prove this results for the avail-
ability interval distribution. However, we have had no indi-
cations so far that these assumptions strongly affect the
performance of our numerical optimization algorithm.
Anyhow, the computational results of the following sections
should be interpreted as a lower bound for the savings that
can be obtained if the optimal maintenance interval is deter-
mined from an interval rather than a limiting availability
perspective.

6. Numerical example

Let us now present a numerical example in order to illus-
trate the previously mentioned methods in more detail. To
this end, we consider a production system with Gamma
distributed life times (mL � 1 and sL � 1/2), Gamma
distributed repair times (mR � 1/2 and sR � 1/4) and
fixed preventive maintenance times (mP � 1/4 andsP �
0). Moreover, we assume that the required cumulative
uptime equalsu � 1 time units, which is exactly equal to
the expected life time of the production system.

6.1. Stationary probabilities

As a starting point, we determine the stationary probabil-
itiesp k of starting in statek, where 1# k # 4 (see Fig. 3).
As can be seen from this figure,p3 tends to one asu tends to
zero. In that case, the production system is maintained
preventively all the time, and the system is always down
for preventive maintenance. For similar reasons, bothp1

andp3 tend to zero ifu tends to infinity. In that case, all
maintenance will be corrective, and the system will be either
up or down, with corresponding probabilitiesp2 : p4 �
mL : mR � 2 : 1: Obviously, this corresponds to a limiting
availability of A∞ � mL=�mL 1 mR� � 2=3: From Fig. 3, it
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Fig. 3. Stationary probabilitiespk in relation to the preventive maintenance intervalu , for a production system with Gamma distributed life times
�mL � 1;sL � 1=2�, Gamma distributed repair times�mR � 1=2;sR � 1=4� and fixed preventive maintenance times�mP � 1=4;sP � 0�.



can also be concluded that the optimal maintenance interval
u0 < 1.10 if our objective is to maximize the limiting avail-
ability A∞ � p1 1 p2 of the production system. Moreover,
this optimal maintenance interval hardly outperforms a
corrective maintenance strategy (u* ! ∞).

6.2. Availability interval distribution

To continue our analysis, let us determine the limiting
behavior of the production system for different values of
u , in terms of the cumulative distribution functionP∞�Tu #
t�: In this particular example, we determined these probabil-
ities for u � 4=5; u � 3=5; and u � 2=5; respectively (see
Fig. 4). Along the horizontal axis, the discontinuitiesu 1
bu=ucmP andu 1 du=uemP for Tu are clearly visible. Moreover,

there are some strong indications that the optimal mainten-
ance interval is closely related to the desired confidence
interval. To be specific, the best maintenance interval equals
u � 4=5 for v � 1=2; u � 3=5 forv � 3=4; and u � 2=5 for
v � 7=8: Apparently, the optimal maintenance interval
decreases if the guaranteed performance during a finite
period of time (interval availability) becomes more impor-
tant than the average performance during an infinite period
of time (limiting availability).

6.3. Optimal maintenance interval

In order to arrive at the optimal maintenance intervalu* ,
let us now determinefv�uuu� 1� for different values of both
v [ {0 :90;0:95; 0:99} and u [ k0;2�: The results are
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Fig. 4. Availability interval distributionP∞�Tu # t� in case u� 1, for a production system with Gamma distributed life times�mL � 1;sL � 1=2�, Gamma
distributed repair times�mR � 1=2;sR � 1=4�, fixed preventive maintenance times�mP � 1=4;sP � 0�, and different preventive maintenance intervalsu .

