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ABSTRACT 

In this paper Colombeau’s algebra of functions on I?“, containing the distributions, is general- 
ized to a sheaf on a Cm-manifold. The well-known problem of restricting distributions to a sub- 
manifold is solved within this framework. 

INTRODUCTION 

In [3] Colombeau has defined an algebra of generalized functions on IR” 

containing the distributions. In [3], as well as in other presentations in [l] and 

[12], it is given as a presheaf on KY of algebras of functions divided by an 

ideal. Such an algebra is a particular case of the ones treated by Rosinger, for 

example in [12], where also the advantage of having an ideal is discussed. Par- 

tial differential equations have been studied in this algebra, cf. for example [9], 

and there are several applications in shock waves and other aspects of non- 

linear partial differential equations, cf. [l], [4] and [12], or in theoretical 

physics, cf. [3]. 

The definition given by Colombeau is not suited for treating restrictions to 

submanifolds. Therefore, in [9] Oberguggenberger used a slightly different 

algebra in order to get restrictions to subspaces IRm c IV x IR”-” and Biagioni 

has yet another approach in [l] which enables her to obtain restrictions to all 

linear subspaces of IR”. However, in [4] Colombeau introduced a subalgebra 

* For the second author financial support was provided by the Netherlands Organization for Scien- 

tific Research (NWO) via the Stichting Mathematisch Centrum (project nr. 61 l-306-525). 
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which, apart from being more simple, had the advantage of allowing restric- 

tions to any submanifold, although this aspect has not been discussed in [l] or 

[4]. It seems that such a simplified algebra will be just as good for applications, 

cf. [l]. 

In this paper we extend this theory of Colombeau to an arbitrary C”- 

manifold X. Our method of introducing it straight away as a quotient sheaf g 

of algebras differs somewhat from the one given in [l] or [4]. Besides of being 

more natural it has other advantages, one of which is that, contrarily to [I] and 

[3], the sheaf structure, of course, needs no proof, and another that our defini- 

tion of sections over an open subset is as simple as over X, while in [l], [3] or 

[12] the definition for QC, IR” is much more complicated than for IR” itself. By 

means of techniques of de Rham from [lo] we will construct sheafmorphisms 

embedding the distributions into ‘$J. Moreover, the restriction of sections in 97 

to an arbitrary submanifold always exists and we will show that it coincides 

with the one given for distributions by Hormander in 151. 

Finally, as up to now no name has been given to sections of g except 

generalized functions, which is too general, we use the name ultrafunctions and 

we briefly explain why. 

1. THE SHEAF $3 ON A P-MANIFOLD X 

Let IR,*={EEIRIE>O}, IR+={EEIRIELO} and let injections 

i: R,*XX-,R+Xx 

a: x+ m, xx 

be given by 

i(&,x) = (E,x) and a(x) = (0,x). 

Furthermore, let 9, be the sheaf of functions on [RzxX which are C” in XEX 

with a parameter E E fR,*. Then we define a sheaf g on X by 

$ = a-‘(i,SJ. 

Here i*@, is the direct image sheaf of @i under i and a-‘(i.+S,) the inverse 

image sheaf of i*& under a, cf. for example [6]. 

We adopt the following notations and conventions. By I: we mean an open 

interval (0, Q) for some positive .so < 1 which might be smaller each time there 

is referred to. For an open set QCX the restriction f IK to a compact set K of 

a section f e S(Q) is induced by a function in g,(Zi x o), denoted by fK, for 

some open neighborhood o of K; then we denote f lx also by (f,~&~~; or 

just (f,,,). Note that two such functions f: and fi induce the same section f IK 
if they coincide on a common domain I; x w. The value at a point x0 E K of 

a section f will be denoted by (f&(x0)) and the germ in x by (f,,) lx. It may 

happen that a section f E @S(Q) arises everywhere from a single function defined 

in I: x f2 (i.e. the domain I; of E is the same for every XE Q), in which case 

we omit the subscript K and just write f = (f,),,c; = (f,). Since only the values 
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for ~10 matter, and in fact one is interested in the asymptotic behavior, one 

could have taken E = 1 /n for n E N * or n 2 no and so equivalence classes of tail- 

ends of sequences (f&J,,,, of functions on K would have been obtained. 

However, it has become standard to work with a continuous parameter E, which 

can have an advantage, too, cf. [ll], and only the name sequences for sections 

in g is sometimes used, cf. [12]. 

$ is a sheaf of algebras; the algebra structure of g(Q) follows from the one 

for functions where the algebraic operations are defined pointwise. 

Clearly, C” is a subsheaf of g: it consists of the elements coming from 

functions independent of E. At the same time the sheaf 9 of sheafmorphisms 

in C” extends canonically to @, namely for a sheafmorphism PE 9(Q) and a 

sequence f E g(Q) P IK acts on fKC for each E E I; separately. 

