The vector k-constrained KP hierarchy and Sato's Grassmannian

Johan van de Leur ${ }^{1}$
Faculty of Applied Mathematics, University of Twente, PO Box 217.7500 AE Enschede, Netherlands

Received 10 September 1996

Abstract

We use the representation theory of the infinite matrix group to show that (in the polynomial case) the n-vector k-constrained KP hierarchy has a natural geometrical interpretation on Sato's infinite Grassmannian. This description generalizes the k-reduced KP or Gelfand-Dickey hierarchies.

Subj. Class.: Dynamical systems
1991 MSC: 17B65, 17B68, 35Q58, 58F07
PACS: 02.20.Tw; 02.30.jr; 02.90.+p
Keywords: KP hierarchy; Constrained KP; Infinite Grassmannian

1. Introduction

It is well known that the k th Gelfand-Dickey hierarchy, which generalizes the Kortewegde Vries (KdV) hierarchy, can be obtained as a reduction of the Kadomtsev-Petviashvili (KP) hierarchy. The latter is defined as the set of deformation equations

$$
\frac{\partial L}{\partial t_{k}}=\left[\left(L^{k}\right)_{+}, L\right]
$$

for the first-order pseudo-differential operator

$$
L \equiv L(t, \partial)=\partial+u_{1}(t) \partial^{-1}+u_{2}(t) \partial^{-2}+\cdots,
$$

[^0]here $\partial=\partial / \partial t_{1}, t=\left(t_{1}, t_{2}, \ldots\right)$ and $\left(L^{k}\right)_{+}$stands for the differential part of L^{k}. Now L dresses as $L=P \partial P^{-1}$ with
$$
P \equiv P(t, \partial)=1+a_{1}(t) \partial^{-1}+a_{2}(t) \partial^{-2}+\cdots
$$

One can choose P in such a way that

$$
P(t, z)=\frac{\tau\left(t-\left[z^{-1}\right]\right)}{\tau(t)}
$$

where $\tau(t)=\tau\left(t_{1}, t_{2}, t_{3}, \ldots\right)$ is the famous τ-function, introduced by the Kyoto group [DJKM1-3] and $[z]=\left(z, \frac{1}{2} z^{2}, \frac{1}{3} z^{3}, \ldots\right)$. Sato [S] showed that such a τ-function corresponds to a point of some infinite Grassmannian Gr (see e.g. [S,SW]). Let H be the space of formal Laurent series $\sum a_{n} t^{n}$ such that $a_{n}=0$ for $n \gg 0$. The points of Gr are those linear subspaces $W \subset H$ for which the projection π_{+}of W into $H_{+}=\left\{\sum a_{n} t^{n} \in H \mid a_{n}=\right.$ 0 for all $n<0\}$ is a Fredholm operator. The k th reduction or k th Gelfand-Dickey hierarchy is obtained by assuming that

$$
L^{k}=\left(L^{k}\right)_{+},
$$

which corresponds to a τ-function for which

$$
\frac{\partial \tau}{\partial t_{k}}=\lambda \tau \quad \text { for some } \lambda \in \mathbb{C}
$$

In the polynomial case, i.e. τ is a polynomial, clearly $\lambda=0$. The point in the Grassmannian that corresponds to such a reduced τ-function satisfies

$$
t^{k} W \subset W
$$

In recent years a lot of attention has been drawn to a new kind of reduction of the KP hierarchy, viz. the so-called k-constrained KP hierarchies [AFGZ,C,CSZ,CZ,D,DS,OS,Z] (and references therein). Here one assumes that

$$
\begin{equation*}
L^{k}=\left(L^{k}\right)_{+}+q \partial^{-1} r, \tag{1.1}
\end{equation*}
$$

$q=q(t), r=r(t)$ being functions. Under this condition the KP hierarchy is constrained to

$$
\begin{equation*}
\frac{\partial L}{\partial t_{k}}=\left[\left(L^{k}\right)_{+}, L\right], \quad \frac{\partial q}{\partial t_{k}}=\left(L^{k}\right)_{+}, q, \quad \frac{\partial r}{\partial t_{k}}=-\left(L^{k}\right)_{+}^{*} r . \tag{1.2}
\end{equation*}
$$

Here A^{*} stands for the adjoined operator of A (see e.g. [KV] for more details about pseudodifferential operators). The AKNS, Yajima-Oikawa and Melnikov hierarchies are some of the examples that appear amongst these constrained KP families.

In this paper we consider the generalization of this k-constrained KP hierarchy, which was introduced by Sidorenko and Strampp [SS], the n-vector k-constrained hierarchy. We assume that

$$
\begin{equation*}
L^{k}=\left(L^{k}\right)_{+}+\sum_{j=1}^{n} q_{j} \partial^{-1} r_{j} \tag{1.3}
\end{equation*}
$$

then one obtains the following integrable system:

$$
\begin{equation*}
\frac{\partial L}{\partial t_{k}}=\left[\left(L^{k}\right)_{+}, L\right], \quad \frac{\partial q_{j}}{\partial t_{k}}=\left(L^{k}\right)_{+} q_{j}, \quad \frac{\partial r_{j}}{\partial t_{k}}=-\left(L^{k}\right)_{+}^{*} r_{j} \quad \text { for } 1 \leq j \leq n . \tag{1.4}
\end{equation*}
$$