Fig. 5. Percentiles of the availability intervalTu in caseu � 1, in relation to the preventive maintenance intervalu , for a production system with
Gamma distributed life times�mL � 1;sL � 1=2�; Gamma distributed repair times�mR � 1=2;sR � 1=4� and fixed preventive maintenance times�mP �
1=4;sP � 0�:



depicted in Fig. 5. A closer look at these results provided the
following optimal maintenance intervals:u* � 0:38 for
v � 0:90; u* � 0:40 for v � 0:95 andu* � 0:40 for v �
0:99: Apparently, the optimal maintenance intervalu*
hardly depends on the value ofv in this particular example.
Moreover, we can conclude from Fig. 5 that the optimal
maintenance intervalu* < 0:40 is significantly smaller
than the optimal maintenance intervalu0 < 1:10 from a
limiting availability point of view. In the following section,
we will carry out a series of numerical experiments in order
to investigate the relation betweenu* and u0 on the one
hand, and betweenfv�u* uu� and fv�u0uu� on the other hand.

6.4. Limiting versus interval availability

Let us now further elaborate upon the difference between
the average and guaranteed performance of the production
system. To this end, we compared the expectationE∞{ T1}
and the v -percentiles fv�uuu� 1� � inf{ t $ 1uP∞{ T1 #
t} $ v} of the time T1 required to attain a cumulative
uptime of exactlyu � 1 time units. Of course, this was
done for different values ofu and v [ {0.90, 0.95,
0.99}. The results are depicted in Fig. 6. As we expected,
the discontinuities of the formu � u=k are clearly visible,
and cause empty spaces in this figure. Moreover, we observe
that a corrective maintenance strategy�u! ∞� performs
poor in both dimensions. Starting from here, decreasing
the maintenance interval leads to an improvement in both
dimensions, up to the point where the expected value
E∞{ Tu} is minimized �u < u0�: Subsequently, reducing
the maintenance interval leads to degradations in the first
dimension, but at the same time to further improvements in
the second dimension, up to the point where thev -percen-
tile fv�uuu� is minimized �u � u* �: At this point, further

reductions in the preventive maintenance interval leads to
degradations in both dimensions.

6.5. Computational effort

We conclude this section by briefly discussing the
computational effort that was required to arrive at a reason-
able estimate of thev -percentile ofTu, for a specific value
of u . In this particular example, i.e. withu� 1, it took us no
more than 10 s on a personal computer (80486) to approx-
imate thev -percentile ofTu for an arbitrary value ofu .
Moreover, an extensive simulation study showed that
these approximations were already very accurate, with rela-
tive errors of less than 1‰. Although one should be aware of
the fact that the number of preventive and/or corrective
maintenance actions—and thus computation times—tend
to increase (linearly) withu, these observations give rise
to the attractibility of our dedicated numerical method in
relation to a more general semi-Markov modelling frame-
work (see [7] for details).

7. Computational results

In this section, we will present the results of a series of
numerical experiments that were carried out for a produc-
tion system with Gamma distributed lifetimes, Gamma
distributed repair times, and fixed preventive maintenance
times. Amongst other factors, the main objectives of these
numerical experiments were (i) to determine what happens
if the optimal maintenance interval is determined from an
interval availability rather than a limiting availability point
of view, and (ii) to investigate how the optimal maintenance
intervals for interval availability depends on the character-
istics of the production system.

For notational convenience, and without loss of generality,
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Fig. 6. ExpectationE∞{ Tu} versusv-percentilesfv�uuu� of the availability intervalTu , in caseu� 1, for a production system with Gamma distributed life
times �mL � 1;sL � 1=2�; Gamma distributed repair times�mR � 1=2;sR � 1=4�; fixed preventive maintenance times�mP � 1=4;sP � 0�; and different
maintenance intervalsu .



we assumed thatmL � 1 in each test problem. Moreover, the
relevant parametersmR=mL; mP=mR; sL=mL andsR=mR were
varied between 1/2 and 1/4 in order to arrive at 16 produc-
tion systems with—at least theoretically—different short
term behavior. For each production system, we generated
a total of 9 test problems by choosingu [ {1, 2, 3} andv
[ {0.90, 0.95, 0.99}. For each of the 144 test problems
obtained this way, the optimal maintenance intervalu* for
interval availability, the optimal maintenance intervalu0 for
limiting availability, and the corresponding availability
interval percentilesfv�u* � and fv�u0� were determined. An
overview of all test problems is depicted in Table 1. More-
over, the results for all test problems withu� 1 are depicted
in Table 2.