In 5 we define the subsheaves & (whose sections are called moderate se- 
quences) and JV (whose sections are called null sequences) by: 

fEA(Q) H fe@(Q) and VKcQ, VPEY(Q), Yp~hl: 

P IK fK,E = O(Cp, E LO) uniformly on K. 

fesJ(Q) H fE.A(Q) and VKcQ, VPE~(R), VqEtN: 

P 1 K f& = 0(e4, E LO) uniformly on K. 

It follows immediately from these definitions that sections of 9 are sheaf- 

morphisms in &? and in JV, too. Since according to Peetre’s theorem every 

sheafmorphism P in C” is such that, in local coordinates, P], is a finite-order 

differential operator, Leibniz rule can be applied implying that Jtt and & are 

sheaves of subalgebras of $. Moreover, s/(Q) is an ideal in d(Q), so that the 

quotient sheaf 

is a sheaf of algebras on X, whose sections we will call ultrafunctions. Clearly, 

.9 acts in $9, too, thus, in local coordinates, partial derivatives of ultrafunctions 

are defined. 

Since C-C&!, it follows from the fact that & is a sheaf of algebras with Jv 

as a subsheaf of ideals, that d and Jv are Cm-modules and hence they are fine 

sheaves. Therefore, the cohomology group H’(Q Jv) vanishes for every open 

Q CX. so that 

(1) 9qQ-2) = .Az(L?)/Jv(Q), 

i.e. G could have been defined as the quotient presheaf, too, which is 

Colombeau’s definition, cf. [l] and [4]. 

REMARK 1. For a function Q E C,“(R) we consider the following example of a 

moderate sequence f on R: 

(f&,1,; = (XL?“) 
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where (Q”) is the collection of functions on R given by Q”(X) = l/e&x/e) for 
E EZ~. Since the germs f Ix vanish only for all x#O, the support off is (0). 
However, at every point x0 E R the value (f,(xo))sEIo+ (considered as a moder- 
ate sequence on the set {xc}, or, in other words, as a generalized number, cf. 
[3]) vanishes. Thus, contrarily to ordinary functions sections of YJ are not yet 
determined by giving their values in all points. Therefore, the name ultrafunc- 
tions is proposed here. 

REMARK 2. The more complicated sheaf of the original algebras of Colombeau 
in [3] can be obtained in our way by replacing @, in the foregoing by the sheaf 
of maps from a certain fixed, filtered, set &’ of normalized test functions v, on 
R’ into our sheaf .9,, where (in case X= R”) a partial derivative V ‘f of such 
a map f is obviously defined as (V ‘f)(p) = V “(f(p)). Furthermore, a more 
complicated definition of moderate and null sequences is given in which the 
filtration of d enters. The subsheaf of the so-called simplified algebras (treated 
in this paper and here denoted by ‘Z?, but in [l] and [4] denoted by %J then 
consists of the sequences independent of the test functions in d. 

2. EMBEDDINGS OF 93’ INTO 9 

The sheaf 9,’ of distributions on X is in topological duality with the cosheaf 
G@ of P-function densities with compact support in X. 

In view of (l), for an ultrafunction FE S?(O) on each compact set KC I2 there 
is always a moderate sequence (fK,,E) representing F IK. Let now F be such that 
for every density lp E 5@i(52) the limit 

exists, when K is a compact set containing the support of cp. 
Since this limit vanishes for any null sequence (fK,,), clearly the limit (2) 

does not depend on the set K, nor on the moderate sequence (f,,,,) representing 
F jK. By the Banach-Steinhaus theorem the limits (2), if they exist, define a 
distribution u E 9’(Q): 

On the distributional level F and u are equal, so we will say that F is weakly 
equal to U, F-u. In [l] u is called the macroscopic aspect of F. As usual, cf. 
[l], [3] and [12], two ultrafunctions F, and F2 are said to be associated, F, = F2, 
if F, - F2-0. It follows immediately from (3) that if F-u and PEG also 

(4) P(F) - P(u). 

Obviously, each FE ‘$2(Q) can be weakly equal to not more than one distribu- 
tion and all ultrafunctions weakly equal to the same distribution are associated 
to each other, but there are ultrafunctions which are not weakly equal to any 
distribution. We will now show that for each distribution there is an ultrafunc- 
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tion weakly equal to it. In particular, we will show that this weak equality can 

be obtained by an injective sheaf morphism: 58’6 9; hence each distribution 

is at least weakly equal to one ultrafunction with the same support. 

Before embedding 9’ into $2 we give a summary of regularizations of distri- 

butions on a Cm-manifold X given by de Rham in [ 10, 0 151. Such regulariza- 

tions depend on a sequence of special local charts and on a P-weight function 

Q with compact support in the translation group H in IR” with 

!e(y) dy = 1. 

In particular, take a locally finite covering of X by relatively compact open 

coordinate patches Uj such that there are charts Kj : Uj -+ B where B is the open 

unit ball in IR” with the property that they can be extended to open neighbor- 

hoods of Uj and B. Furthermore, let h be a fixed diffeomorphism from B onto 

IR”. Then the charts hj are defined on Uj by 

h/ = h 0 Kj : Uj j m”. 