For $k=1$ this hierarchy contains the coupled vector non-linear Schrödinger. Zhang and Cheng showed [ZC] that if one assumes that

$$
\begin{equation*}
q_{j}(t)=\frac{\rho_{j}(t)}{\tau(t)} \quad \text { and } \quad r_{j}(t)=\frac{\sigma_{j}(t)}{\tau(t)}, \tag{1.5}
\end{equation*}
$$

then L, q_{j} and $r_{j}, 1 \leq j \leq n$ satisfy the n-vector k-constrained hierarchy if and only if $\tau(t)$, $\rho_{j}(t)$ and $\sigma_{j}(t)$ satisfy the following set of equations:

$$
\begin{align*}
& \operatorname{Res}_{z=0} \mathrm{e}^{-\eta(t, z)} \tau(t) \mathrm{e}^{\xi(t, z)} \mathrm{e}^{\eta\left(t^{\prime}, z\right)} \tau\left(t^{\prime} \mathrm{e}^{-\xi\left(t^{\prime}, z\right)}=0,\right. \tag{1.6}\\
& \operatorname{Res}_{z=0} z^{k} \mathrm{e}^{-\eta(t, z)} \tau(t) \mathrm{e}^{\xi(t, z)} \mathrm{e}^{\eta\left(t^{\prime}, z\right)} \tau\left(t^{\prime}\right) \mathrm{e}^{-\xi\left(t^{\prime}, z\right)}=\sum_{j=1}^{n} \rho_{j}(t) \sigma_{j}\left(t^{\prime}\right), \tag{1.7}\\
& \operatorname{Res}_{z=0} z^{-1} \mathrm{e}^{-\eta(t, z)} \tau(t) \mathrm{e}^{\xi(t, z)} \mathrm{e}^{\eta\left(t^{\prime}, z\right)} \rho_{j}\left(t^{\prime}\right) \mathrm{e}^{-\xi\left(t^{\prime}, z\right)}=\rho_{j}(t) \tau\left(t^{\prime}\right), \tag{1.8}\\
& \operatorname{Res}_{z=0} z^{-1} \mathrm{e}^{-\eta(t, z)} \sigma_{j}(t) \mathrm{e}^{\xi(t, z)} \mathrm{e}^{\eta\left(t^{\prime}, z\right)} \tau\left(t^{\prime}\right) \mathrm{e}^{-\xi\left(t^{\prime}, z\right)}=\tau(t) \sigma_{j}\left(t^{\prime}\right), \tag{1.9}
\end{align*}
$$

where

$$
\begin{equation*}
\eta(t, z)=\sum_{i=1}^{\infty} \frac{\partial}{\partial t_{i}} \frac{z^{-i}}{i}, \quad \xi(t, z)=\sum_{i=1}^{\infty} t_{i} z^{i} \tag{1.10}
\end{equation*}
$$

and $\operatorname{Res}_{z=0} \sum_{i} a_{i} z^{i}=a_{-1}$.
In the case that $n=1$, Loris and Willox [LW] show that one can deduce some additional bilinear identities, but now involving $\partial \tau / \partial t_{k}$. It is unclear if this is possible for $n>1$, but we will not need these extra bilinear identities.

We will show in this paper that in fact L satisfies the n-vector k-constrained KP hierarchy, (1.3) and (1.4), if and only if the corresponding point W in Gr has a linear subspace $W^{\prime} \subset W$ of codimension n such that

$$
\begin{equation*}
t^{k} W^{\prime} \subset W \tag{1.11}
\end{equation*}
$$

We will prove this only in the polynomial case, i.e. polynomial τ, ρ_{j} and σ_{j}, but Gerand Helminck and the author recently obtained the same result in the Segal-Wilson scattering [HV]. We use the representation theory of the infinite-dimensional matrix group $G L_{\infty}$, developed by Kac and Peterson [KP1,KP2] (see also [KR]), to achieve this result.

Notice that in this way we get a filtration of hierarchies, i.e. the n-vector k-constrained hierarchy is a subsystem of the ($n+1$)-vector k-constrained hierarchy, $n=0$ being the k-reduced KP or Gelfand-Dickey hierarchies.

Finally we want to mention that recently Aratyn et al. [ANP] have related these n-vector k-constrained KP hierarchies to: (1) the general rational reductions of the KP hierarchy as considered by Krichever [K] and (2) matrix models that generalize the familiar ones with standard polynomial matrix potentials.