As a starting point, it is easily verified from Table 1 that
significant improvements can be obtained in the short term
behavior of a production system, if the optimal maintenance
interval is determined from an interval availability rather
than a limiting availability point of view. Depending on
the required amount of cumulative uptimeu . 0, the

required percentilev , 1, and the characteristics of the
production system, the corresponding improvements are
substantial, with a maximum of about 30% in the availabil-
ity interval. To achieve this, a 10% to 70% reduction in the
preventive maintenance interval was typical.

It is intuitively clear, and can easily be derived as well,
that the optimal maintenance intervalu* converges tou0 if
the required uptimeu tends to infinity. In general, the
required uptimeu . 0 and percentilev , 1 on the one
hand, and the optimal maintenance intervalsu* and u0

with availability interval percentilesfv�u* � and fv�u0� on
the other hand, are interrelated as follows:

• an increase in the desired uptimeu usually goes together
with an increase in the optimal maintenance intervalu*
for interval availability, as well as a decrease in the rela-
tive performance of u* versus u0 in terms of
fv�u0�=fv�u* �;

• an increase in the desired percentilev usually goes
together with a decrease in the optimal maintenance
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Table 1
Comparison of the optimal maintenance intervalsu* for interval availability andu0 for limiting availability, as well as the correspondingv -percentilesfv�u* �
andfv�u0�, for different values ofu anda

u0 2 u*
u0

× 100%
fv�u0�2 fv�u* �

fv�u0� × 100%

Minimal Average Maximal Minimal Average Maximal

v � 0.90 u � 1 20.6 41.2 67.6 0.0 6.7 17.8
u � 2 18.3 29.6 45.4 0.7 3.4 9.4
u � 3 19.5 26.1 35.9 0.4 2.4 6.7

v � 0.95 u � 1 20.6 39.7 64.6 1.9 10.9 20.8
u � 2 10.6 32.6 46.4 0.8 5.5 14.7
u � 3 19.5 29.9 37.6 0.6 3.4 9.7

v � 0.99 u � 1 35.6 49.1 63.7 2.3 12.1 29.0
u � 2 32.8 43.4 49.9 1.3 7.4 21.0
u � 3 18.4 36.7 46.5 0.7 4.7 13.6

Table 2
Availability interval percentiles forTu at the optimal maintenance intervalsu* for interval availability andu0 for limiting availability, as observed in 16 test
problems withu � 1 andmL � 1

v � 0.90 v � 0.95 v � 0.99mR

mL

mP

mR

sL

mL

sR

mR u0 u* f(u*) f(u0) u* f(u*) f(u0) u* f(u*) f(u0)