In [lo] homomorphisms Aj of Z-Z into the diffeomorphism group of X are 

constructed such that for each y E H 

A{(x) = x, xe u;. 

For E E Ii a partial regularization of a distribution u E g’(X) is defined by 

(5) Rdu = S &W’,)* u dy, 
H 

where Q” is a &approaching sequence, for example 

(6) 

I.e. for any test function density ~1 (by de Rham called an n-form of the odd 

kind) we have 

(Rfu, rp> = S e”(r) (A!,)* u, (P> d_v 
H 

(7) 

I 
= !e”W (u, (A;)* v> dy = (u, ‘Rkv). 

The linear operator Ri : W(X) --f 9&‘(X) has the following properties: for 

U E W(X) 

@a) 

@b) 

(8~) 

(Z&4 /u, E C”uJJ 

(Rju) 1 o; = u 1 u; 

lim Riu = u weakly 
Cl0 

(gd) if for some open UcX: u IL1 E C”(U) then also (R{u) 1 u E C”(U). 
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: 

for bounded sets BC a(X) and B, c $2$(X), the sets 

(ge) {R:cl/ 1 WEB,EEI~} and {‘Rip 1 ~~EE,,EEIO+} 

are bounded in G@(X) or G@,(X), respectively. 

In particular, expressed in the coordinates 

Xj=hj(X)ElR", X~UjCX 

the operator Ri is just regularization by convolution with Q’, i.e. 

(hj"Ai I(/,"~~l)(Xj)=~~(XJ)d~~Xj+y. 

Then identifying H with R” and applying 

Se”(y)(s,*~j)(xi)dy=~~(r~~,e’)(y)urj(v)dy 
H 

with qua = ~0 A;’ for a test function v, E g(Uj), using (7) we can express (5) as 

(9) (R{u) 1 (I,(X) = (Uj, TT;;I P”>, Xj = hj(X), XE Vj, 

where 

and 

Uj = (h,-')* U 1 U,E a’(m”) 

P(r) = Q(-y) for PER” and ,QE$B(IR”). 

Finally, for each V/E C”(X) 

(10) (Aj)* v/E C”(XxH). 

This can be verified just as in [lo] by investigating derivatives with respect to 

JJEZZ in y=O only, because of 

Al, ty2 = Ai2 0 Al,. 

For each E E I: the global regularization operator is defined by 

R E = limR#jPi . ..Ri E ET 
j-m 

which is a well-defined linear operator: W(X) + C”(X). 

In the following theorem W and g are considered as sheaves of linear spaces 

on X, but not as P-modules. 

THEOREM 1. There exist injective sheaf morphisms 

a:G@‘-t%S 

on X with the following properties: 

(i) for any section UE W(Q), OCX: a(u)-2.4. 

(ii) G is the identity on the subsheaves C” of Cm-functions in LB’ and 9. 
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REMARK 3. For a sheaf morphism 0 satisfying the properties i) and ii) one 

cannot expect that it is compatible with the P-module structure, nor that it 

commutes with differentiations in all coordinates. 

For, by property ii) the C”-module structure in 9 is inherited from the 

algebra structure and then the impossibility of 

a(wu) = we(u), w E C”(X), 2.4 E W(X) 

follows from the fact that the product on the right is associative, while the 

product on the left, due to the Schwartz example x. l/x- 6, is not. Further- 

more, let E be a derivation (vectorfield) on X which in one coordinate patch 

. rfl. VP -+ V;c R” can be expressed as a. VP for some QE R”, i.e. as a homo- 

geneous first order differential operator in Vi with constant coefficients. Then 

with the notation a,: 9(V;) -+ %(I$) determined by aM(uP)= (r;‘)* o(r,*~,) 

for up = (~;l)* u 1 vp, the assumption o,, (a. VP up) = a. Op a,(~,) would lead to 

0-u) I,==(u) IVP, which expressed in another chart r, again under the 

assumption that differentiation commutes, means that 

ov(wv * P” 4) I &(I/# n “,.I = WV . Pya”(u”) I I,(Q n “,,) 

= WV. ~J~v%) I T,(ulin u,) 

where the coefficients wV = (y~$, . . . , wlf) in Vi are no longer constant. However 

we have just seen that in general this cannot be true. From (4) we only have 

that o(Pu) and PO(U) are equal in a weak sense, namely they are associated. 

However, equality is not necessary for applications: if, for example, one needs 

the product of a generalized function f with its derivative f ', where f is 

somehow related to a certain distribution U, the obvious expression in YJ would 

be o(u)a(u)‘, and not o(u)a(u’). So it does not matter whether a(u)’ and a(~‘) 

are equal (as is the case for X= I?“, cf. [3]), since there is a natural choice bet- 

ween them. 

Before proving theorem 1 we will show in lemma 1 that the linear operator 

R, of [lo], discussed above, provides a local operator from W(X) into 9(X). 