2. The semi-infinite wedge representation of the group $G L_{\infty}$ and Sato's Grassmannian

Consider the infinite complex matrix group

$$
\begin{aligned}
G L_{\infty}= & \left\{A=\left(a_{i j}\right)_{i, j \in \mathbb{Z}+1 / 2} \mid A\right. \text { is invertible } \\
& \text { and all but a finite number of } a_{i j}-\delta_{i j} \text { are } 0
\end{aligned}
$$

and its Lie algebra

$$
g l_{\infty}=\left\{a=\left(a_{i j}\right)_{i, j \in \mathbb{Z}+1 / 2} \mid \text { all but a finite number of } a_{i j} \text { are } 0\right\}
$$

with bracket $[a, b]=a b-b a$. The Lie algebra $g l_{\infty}$ has a basis consisting of matrices $E_{i j}, i, j \in \mathbb{Z}+\frac{1}{2}$, where $E_{i j}$ is the matrix with a 1 on the (i, j)th entry and zeros elsewhere. Let $\mathbb{C}^{\infty}=\bigoplus_{j \in \mathbb{Z}+1 / 2} \mathbb{C} v_{j}$ be an infinite-dimensional complex vector space with fixed basis $\left\{v_{j}\right\}_{j \in \mathbb{Z}+1 / 2}$. Both the group $G L_{\infty}$ and its Lie algebra $g l_{\infty}$ act linearly on \mathbb{C}^{∞} via the usual formula:

$$
E_{i j}\left(v_{k}\right)=\delta_{j k} v_{i}
$$

The well-known semi-infinite wedge representation is constructed as follows [KP2] (see also [KR,KV]). The semi-infinite wedge space $F=\Lambda^{1 / 2 \infty} \mathbb{C}^{\infty}$ is the vector space with a basis consisting of all semi-infinite monomials of the form $v_{i_{1}} \wedge v_{i_{2}} \wedge v_{i_{3}} \cdots$, where $i_{1}>i_{2}>i_{3}>\cdots$ and $i_{l+1}=i_{l}-1$ for $l \gg 0$. We can now define representations R of $G L_{\infty}$ and r of $g l_{\infty}$ on F by

$$
\begin{align*}
& R(A)\left(v_{i_{1}} \wedge v_{i_{2}} \wedge v_{i_{3}} \wedge \cdots\right)=A v_{i_{1}} \wedge A v_{i_{2}} \wedge A v_{i_{3}} \wedge \cdots \\
& r(a)\left(v_{i_{1}} \wedge v_{i_{2}} \wedge v_{i_{3}} \wedge \cdots\right)=\sum_{k} v_{i_{1}} \wedge v_{i_{2}} \wedge \cdots \wedge v_{i_{k-1}} \wedge a v_{i_{k}} \wedge v_{i_{k+1}} \wedge \cdots \tag{2.1}
\end{align*}
$$

These equations are related by the usual formula

$$
\exp (r(a))=R(\exp a) \quad \text { for } a \in g l_{\infty}
$$

In order to perform calculations later on, it is convenient to introduce a larger group

$$
\begin{aligned}
\overline{G L_{\infty}}= & \left\{A=\left(a_{i j}\right)_{i, j \in \mathbb{Z}+1 / 2} \mid A\right. \text { is invertible and all but a finite } \\
& \text { number of } \left.a_{i j}-\delta_{i j} \text { with } i \geq j \text { are } 0\right\}
\end{aligned}
$$

and its Lie algebra

$$
\overline{g l_{\infty}}=\left\{a=\left(a_{i j}\right)_{i, j \in \mathbb{Z}+1 / 2} \mid \text { all but a finite number of } a_{i j} \text { with } i \geq j \text { are } 0\right\}
$$

Both $\overline{G L_{\infty}}$ and $\overline{g l_{\infty}}$ act on a completion $\overline{\mathbb{C}^{\infty}}$ of the space \mathbb{C}^{∞}, where

$$
\overline{\mathbb{C}^{\infty}}=\left\{\sum_{j} c_{j} v_{j} \mid c_{j}=0 \text { for } j \gg 0\right\}
$$

It is easy to see that the representations R and r extend to representations of $\overline{G L_{\infty}}$ and $\overline{g l_{\infty}}$ on the space F.

The representation r of $g l_{\infty}$ and $\overline{g l_{\infty}}$ can be described in terms of wedging and contracting operators in F (see e.g. [KP2,KR]). Let v_{j}^{*} be the linear functional on \mathbb{C}^{∞} defined by $\left\langle v_{i}^{*}, v_{j}\right\rangle:=v_{i}^{*}\left(v_{j}\right)=\delta_{i j}$ and let $\mathbb{C}^{\infty *}=\bigoplus_{j \in \mathbb{Z}+1 / 2} \mathbb{C} v_{j}^{*}$ be the restricted dual of \mathbb{C}^{∞}, then for any $w \in \mathbb{C}^{\infty}$, we define a wedging operator $\psi^{+}(w)$ on F by

$$
\begin{equation*}
\psi^{+}(w)\left(v_{i_{1}} \wedge v_{i_{2}} \wedge \cdots\right)=w \wedge v_{i_{1}} \wedge v_{i_{2}} \cdots \tag{2.2}
\end{equation*}
$$

Let $w^{*} \in \mathbb{C}^{\infty *}$, we define a contracting operator

$$
\begin{align*}
& \psi^{-}\left(w^{*}\right)\left(v_{i_{1}} \wedge v_{i_{2}} \wedge \cdots\right) \\
& \quad=\sum_{s=1}^{\infty}(-1)^{s+1}\left(w^{*}, v_{i_{s}}\right) v_{i_{1}} \wedge v_{i_{2}} \wedge \cdots \wedge v_{i_{s-1}} \wedge v_{i_{s+1}} \wedge \cdots \tag{2.3}
\end{align*}
$$