0.5 0.5 0.5 0.5 1.10 0.37 1.93 2.05 0.40 2.13 2.27 0.40 2.52 2.71
0.5 0.5 0.5 0.25 1.10 0.64 1.89 1.96 0.64 2.03 2.11 0.43 2.30 2.39
0.5 0.5 0.25 0.5 0.78 0.50 1.50 1.71 0.50 1.50 1.89 0.50 1.74 2.26
0.5 0.5 0.25 0.25 0.78 0.50 1.50 1.70 0.50 1.50 1.81 0.34 1.75 2.01
0.5 0.25 0.5 0.5 0.56 0.26 1.50 1.82 0.20 1.71 2.03 0.22 2.23 2.48
0.5 0.25 0.5 0.25 0.56 0.26 1.50 1.76 0.37 1.84 1.91 0.28 2.07 2.25
0.5 0.25 0.25 0.5 0.63 0.50 1.25 1.25 0.50 1.25 1.54 0.40 1.38 1.94
0.5 0.25 0.25 0.25 0.63 0.50 1.25 1.25 0.50 1.25 1.56 0.40 1.38 1.77
0.25 0.5 0.5 0.5 1.10 0.36 1.46 1.51 0.39 1.56 1.62 0.40 1.76 1.84
0.25 0.5 0.5 0.25 1.10 0.62 1.44 1.48 0.62 1.51 1.55 0.43 1.65 1.69
0.25 0.5 0.25 0.25 0.78 0.50 1.25 1.35 0.50 1.25 1.44 0.50 1.36 1.62
0.25 0.5 0.25 0.5 0.78 0.50 1.25 1.35 0.50 1.25 1.40 0.50 1.37 1.51
0.25 0.25 0.5 0.5 0.56 0.26 1.25 1.40 0.20 1.32 1.50 0.21 1.61 1.72
0.25 0.25 0.5 0.25 0.56 0.26 1.25 1.37 0.37 1.42 1.44 0.28 1.53 1.62
0.25 0.25 0.25 0.5 0.63 0.50 1.13 1.13 0.50 1.13 1.26 0.39 1.19 1.46
0.25 0.25 0.25 0.25 0.63 0.50 1.13 1.13 0.50 1.13 1.28 0.39 1.19 1.39



intervalu* for interval availability, as well as an increase
in the relative performance ofu* versusu0 in terms of
fv�u0�=fv�u* �:
In a similar way, it can be derived from Table 2 to which

extent the characteristics of the production system affect the
optimal maintenance intervalsu*, as well as the corre-
sponding availability interval percentilesfv�u* �: As a start-
ing point, and as expected, we observe thatu0 depends on
sL=mL andmP=mR only. In addition, the following observa-
tions were made from Table 2:

• an increase in the ratio of repair versus maintenance
times usually goes together with a decrease in the opti-
mal maintenance intervalu* for interval availability, as
well as a decrease in the corresponding availability inter-
val percentilefv�u* �;

• an increase in the variation of life and/or repair times
usually goes together with a decrease in the optimal
maintenance intervalu* for interval availability, as
well as an increase in the corresponding availability
interval percentilefv�u* �:

Although intuitively attractive, these rules of thumbs do not
cover all possible situations that may occur, e.g. see
mR=mL � mP=mR � 0:5 and sL=mL � sR=mR � 0:25 in
Table 2. Nevertheless, we conclude that the guaranteed
availability interval of a production system can be improved
significantly, if the optimal preventive maintenance
interval is determined from an interval availability
perspective. From a practical point of view, this
means that preventive maintenance is a powerful instru-
ment to increase thecontrollability or predictability of a
production system.

8. Concluding remarks

In this article, we have presented a series of mathematical
models which can be used to determine the availability
interval distribution for a production system which is main-
tained preventively at regular intervals, according to an age
replacement strategy. Moreover, we have presented an opti-
mization algorithm, with which the optimal maintenance
interval can be determined from an availability interval
point of view. A series of numerical experiments indicated
that significant improvements in the availability interval can
be obtained in comparison with a classical limiting avail-
ability perspective, and that these effects become stronger as
the variabilities in life and/or repair times increase. Simply
stated, our computational results have illustrated that
preventive maintenance does not only increase the availabil-
ity, but also reduces the variability of a production system,
and that the latter is often a more important performance
measure. Although these conclusions were drawn within a
setting of Gamma distributed repair and fixed maintenance
times, we strongly believe that they are also applicable to
more complex systems.