It turns out that in order to satisfy property ii) the weight function Q cannot 

have compact support. Therefore, an easier proof will be obtained if, instead 

of (6) the following collection {Q” 1 E E I,‘} of weight function is taken: let w be 

a Cm-function in H= R” equal to 1 for IyI la and vanishing for lyl ?b for 

some O< a< b and let I be a number with O< L < 1, then define 

and let R, denote the associated linear map: g’(X) + g(X) determined by 

u - (&uLEI;. As a consequence, the sheaf morphism cr will depend on such 

a function w and on an exponent I. as well. However, it can be shown that 

another choice of w and ,I would only change the induced sheaf morphism cr, 

to be constructed below, on the boundaries of the sets Uj, j= 1,2, . . . . 
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LEMMA 1. For every XEX we have (R,u) lx E._M~ and if x6 supp(u) then 

(REU) IXEJV,. 

PROOF. For a C” sheaf morphism P in X the restriction P 1 ,J, can be ex- 
pressed as a differential operator in the local coordinates 2 by the chart Kj in 
a neighborhood of B. Hence its coefficients pulled back by h-r to iR” are 
bounded at infinity, while new factors containing the derivatives of h arise. So 
in the following estimate we have to stay away from the boundary of Uj. 

Denote R(‘) = R’ E ,...Rd. for i=l,2 ,... and R$‘)=Id for i=O. Then withj=i+l 
we will estimate 

(12) Iqa((hyl)*(R{Rr)u) lr/,)(Xj>I 
where 4” is a partial differential operator with respect to the coordinates xj in 
a compact set K’ in IR”, i= 0,1,2, . . . . By (9) the expression (12) equals 

(13) j((h;‘)*(R:+d lo;, oja7+91. 

It follows from (8.e) that the set 

is weakly bounded in g’(P), so, by the Banach-Steinhaus theorem, it is 
strongly bounded. Furthermore, since 

(14) yESUpp(,&) * Iyl rbe’-“, 

using L’-norms of test functions of the variable y E IR” we can majorate (13) by 

c ,;_“1. I/ ( I7 a+P@")(Xj-_Y>//l = O(&-'"'-k,&lO) < 

for some constants C and k, uniformly for Xj E K’c IR”, thus for XE K= 

~_,:‘(K’)c Uj for any compact set Kin Uj. This shows that (R~‘u) lu, E A(Uj) 

forj=l,2,.... 
In view of (8.b), with the notation Uci) = U, U . . . U UiCX, we still have to 

consider points x0 E Uci) fl dUj for i =j - 1 = 1,2, . . . . Assume that (RF)u) I u E 

M(V) for a neighborhood VC U(‘) of x0, which we have shown to be true for 
i= 1. With V sufficiently small we can express a moderate sequence f E &Z(V) 
in the coordinates Z=K~(X), which live in a neighborhood of B in IR”, as 
y=(~~:i)*J For a partial differential operator v” in X we have to estimate 
FaREJ fW,E (K,:~(@) for EE$ and for 8~ W’, where W’=lcj(W) for a neigh- 
borhood WC I/ of x0. By (5) we have 

(15) 
r, 

~“R;f,,(~j~(@) = Se”(y) e(“(Ai,)*f,,(~j’(~)) dy 

=Sp”(y)Pa(~jjnAiyl~,oKjl)*~~a(~)dy. 

For any y E IR” denote A_, = ~~ o A!, I u, 0 ~~7’ : B -+ B. In a neighborhood of 
B outside B the transformation A_, is the identity and for 8~ B it is given by 

A_,(_?) = K’@(Z) -y). 
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We now express paA?, I+? for a function I,G E C”(B) in the partial derivatives 

of p: 

(16) (PY,@)(.%) = c g;(z,y)(ATyBQ)(.Q 
/3aa 

where by (10) the coefficients gi are Cm-functions in a neighborhood of 

BxlR”clR2”, in B x I?” consisting of products of factors vYh-i(h(Z) -y) and 

outside B x R” equal to 1 if /I = IX and vanishing for other /3. Because of (14) in- 

tegration of a function gi with the weight function Q” yields a function uniform- 

ly bounded in a neighborhood of B for E E I:. 

Finally, there is a compact set W,C I/ such that for all ye fR” with lyI suffi- 

ciently small we have A!,(W)C W,, for example for y E U,,,,; supp(p’). Com- 

bination of (15) and (16) gives the following estimate for (15) 

which is 0(&-q E 10) for some p, because f is a moderate sequence in I’. 

The second statement of the lemma is more trivial. In fact, since the covering 

by the sets Uj, j-1,2, . . . . is locally finite and since by (14) e”(y) = 0 for 1 y 1 I 

be’-’ we even have (R,u) Ix=0 for xesupp(u). 0 

PROOF OF THEOREM 1. Since the sheaves Q$’ and 9 are soft their sections on 

X with compact supports form flabby cosheaves @ and SC and in lemma 1 we 

have given a cosheaf morphism (= local operator) between them. This can be 

turned canonically into a sheaf morphism: g’-+ g, cf. [2], as follows: for any 

u E G@‘(Q), QC X, decompose u = C uk as a locally finite sum of distributions 

with compact support in Q, and define 

on(u) = c [(R&k),.,,;] 
k 

where [f] denotes the class in g(Q) of a moderate sequence f on Q. This yields 

a locally finite sum in g(Q), hence a section in g(Q), which is independent of 

the way u is decomposed as a locally finite sum, cf. also [7, lemma 2.31 or [8]. 