For simplicity we write

$$
\begin{equation*}
\psi_{j}^{+}=\psi^{+}\left(v_{-j}\right), \quad \psi_{j}^{-}=\psi^{-}\left(v_{j}^{*}\right) \quad \text { for } j \in \mathbb{Z}+\frac{1}{2} \tag{2.4}
\end{equation*}
$$

These operators satisfy the following relations ($\left.i, j \in \mathbb{Z}+\frac{1}{2}, \lambda, \mu=+,-\right)$:

$$
\psi_{i}^{\lambda} \psi_{j}^{\mu}+\psi_{j}^{\mu} \psi_{i}^{\lambda}=\delta_{\lambda,-\mu} \delta_{i,-j}
$$

hence they generate a Clifford algebra, which we denote by $\mathcal{C} \ell$.
Introduce the following elements of $F(m \in \mathbb{Z})$:

$$
|m\rangle=v_{m-1 / 2} \wedge v_{m-3 / 2} \wedge v_{m-5 / 2} \wedge \cdots
$$

It is clear that F is an irreducible $\mathcal{C} \ell$-module generated by the vacuum $|0\rangle$ such that

$$
\psi_{j}^{ \pm}|0\rangle=0 \quad \text { for } j>0
$$

It is straightforward that the representation r is given by the following formula:

$$
\begin{equation*}
r\left(E_{i j}\right)=\psi_{-i}^{+} \psi_{j}^{-} \tag{2.5}
\end{equation*}
$$

Define the charge decomposition

$$
\begin{equation*}
F=\bigoplus_{m \in \mathbb{Z}} F^{(m)} \tag{2.6}
\end{equation*}
$$

by letting

$$
\begin{equation*}
\operatorname{charge}(|0\rangle)=0 \quad \text { and } \quad \operatorname{charge}\left(\psi_{j}^{ \pm}\right)= \pm 1 \tag{2.7}
\end{equation*}
$$

It is clear that the charge decomposition is invariant with respect to $r\left(g l_{\infty}\right)$ (and hence with respect to $R\left(G L_{\infty}\right)$). Moreover, it is easy to see that each $F^{(m)}$ is irreducible with respect to $g l_{\infty}$ (and $G L_{\infty}$). Note that $|m\rangle$ is its highest weight vector, i.e.

$$
\begin{aligned}
& r\left(E_{i j}\right)|m\rangle=0 \quad \text { for } i<j \\
& r\left(E_{i i}\right)|m\rangle=0 \quad(\text { resp. }=|m\rangle) \quad \text { if } i>m(\text { resp. if } i<m) .
\end{aligned}
$$

Let $w \in F$, we define the Annihilator space $\operatorname{Ann}(w)$ of w as follows:

$$
\begin{equation*}
\operatorname{Ann}(w)=\left\{v \in \mathbb{C}^{\infty} \mid v \wedge w=0\right\} \tag{2.8}
\end{equation*}
$$

Notice that $\operatorname{Ann}(w) \neq 0$, since $v_{j} \in \operatorname{Ann}(w)$ for $j \ll 0$. This Annihilator space for perfect (semi-infinite) wedges $w \in F^{(m)}$ is related to the $G L_{\infty}$-orbit

$$
\mathcal{O}_{m}=R\left(G L_{\infty}\right)|m\rangle \subset F^{(m)}
$$

of the highest weight vector $|m\rangle$ as follows. Let $A=\left(A_{i j}\right)_{i, j \in \mathbb{Z}} \in G L_{\infty}$, denote by $A_{j}=\sum_{i \in \mathbb{Z}} A_{i j} v_{i}$ then by (2.8)

$$
\begin{equation*}
\tau_{m}=R(A)|m\rangle=A_{m-1 / 2} \wedge A_{m-3 / 2} \wedge A_{m-5 / 2} \wedge \cdots \tag{2.9}
\end{equation*}
$$

with $A_{-j}=v_{-j}$ for $j \gg 0$. Notice that since τ_{m} is a perfect (semi-infinite) wedge

$$
\operatorname{Ann}\left(\tau_{m}\right)=\sum_{j<m} \mathbb{C} A_{j} \subset \mathbb{C}^{\infty}
$$

By identifying $v_{i}=t^{-i-1 / 2}$ for $i \in \mathbb{Z}+\frac{1}{2}$, we can write $A_{j}=A_{j}(t)=\sum_{i \in \mathbb{Z}+1 / 2} A_{i j} t^{-i-1 / 2}$ as a Laurent polynomial in t. In this way we can identify $\operatorname{Ann}\left(\tau_{m}\right)$ with a subspace $W_{\tau_{m}}=$ $\sum_{j<m} \mathbb{C} A_{j}(t)$ of the space H of all Laurent polynomials. Notice that this space H differs from the one described in Section 1. So from now on let Gr consist of all linear subspaces of H which contain

$$
H_{j}:=\sum_{i=-j}^{\infty} \mathbb{C} t^{i}
$$

for $j \gg 0$ and let $\mathrm{Gr}=\bigcup_{m \in \mathbb{Z}} \mathrm{Gr}_{m}$ (disjoint union) with

$$
\operatorname{Gr}_{m}=\left\{W \in \operatorname{Gr} \mid H_{j} \subset W \text { and } \operatorname{dim} W / H_{j}=m-j \text { for } j \ll 0\right\},
$$

then we can construct a cannonical map

$$
\phi: \mathcal{O}_{m} \rightarrow \mathrm{Gr}_{m}, \quad \phi\left(\tau_{m}\right)=W_{\tau_{m}}:=\sum_{i<m} \mathbb{C} A_{i}(t)
$$

It is clear that $\phi(|m\rangle)=H_{m}$ and that ϕ is surjective with fibers \mathbb{C}^{x}. This construction is due to Sato [S], we call Gr the polynomial Grassmannian. From now on we will call a perfect wedge also a τ-function (note that $\tau=0$ is also a τ-function).