To conclude this chapter, let us now briefly discuss the
possibilities for approximating the availability interval
distribution, in case repair times are not Gamma distributed
random variables and/or preventive maintenance times are
not fixed. In the most general case, it not possible to derive
explicit formulas for the convolutionsGm+Hn appearing in
Pk�Tu # t�: Under such circumstances, another interesting
and potentially promising approach is to fit a Gamma (or
other) distribution to the first two momentsE∞{ Tu 2 u} and
E∞{ �Tu 2 u�2} of Tu 2 u: The underlying observation
behind this approach is that these moments can be deter-
mined as long as the first three moments ofG(·) andH(·) are
available. In general, we may have to account for the fact
that the availability interval distributionP∞�Tu # t� might
have some discontinuities as well. If these jumps are known
in advance, i.e. in terms of a setV � { t $ uuP∞�Tu � t� .
0} of availability intervals with non-zero probabilities, it
seems worthwile to approximateP∞�Tu # tut Ó V� with the
use ofE∞{ Tu 2 uut Ó V} and E∞{ �Tu 2 u�2ut Ó V} : These
suggestions, however, are left for future research.
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Appendix A. Proof of Lemma 1

As a starting point, we observe that the following expres-
sions can be derived for the cumulative distribution func-
tionsF3�·� andF4�·� of the remaining preventive downtime
R3 [ �0;mP�; and the remaining corrective downtimeR4 [
�0;∞l :

F3�t� � t

mP
; 0 # t # mP

F4�t� � 1
mR

Zt

0
1 2 Ga;b�v�dv; t $ 0

For notational convenience, and without loss of general-
ity, we substitutez� t 2 u 2 mmP in the sequel. Our analy-
sis now proceeds as follows. First of all, we observe that the
expressions forGm+Hn�t 2 u� andF3+Gm+Hn�t 2 u� can be
derived rather straightforwardly by some elementary alge-
bra. In contrast,F4+Gm+Hn�t 2 u� yields a somewhat more
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complex expression, which must be further simplified:

Gm+Hn�t 2 u� � Hn�z� � Gna;b�z�

F3+Gm+Hn�t 2 u� � F3+Gna;b�z�

� 1
mP

ZmP

0
Gna;b�z2 t�dt

� Cna;b�z�2 Cna;b�z2 mP�
mP

F4+Gm+Hn�t 2 u� � F4+Gna;b�z�

� 1
mR

Zz

0
�1 2 Ga;b�t��Gna;b�z2 t�dt

�
Cna;b�z�2

Zz

0
G

a;b
�t�Gna;b�z2 t�dt

mR

Apparently, we need to show thatC�n11�a;b�z� �Rz
0 Ga;b�t�Gna;b�z2 t�dt in order to arrive at the expression

for F4+Gm+Hn�t 2 u� in Lemma 1. Our analysis now
proceeds as follows. First of all, we observe thatRz

0 Ga;b�t�Gna;b�z2 t�dt can be rewritten as follows:Zz

0
Ga;b�t�Gna;b�z2 t�dt �

Zz

0

Zt

0

d
dv

{Ga;b�v�Gna;b�z

2 v�}dv dt

�
Zz

0

Zt

0
ga;b�v�Gna;b�z2 v�dv dt 2

Zz

0

Zt

0
Ga;b�v�gna;b�z

2 v�dv dt

By changing the integration variables, both integrals
can be reduced to one-dimensional integrals, each of
which can be evaluated explicitly by using the follow-
ing well-known properties

Rz
0 tga;b�t�dt � abGa11;b�z�

and
Rz

0 ga1;b�t�Ga2;b�z2 t�dt � Ga11a2;b�z� for Gamma
distributions:Zz

0

Zt

0
ga;b�v�Gna;b�z2 v�dv dt �

Zz

0
�z2 v�ga;b�v�Gna;b�z2 v�dv

� z
Zz

0
ga;b�v�Gna;b�z2 v�dv2

Zz

0
vga;b�v�Gna;b�z2 v�dv

� zG�n11�a;b�z�2 abG�n11�a11;b�z�

Zz

0

Zt

0
Ga;b�v�gna;b�z2 v�dv dt �

Zz

0
�z2 v�Ga;b�v�gna;b�z2 v�dv

�
Zz

0
vgna;b�v�Ga;b�z2 v�dv� nabG�n11�a11;b�z�

As zG�n11�a;b�z�2 �n 1 1�abG�n11�a11;b�z� � C�n11�a;b�z�;
this completes the proof.
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