Since the operator: gk-A given in lemma 1 is linear, the local maps 

ao: g’(Q) -+ g(Q) determine a sheaf morphism o: g’-t g on X. 

Property i) follows from what has been shown in [IO]: let (o E ?L?$(Q) with 

support contained in a relatively compact set Q’ and for u E g’(Q) let U’ be a 

distribution with compact support in X such that U’ IQ, = u lo,. Then 

{(R,u)y, = S(R,u')cp = j(Rf'%')p =(u:'R;"+o) 

with m so large that i/jnsupp(U’> =@ for jzm. Just as (8.~) and (8.e) have 

been derived in [lo] it follows that if E 10 

‘Rzrn)y,+, in 8,(X), hence j(R,u)y,-*(u’,cp) = (u,~). 

If for some open set VCX and u E g:(X) we have ((R,u) I v)cEl,i E N(V), 
then 

(u,v> = lim{(R,u)y, = 0, 
El0 

v,E@(V) 
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follows from the estimates of a null sequence (with q= 1) on the support of 9. 

Hence u 1 V = 0. This shows that the local map: GZJL(X) -+ 9,(X) derived from 

R, does not shrink supports, so that the induced sheaf morphism cr is injective. 

Finally, we will prove property ii) of the theorem. Of course, this property 

for the maps cro would have implied the second statement in lemma 1, but that 

property is more fundamental in the sense that it is valid under the conditions 

we have shown it, while for the more general property ii) we have to impose 

further conditions on the weight function Q. Namely, besides J e(y) dy= 1 we 

also require that 

S_v”e(r) dy = 0 

for all multi-indices a with Ia/ 2 1. Such functions Q exist in S(lR”), but they 

cannot have compact support. From the definition of S( R”) and from Q, = Q 

for J yI I a&-A it follows that 

(17) jy”e,(y)dy = 0(c4,EiO) and Se,(y)dy = 1 +O(E~E~O) 

for any qethl, Ial 21. 

Let v/ E C”(Q) and let m be so large that for a certain point x0 E Q x0 $ Uj for 

jzm. We may assume that I,V has compact support and we have to show that 

(Rim) y - t,v) Ix, E SJX,. Since 

R’m’W_W=Rm(R(m~1)W)_R(“-‘)(y)+Rm-’(R(”-2)~)_ 
E E E E E E . . . -t&M% 

in view of (8.e) it suffices to show that (R$ xE -x,) lx0 E SJX, for any bounded 

family { xE 1 .s EZ,‘} of functions in 8(X), j= 1, . . . , m. 

In the coordinates 2= K)(X) E B for XE CJjy we have 

P”(R;x,)(K,~‘(~)) = B”S~,(h-‘(h(~)-&y)e,(y)dy 

where f, = (K]:~)*x~ denotes xE in the coordinates 2. For &y=O this equals 

v”k,(Z){~,(y)dy. By(10) wecanexpandthefunction ~“(~&(K’(h(.+&y))- 

P”R,(Z) with respect to cy in a Taylor series and as in (16) we then have to 

expand 

Because of (17) after integrating the first term in this formula with Q, and 

the second term with Q we find that all terms in the expansion up to the qth 

order are O(cq, ~10) uniformly for 1~ B. Hence the remainder term is left, 

which can be estimated by 

C,s~p{~~~~“~(h-‘(h(O-y’)) 1 IpI =q+l,feB, ly’l rbe’-‘,wZO+} 

. cq+l S IYI’+’ ) @e(y) 1 dy = G,qEq+l 

uniformly for x=K~:‘(.?) E Uj. Since q can be as large as desired and 

since Rkx,(x)-x,(x)=0 for all x@Uj by (8.b) and (8.c), EEZ;, we have 

(Rkx,-x,) I,E&~~ for any x,~sZcX. 0 
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REMARK 4. For applications it is convenient to have some freedom in the 

construction of a sheaf morphism o: G# ‘+ 9. In our construction the weight 

functions Q’ in the collection (11) have compact support, but this is not 

necessary. For example, in [ 1 l] another possibility will be given, which for n = 1 

yields 

e”(x) = 

e-Y(X2/E) sin x/c 

TCX 

for some arbitrary number y>O, and in [3] an example has been given which 

is needed in quantum field theory. 

REMARK 5. In the construction, similar to the one given here, of embeddings 

of 97,’ into the sheaf of the original (non-simplified) Colombeau algebras on a 

P-manifold (cf. remark 2) the role of the weight function Q is taken by the 

test functions p E A?. Hence such an embedding does no longer depend on the 

function Q, but the dependence on the covering {U,> with the sequence of 

associated charts (h,) remains. So, also in that case, there is no canonical em- 

bedding. However, as is remarked in [l] there is no need for a canonical embed- 

ding, since in applications it matters to find a suitable embedding adapted to 

the problem considered. 