3. The boson-fermion correspondence

Introduce the fermionic fields $\left(z \in \mathbb{C}^{\times}\right)$:

$$
\begin{equation*}
\psi^{ \pm}[z] \stackrel{\text { def }}{=} \sum_{k \in \mathbb{Z}+1 / 2} \psi_{k}^{ \pm} z^{-k-1 / 2} \tag{3.1}
\end{equation*}
$$

Next we introduce bosonic fields:

$$
\begin{equation*}
\alpha[z] \equiv \sum_{k \in \mathbb{Z}} \alpha_{k} z^{-k-1} \stackrel{\text { def }}{=}: \psi^{+}[z] \psi^{-}[z]:, \tag{3.2}
\end{equation*}
$$

where : : stands for the normal ordered product defined in the usual way $(\lambda, \mu=+$ or -):

$$
: \psi_{k}^{\lambda} \psi_{l}^{\mu}:= \begin{cases}\psi_{k}^{\lambda} \psi_{l}^{\mu} & \text { if } l \geq k \\ -\psi_{l}^{\mu} \psi_{k}^{\lambda} & \text { if } l<k\end{cases}
$$

One checks (using e.g. Wick's formula) that the operators α_{k} satisfy the commutation relations of the associative oscillator algebra, one has

$$
\begin{equation*}
\left[\alpha_{k}, \alpha_{l}\right]=k \delta_{k,-l} \quad \text { and } \quad \alpha_{k}|m\rangle=0 \quad \text { if } k>0 \tag{3.3}
\end{equation*}
$$

In order to express the fermionic fields $\psi^{ \pm}(z)$ in terms of the bosonic operators α_{l}, we need some additional operator Q. This operator is uniquely defined as follows:

$$
\begin{equation*}
Q\left(v_{i_{1}} \wedge v_{i_{2}} \wedge \cdots\right)=\left(v_{i_{1}+1} \wedge v_{i_{2}+1} \wedge \cdots\right) \tag{3.4}
\end{equation*}
$$

So

$$
Q|0\rangle=|1\rangle, \quad Q \psi_{k}^{ \pm}=\psi_{k \neq 1}^{ \pm} Q
$$

and Q satisfies the following commutation relations with the α 's:

$$
\left[\alpha_{k}, Q\right]=\delta_{k 0} Q
$$

In this paper the operator Q^{-k} will play an important role. If $w_{m-1 / 2} \wedge w_{m-3 / 2} \wedge \cdots$ is a perfect wedge then

$$
\begin{equation*}
Q^{-k}\left(w_{m-1 / 2} \wedge w_{m-3 / 2} \wedge \cdots\right)=\Lambda^{k} w_{m-1 / 2} \wedge \Lambda^{k} w_{m-3 / 2} \wedge \cdots, \tag{3.5}
\end{equation*}
$$

where $\Lambda=\sum_{j \in \mathbb{Z}+1 / 2} E_{j, j+1}$.

Theorem 3.1. [DJKM1,JM]

$$
\begin{equation*}
\psi^{ \pm}[z]=Q^{ \pm 1} z^{ \pm \alpha_{0}} \exp \left(\mp \sum_{k<0} \frac{1}{k} \alpha_{k} z^{-k}\right) \exp \left(\mp \sum_{k>0} \frac{1}{k} \alpha_{k} z^{-k}\right) . \tag{3.6}
\end{equation*}
$$

Proof. See [TV].
The operators on the right-hand side of (3.6) are called vertex operators. They made their first appearance in string theory (cf. [FK]).

We now describe the boson-fermion correspondence. Let $\mathbb{C}[t]$ be the space of polynomials in indeterminates $t=\left(t_{1}, t_{2}, t_{3}, \ldots\right)$. Let $B=\mathbb{C}\left[q, q^{-1}, t\right]=\mathbb{C}[t] \otimes \mathbb{C}\left[q, q^{-1}\right]$ be the tensor product of algebras. Then the boson-fermion correspondence is the vector space isomorphism

$$
\sigma: F \xrightarrow{\sim} B,
$$

given by

$$
\sigma\left(\alpha_{-m_{1}} \cdots \alpha_{-m_{s}}|k\rangle\right)=m_{1} \cdots m_{s} t_{m_{1}} \cdots t_{m_{s}} q^{k}
$$

Notice that the power of q is the value of the charge. The transported action of the operators α_{m} and Q looks as follows:

$$
\sigma Q \sigma^{-1}=q, \quad \sigma \alpha_{m} \sigma^{-1}=\left\{\begin{array}{cl}
-m t_{m} & \text { if } m<0 \tag{3.7}\\
\frac{\partial}{\partial t_{m}} & \text { if } m>0 \\
q \frac{\partial}{\partial q} & \text { if } m=0
\end{array}\right.
$$

Hence

$$
\begin{equation*}
\sigma \psi^{ \pm}[z] \sigma^{-1}=q^{ \pm 1} z^{ \pm q \partial / \partial q} \mathrm{e}^{ \pm \xi(t, z)} \mathrm{e}^{\mp \eta(t, z)} \tag{3.8}
\end{equation*}
$$

with $\eta(t, z)$ and $\xi(t, z)$ given by (1.10).