3. RESTRICTIONS TO A SUBMANIFOLD 

Just as functions, under a C”-map @ : Y+X between two Cm-manifolds 

ultrafunctions on X can be pulled back to ultrafunctions on Y. In this respect 

they behave more like functions than distributions. Indeed, the pull back @*f 

of a sequence f e g'(X) is a sequence in .9(Y): 

LEMMA 2. Iffe d(X) or A(X) then also @*f e d(Y) or a(Y), respectively. 

PROOF. Let there be local charts r ,:V,CY~V:CIR”~~~K,:U,CX-~U;C 

I?” such that @ is expressed as 

For a compact set KC Vi denote S = K;' o @p,,(K)~ Up; then for a partial dif- 

ferential operator V a in V:, for E E Z,i one can express [7 “((fs E 0 Ic;‘) 0 @,,) in 

sums of products of partial derivatives of the functionfs,, 0 K;’ in U; and par- 

tial derivatives of QPV. 

Hence if f is a moderate or a null sequence in X, then @*f is a moderate or 

a null sequence in Y, respectively. 0 

COROLLARY. If Y is a regular submanifold of X, then the restriction F 1 y to 

Y of an ultrafunction Fin X is defined by i*F, where i: Y-+X is the injection 

of Y into X. 

This corollary is in fact a generalization of the pointvalues of F, noted in 

remark 1, and it should be handled with the same care as the following ex- 

amples illustrate. 
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EXAMPLE 1. It is in general not true that, if F- G, then also F 1 y = G 1 y. For 

takeX=R2, Y=R={(x,,x2)~XIx2=0}, let for EEZO~ 

f&,x2) = -x2&f(90) 
for a function Q E a(R) with e(0) = 1 and J Q = 1, and let 

s,(x*lx2) = $Q(3Q(3. 
Both F and G, determined by the sequences (f,) and (g,), respectively, are 

weakly equal to 6, so they are associated. Nevertheless F 1 y = 0 while G 1 y is 

determined by the sequence ( 1/e2&x, /E)) on Y which is not weakly equal to 

any distribution. 

EXAMPLE 2. If F-u and Fly- u for some distributions u in X and u in Y, 

then it is in general not true that u 1 y exists and equals u. Namely, the ultra- 

function F of example 1 satisfies F- 6, F / y = 0, but 6 I y does not exist. 

EXAMPLE 3. Also it need not be true that “F-u and u I y exists” implies 

Fir- u /r. With 

f&,J2)=-#)e(q) 

we have F-O but F Iy, determined by 

is not weakly equal to any distribution. 

We will now show that the conclusion of example 3 is true if F= a(u) for any 

of the sheaf morphisms o constructed in the proof of theorem 1 of section 2. 

For a distribution u E 9?‘(X) the restriction u ly E W(Y) to a regular sub- 

manifold Y is defined in [5, Q 8.21, provided that u satisfies the condition: the 

wave front set WF(u) of u and the conormal bundle N(Y) of Y are disjoint (cf. 

also lemma 3 below). 

THEOREM 2. Let 0 be a sheaf morphism: 95-+ 9 on X as constructed in the 

proof of theorem 1, and let u E 9’(X) be such that 

(18) WF(u) nN(Y) = @ 

for a regular submanifold YCX. Then 

Before proving this theorem, we shall give a property of a distribution u satis- 

fying (18) and a characterization of u 1 y. 
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A local chart rP : UP cX-+ U; C I?” induces a trivialization over UP of the 
line bundle whose sections are densities. This will be expressed as follows: 

(r,-I)*9 It/, = 9PIdxPl, a,eCPO(X), 

where ldx,) denotes the basis vector in the fibre if xP = rP(x) E r/L for x E UP 
and where now 9P is a Cm-function in U;. 

LEMMA 3. Let u E $27’(X) be a distribution satisfying (18) and let TV : VP C X+ 

V;C IF?” = Rm x Rnem be any chart such that 

r,%JYfl v,) = ((Xr,X2)Ev; Ix*=OElR-m). 

Then for any compact set in Y, there is an open neighborhood Wp in Vi such 
that uPdz(r;‘)* u 1 vK E W(V;) restricted to Wp can be represented as 

(19) u/I IW, =ss, 

for a continuous function g in Wp and for a differential operator P, in Wti with 
differentiations only with respect to xl, and such that for any 9P E g(Y, II W,) 

the function 

~2 - S ghx2)‘Pl v,(xJ dxl 

is C” in a neighborhood of OE I?“-“‘. 
Furthermore, for any density 2 (dxz/ E GBr(R”-m) with j x(x2) dx2= 1 we have 

(20) lim(U,,9P~~Idx1dx21) = (u [r,(o), 9~%(Yn V,), 
610 

where 

and ‘pP Idx, 1 = (r;‘)*9. 