4. Identification of the bilinear identities

From now on we assume that $\tau \in F^{(m)}$, hence that τ is the inverse image under σ. Using the boson-fermion correspondence of Section 3, we rewrite the bilinear identities (1.6)-(1.9), of Zhang and Cheng now as equations in $F \otimes F$. Notice first the following equality of operators on $F \otimes F$:

$$
\operatorname{Res}_{z=0} \psi^{+}[z] \otimes \psi^{-}[z]=\sum_{i \in \mathbb{Z}+1 / 2} \psi_{i}^{+} \otimes \psi_{-i}^{-}
$$

Now (1.6)-(1.9) turn into the following equations:

$$
\begin{align*}
& \sum_{i \in \mathbb{Z}+1 / 2} \psi_{i}^{+} \tau \otimes \psi_{-i}^{-} \tau=0 \tag{4.1}\\
& \sum_{i \in \mathbb{Z}+1 / 2} \psi_{i}^{+} \tau \otimes \psi_{-i}^{-} Q^{-k} \tau=\sum_{j=1}^{n} \rho_{j} \otimes \sigma_{j}, \tag{4.2}\\
& \sum_{i \in \mathbb{Z}+1 / 2} \psi_{i}^{+} \tau \otimes \psi_{-i}^{-} \rho_{j}=\rho_{j} \otimes \tau \tag{4.3}\\
& \sum_{i \in \mathbb{Z}+1 / 2} \psi_{i}^{+} \sigma_{j} \otimes \psi_{-i}^{-} Q^{-k} \tau=Q^{-k} \tau \otimes \sigma_{j} \tag{4.4}
\end{align*}
$$

Here $Q^{-k} \tau \in F^{(m-k)}, \rho_{j} \in F^{(m+1)}$ and $\sigma_{j} \in F^{(m-k-1)}$ for all $1 \leq j \leq n$. Eq. (4.1) is called the KP hierarchy in the fermionic picture, it characterizes the $G L_{\infty}$-orbit \mathcal{O}_{m}, i.e.:

Proposition 4.1. [KP2] A non-zero element τ of $F^{(m)}$ lies in \mathcal{O}_{m} if and only if τ satisfies Eq. (4.1).

If $\tau \in \mathcal{O}_{m}$, then we can write τ as a perfect wedge

$$
\begin{equation*}
\tau=w_{m-1 / 2} \wedge w_{m-3 / 2} \wedge w_{m-5 / 2} \wedge w_{m-7 / 2} \wedge \cdots \tag{4.5}
\end{equation*}
$$

such that $w_{-l}=v_{-l}$ for $l \gg 0$. The corresponding point $W_{\tau} \in \mathrm{Gr}_{m}$ is then given by

$$
\begin{equation*}
W_{\tau}=\left\langle w_{m-1 / 2}, w_{m-3 / 2}, w_{m-5 / 2}, w_{m-7 / 2}, \cdots\right\rangle . \tag{4.6}
\end{equation*}
$$

The geometrical interpretation of (4.3)-(4.4) is given by the following proposition.
Proposition 4.2. Let $\tau \in \mathcal{O}_{m}, \rho \in F^{(m+1)}$ and $\sigma \in F^{(m-1)}$, then
(1) τ and ρ satisfy

$$
\begin{equation*}
\sum_{i \in \mathbb{Z}+1 / 2} \psi_{i}^{+} \tau \otimes \psi_{-i}^{-} \rho=\rho \otimes \tau \tag{4.7}
\end{equation*}
$$

if and only if $\rho \in \mathcal{O}_{m+1}$ and $W_{\tau} \subset W_{\rho}$,
(2) τ and σ satisfy

$$
\begin{equation*}
\sum_{i \in \mathbb{Z}+1 / 2} \psi_{i}^{+} \sigma \otimes \psi_{-i}^{-} \tau=\tau \otimes \sigma \tag{4.8}
\end{equation*}
$$

if and only if $\sigma \in \mathcal{O}_{m-1}$ and $W_{\sigma} \subset W_{\tau}$.
Proof. Without loss of generality we may assume (since the operator $\sum_{i} \psi_{i}^{+} \otimes \psi_{-i}^{-}$commutes with the action of $\left.R\left(G L_{\infty}\right) \otimes R\left(G L_{\infty}\right)\right)$ that $\tau=|m\rangle$. Then (4.7) is equivalent to

$$
\sum_{i>m} v_{i} \wedge|m\rangle \otimes \psi_{i}^{-} \rho=\rho \otimes|m\rangle
$$

Since all elements $v_{i} \wedge|m\rangle$, for $i>m$, are linearly independent, we deduce that $\psi_{i}^{-} \rho=$ $\lambda_{i}|m\rangle$ and that $\rho \in\left\langle v_{i} \wedge \mid m\right\rangle|i>m\rangle$. Hence $\rho=w \wedge|m\rangle$ for some $w \in \mathbb{C}^{\infty}$ and thus $\rho \in \mathcal{O}_{m+1}$ and $W_{\tau} \subset W_{\rho}$.