PROOF. For a compact set in Yfl with neighborhood Wp in Vi let 9 be a func- 
tion in C~(V$‘) which is equal to 1 in Wfl. The Fourier transform of I,UU, satisfies 

(21) lG&K)l 5 cc1 +r2Y 
for some k2, and, by the definition of wave front set, if Wp is sufficiently small 

(22) I&W 5 Gv(1 +PY 
for any N and r in a conic neighborhood of the conormals (0, f 1) E IR, x R,_, 
to Yti in the points of Yfl. Therefore, the function 

Is G,J5)e’r’x dt 

g(x) = &)” (1 +<y+n+1 

is continuous, and, with P, = (1 -d I)“+n+l where L/I, is the Laplace operator in 
the variables x1 E I?, it satisfies 

ssIw,=(w~,)l,~=~,l,~. 
Moreover, denoting for any 9P E ?ZJ(Y, II W,) by @ the function in S( I?,) 
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with 6= pfl, we have 

S g(x,,xz)‘5 PJxi) dx, = (2n;,_m S @(T)eir2’X2@(<J d& d& 

where according to (21) and (22) the right-hand side is a convergent integral, 

also after differentiation with respect to x,. 

To prove the second statement of the lemma, note first that now the limit in 

the left-hand side of (20) obviously exists. Second, if UEC”(V,) this clearly 

coincides with the restriction of u to Yil VP. For a general distribution u satis- 

fying (18) the same conclusion can be derived from a continuity argument, cf. 

[5, 8.2.2 and 8.2.41, which can be applied to formula (20), too. Instead of 

proving this, we will just show that (20) can serve as a definition of u jy, 

because the method (namely formula (30) below) is needed later on anyway. 

Let A be a coordinate transformation 

A:VCIR”=mmx~“-m~V’cIRn=iRmXIR”-m 

with 

(23) Az(x1,O) = 0, 

where for x = (xi, x2) E I/ we denote 

A(x) = (Ai(X) = <x;,x;, = X’E I/‘, 

and let x’ldx;l be an arbitrary P-density with compact support and with 

SX’(x;)dx;=l. 

Bearing in mind that up can be represented as (19) for Wp C V we have to 

show that for ~EC~(I/ I,,=c) 

(24) ~~(A~‘*(P,g),(~‘~hIdx’l) =Sg(xi,O)‘P,(x,,O)~(xJdxi 

with #E CF(V’ IX;=O) satisfying 

(25) /detWi(xi,O)/ yl’(Ai(xi,O)) = &xi), 

where DiAi denotes the derivative of A, with respect to the variables xi and 

where the meaning of Pi(xi,O) follows from the notation 

Pi(X) = c a,(x) 5” 

for P-coefficients a, with m-dimensional multi indices (Y. 

Because of (23) 

0:. . . . . . . . . . . . . 
(26) DA(X~,O) = o ; l l ) 

i. I :. . 

both det D,A,(xi, 0) and det &4,(x,, 0) do not vanish. 

Therefore, according to the implicit function theorem from the equation 

A,(x,,x,) =x; the variables x2 can be solved for Ix; / sufficiently small and any 

xi E v /x2=o: 
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x, = B(x,,x;) with B(x,, 0) = 0 

satisfying 

(27) D&x,,&) = &M%~(x,,x;))Y. 

Finally, denote by LI? the transformation &x,,x;) = (x,, B(x,,xJ)), which is 

non-singular for small ix;j. Of course, the inverse B-l is the transformation 

B-‘(x,,x,)=(x,,~,(x,,x,)). 

The reason for introducing the transformation I? is that we want to express 

the left hand side of (24) before taking the limit for SlO as an integral of a 

continuous function in which no derivatives of g with respect to x1 and no 

derivatives of xi occur. 

We now perform the following operations on the left hand side of (24) 

(A-‘*(P&,$x; Idx’l) = V,g,A*((p’X; Idx’I)) 

= @*(I’, g),B*A*(q/& ldx’/)). 

Let us express B”*(P,g) in the coordinates (x1,x;). First, for a, denoting a par- 

tial derivative with respect to one of the variables xl we have symbolically 

(28) 

c 

(~*@lm%x;)=4 Ix,=B~*,,*;)d%X2) 

=a,g(xl,B(x,,x;))-alB(xl,x;). v2 lx~=~~x,,x;,~~~1~~2~. 