The converse, since $W_{\tau} \subset W_{\rho}, \rho=w \wedge|m\rangle$ for some $w \in \mathbb{C}^{\infty}$. Then

$$
\begin{aligned}
\sum_{i \in \mathbb{Z}+1 / 2} \psi_{i}^{+} \tau \otimes \psi_{-i}^{-}(w \wedge \tau) & =(w \wedge \tau) \otimes \tau-\left(1 \otimes \psi^{+}(w)\right)\left(\sum_{i \in \mathbb{Z}+1 / 2} \psi_{i}^{+} \tau \otimes \psi_{-i}^{-} \tau\right) \\
& =(w \wedge \tau) \otimes \tau
\end{aligned}
$$

For $\tau=|m\rangle,(4.8)$ is equivalent to

$$
\sum_{i<m}\left(v_{i} \wedge \sigma\right) \otimes \psi_{i}^{-}|m\rangle=|m\rangle \otimes \sigma
$$

Since the elements $\psi_{i}^{-}|m\rangle$ for $i<m$ are all linearly independent, we conclude that $v_{i} \wedge \sigma=$ $\lambda_{i}|m\rangle$ and that $\sigma \in\left\langle\psi_{i}^{-} \mid m\right\rangle|i<m\rangle$. Hence $\sigma=\sum_{i=-\infty}^{m-1 / 2} a_{i} \psi_{i}^{-}|m\rangle$. Since $\sigma \in F^{(m-1)}$, $a_{i}=0$ for all $i<-N \ll 0$. We now calculate $\operatorname{Ann}(\sigma)$. Clearly $\operatorname{Ann}(\sigma) \subset\left\langle v_{i} \mid i<m\right\rangle=$ $\operatorname{Ann}(|m\rangle)$, so let $v=\sum_{i<m}(-)^{i} b_{i} v_{i}$, then $\sum_{i=-N+1 / 2}^{m-1 / 2} a_{i} b_{i}=0$. Hence, if $\sigma \neq 0$, we only
find one restriction for the collection of b_{i} 's, from which we conclude that σ is a perfect wedge. The converse of this statement follows immediately by writing $\tau=w \wedge \sigma$.

We next prove the following.
Proposition 4.3. Let $\tau \in \mathcal{O}_{m}, \rho_{j} \in \mathcal{O}_{(m+1)}$ and $\sigma_{j} \in \mathcal{O}_{(m-k-1)}, 1 \leq j \leq n$, be related by

$$
\begin{equation*}
W_{\tau} \subset W_{\rho_{j}}, \quad W_{\sigma_{j}} \subset \Lambda^{k} W_{\tau} \tag{4.9}
\end{equation*}
$$

then τ satisfies Eq. (4.2) if and only if there exists a subspace $W^{\prime} \subset W_{\tau}$ of codimension n such that $\Lambda^{k} W^{\prime} \subset W_{\tau}$.

Proof. Notice first that $\Lambda^{k} W_{\tau}=W_{Q^{-k} \tau}$. We assume that n is minimal, so that all σ_{j} and ρ_{j} are non-zero perfect wedges, and that τ is of the form (4.5). Then

$$
\begin{aligned}
& \sum_{i \in \mathbb{Z}+1 / 2} \psi_{i}^{+} \tau \otimes \psi_{-i}^{-} Q^{-k} \tau \\
& =\sum_{l=0}^{\infty}(-)^{l} \Lambda^{k} w_{m-l-1 / 2} \wedge \tau \otimes \Lambda^{k} w_{m-1 / 2} \wedge \cdots \\
& \quad \wedge \Lambda^{k} w_{m-l+1 / 2} \wedge \Lambda^{k} w_{m-l-3 / 2} \wedge \cdots \\
& =\sum_{j=1}^{n} u_{j} \wedge \tau \otimes \sigma_{j}
\end{aligned}
$$

where $\rho_{j}=u_{j} \wedge \tau$. Since all vectors $\Lambda^{k} w_{m-1 / 2} \wedge \cdots \wedge \Lambda^{k} w_{m-l+1 / 2} \wedge \Lambda^{k} w_{m-l-3 / 2} \wedge \cdots$ are linearly independent, we deduce that

$$
\Lambda^{k} w_{m-l-1 / 2} \wedge u_{1} \wedge u_{2} \wedge \cdots \wedge u_{n} \wedge \tau=0
$$

for all $l=0,1,2, \ldots$ Since we have assumed that n is minimal, also all u_{j} 's are linearly independent and moreover $u_{1} \wedge u_{2} \wedge \cdots \wedge u_{n} \wedge \tau \neq 0$, hence

$$
\Lambda^{k} w_{m-l-1 / 2} \in\left\langle u_{1}, u_{2}, \ldots, u_{n}, w_{m-1 / 2}, w_{m-3 / 2}, \ldots\right\rangle
$$