In the same way the distribution B*(P,g) can be expressed as follows 

( (B*(P,g))(x,&) = c a,(x,,B(x,,x~)){~,ag(x,,B(x,,x;)) 

i 

a 

(29) 
+ c b;(x,J;)q IX*=B(X,,x;)g(X1'X2)}' 

B 

or in short 

B*(J’, g) = MB*g) + B*(Qs) 

where PBdGf 1, @*a,) 0,’ and where Q2 is a differential operator with differen- 

tiations with respect to x, only, whose coefficients contain factors (BP’)* bz for 

certain P-functions b; consisting of sums of products of factors VIYB(x,,xi) 

which all vanish for xi = 0 (here /I is an n -m dimensional multi index). 
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Continuing we get 

(30) 

- (A-‘*(P,g),~‘x~Idx’I) 

=@*g, ‘P,@*A*@‘x; Idx’l))) + (Q2g,A*(v'x; Idx’l)) 

=jjx’(x;)g(x,,B(x~,6x~)) C (-o,)a(B*a,A*~‘ldx’l)(x~,6x;) 
u 

xp(x,,xi)~‘(AI(x~,sX;))~~(~2(x~~x~)) IdetDA(x,Jx;)(dx,] dx;. 

Here the integrants are continuous, compactly supported, functions whose 
supports and majorants remain uniformly bounded for 6 E lo+, because 
(A,(xr, 6x;))/6 =xle V2,A2(x,, 0) + o(6). Hence by Lebesgue’s theorem, if SlO 
in the right hand side of (30) the second term vanishes since all Z$(x,,O)=O. 
Concerning the first term, as in (28), in a derivative a, to one of the xl’s of a 
function of (x1,x;) of the form w(xI,x2) IX2=B(X,,8X;x;) terms with derivatives to 
x2 are accompanied by 13iB(x,, 6x;) which vanishes for 6= 0. Similarly, as in 
(29) also higher order partial derivatives VI” to x1 of such a function only yield 
an, in general, nonvanishing contribution due to the term Vrla~(xl, 0) for 810. 
Therefore, 

iii (A-’ *(S g), co’xi I dx’ I > = S gh, 0) ‘4 (x1, 0) { I det DA (xl, 0) 

x det %W,, O)ldWl(xl, 0))) d-q. 

According to (26) and (27) det DA(x,, 0). det D&x,, 0) = det D,A,(xt, 0) and 
by (25) formula (24) follows. 0 

PROOF OF THEOREM 2. Let zP be a chart as in lemma 3, with a relatively com- 
pact coordinate patch VP, let v E 58, (Y tl VP) with pP / dx’ 1 = (T; ‘)* tp and let for 
EEZ~ and SEZJ 

K,(s,& = S((r,-‘)*.&J(x;,x;)~Jx;)x~(x;) dxi’dx; 

for some moderate sequence (fK,E)EEl,t in the class of a(u) IK, where K is a com- 
pact set in VP containing all sets r~1(supp((o,)xsupp(x6)) in its interior for 
0 < 6 < & where 6,, can still be chosen arbitrarily small. If the function H,(E, 6) 

is continuously extendible to I: x I:, the limits for E 10 and 6 10 can be inter- 
changed. Since on the one hand by property i) of theorem 1 and by (20) we have 

l~~l~~H”(sJ) = $(U,,vpxsIdx’I) = (u Ir,v> 

and on the other hand 

(limZW,0,.~; = (S.& lr~)&~I; = SC(~) 1~~ 610 
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where the last equality is in the sense of generalized numbers, cf. remark 1, we 
would then get the desired result. 

The transformation AL,,, . . .A&, : X+X, discussed in section 2, with k so 
large that AA,,, . ..A& 1 b =Aiy, . . . A&,,Ib for Z>k, YjElR” and EEZ~, trans- 
forms K into VP if IaYj) is sufficiently small for all j= 1, . . . , k. For such EYj, 
j=l , . . . . k, denote 

A,= r,QI&...A&) IKO~~‘:T~(K)~S4v~fAEy(~~(K))C~, 
where 

Y =(Y,,...,Yk)Emnk. 

Represent uP as in (19), take 6e so small that r,(K)c Wp and choose the 
representant of a(u) IK obtained in the proof of theorem 1 from the collection 
weight functions (11). 

Then for EEZ~, SEZ~ 

HAG 6) 

= s w(sAY,)e(Y,) . ..w(~~Yk)e(Yk)<(A~~)*(Sg) \s,,IP,X6Idx’I) dY, 

because in this formula 1 &yj 1s b&l -I for some positive A with I < 1, j = 1, . . . , k. 

If E = 0 the transformation A, is the identity, hence for l&Yjl sufficiently 
small,j=l,..., k, as in (26), in 

z:. . r 1 . ..I.. . . . . . 

DA,= 0: 
. zz 

C’: J 
the determinants of the submatrices Z and ZZ do not vanish. 

Thus for EEZ~, SEZ~, lEYjlSbEIPA, j=l,...,k we can write 
((A;;)*@‘, g) IsCy, ‘pP x6 I dx’ I > as in (30) with transformations A = A, and B = 

BEy depending continuously on (x1,x,, cy) and (x1,x& ey), respectively, due to 
(10). Moreover, the partial derivatives of A, and B, with respect to (x1,x2) or 
xl, respectively, occurring in the integrant of (30) are computed as in (16) and 
they remain uniformly bounded for IcYj I 5 b.emA, E E Il. 

Hence by Lebesgue’s theorem H,(E, 6) is continuous up to E = 0 and 6 = 0. 
0 
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