so there exists a subspace $W^{\prime} \subset W_{\tau}$ of codimension n such that $\Lambda^{k} W^{\prime} \subset W_{\tau}$.
For the converse, choose a basis $w_{m-n-1 / 2}, w_{m-n-3 / 2}, \ldots$ of W^{\prime} and extend it to a basis $w_{m-1 / 2}, w_{m-3 / 2}, \ldots, w_{m-n+1 / 2}, w_{m-n-1 / 2}, w_{m-n-3 / 2}, \ldots$ of W_{τ}, then

$$
\begin{aligned}
& \sum_{i \in \mathbb{Z}+1 / 2} \psi_{i}^{+} \tau \otimes \psi_{-i}^{-} Q^{-k} \tau \\
& =\sum_{l=0}^{\infty}(-)^{l} \Lambda^{k} w_{m-l-1 / 2} \wedge \tau \otimes \Lambda^{k} w_{m-1 / 2} \wedge \cdots \\
& \wedge \Lambda^{k} w_{m-l+1 / 2} \wedge \Lambda^{k} w_{m-l-3 / 2} \wedge \cdots \\
& =\sum_{l=0}^{n-1}(-)^{l} \Lambda^{k} w_{m-l-1 / 2} \wedge \tau \otimes \Lambda^{k} w_{m-1 / 2} \wedge \cdots \\
& \quad \wedge \Lambda^{k} w_{m-l+1 / 2} \wedge \Lambda^{k} w_{m-l-3 / 2} \wedge \cdots
\end{aligned}
$$

So choose

$$
\begin{aligned}
& \rho_{j}=\Lambda^{k} w_{m-j+1 / 2} \wedge \tau \\
& \sigma_{j}=\Lambda^{k} w_{m-1 / 2} \wedge \cdots \wedge \Lambda^{k} w_{m-j+3 / 2} \wedge \Lambda^{k} w_{m-j-1 / 2} \wedge \cdots
\end{aligned}
$$

then $W_{\tau}, \Lambda^{k} W_{\tau}, W_{\sigma_{j}}$ and $W_{\rho_{j}}$ clearly satisfy Eq. (4.9).
From this proposition we deduce the main theorem of this paper.

Theorem 4.4. The pseudo-differential operator

$$
L=\partial+u_{1} \partial^{-1}+u_{2} \partial^{-2}+\cdots
$$

satisfies the n-vector k-constrained KP hierarchy if and only if the corresponding point $W \in G r_{m}$ has a subspace W^{\prime} of codimension n such that $t^{k} W^{\prime} \subset W$.

As an easy consquence we obtain
Corollary 4.5. Let τ be a polynomial τ-function of the n-vector k-constrained $K P$ hierarchy, then $\partial \tau / \partial t_{k}=\sum_{l=1}^{n} \tau_{l}$ where every τ_{l} satisfies the KP hierarchy, i.e. Eq. (4.1).

Proof. Follows immediately by taking the same basis for W_{τ} as in the converse part of the proof of Proposition 4.3.

If $n=1$, one can prove [V] that every polynomial τ-function τ, for which $\partial \tau / \partial t_{k}$ is again τ-function, is a solution of the k-constrained KP hierarchy.

Notice that we have constructed a natural filtration on the space Gr_{m}, which is determined by the n-vector k-constrained KP hierarchy for $n=0,1,2, \ldots$ Let

$$
\begin{align*}
\mathrm{Gr}_{m}^{(n, k)}= & \left\{W \in \mathrm{Gr}_{m} \mid \text { there exists a subspace } W^{\prime} \subset W\right. \tag{4.10}\\
& \text { of codimension } \left.n \text { such that } t^{k} W^{\prime} \subset W\right\}
\end{align*}
$$

then

$$
\begin{equation*}
\operatorname{Gr}_{m}^{(0, k)} \subset \operatorname{Gr}_{m}^{(1, k)} \subset \cdots \subset \operatorname{Gr}_{m}^{(n, k)} \subset \operatorname{Gr}_{m}^{(n+1, k)} \subset \cdots \tag{4.11}
\end{equation*}
$$

It is obvious that every point $W \in \mathrm{Gr}_{m}$ (in this polynomial case) is contained in $\mathrm{Gr}_{m}^{(n, k)}$ for $n \gg 0$, in other words

$$
\begin{equation*}
\mathrm{Gr}_{m}=\bigcup_{n \in \mathbb{Z}_{+}} \mathrm{Gr}_{m}^{(n, k)} \tag{4.12}
\end{equation*}
$$

So for every τ-function of the KP hierarchy there exists a non-negative integer n such that for all $m \geq n, \tau$ is also a τ-function of the m-vector k-constrained KP hierarchy. In other words, for every L, corresponding to a polynomial τ-function, one can find a non-negative integer n such that L satisfies (1.3).

5. Polynomial solutions of the \boldsymbol{n}-vector \boldsymbol{k}-constrained KP hierarchy

We will now state an immediate consequence of the boson-fermion correspondence, viz., we calculate the image under σ of a perfect wedge of the form (2.9). One finds the following result.

Proposition 5.1. Let S_{i} be the elementary Schur functions, defined by $\exp \sum_{i=1}^{\infty} t_{i} z^{i}=$ $\sum_{i \in \mathbb{Z}}^{\infty} S_{i}(t) z^{i}\left(S_{i}=0\right.$ for $\left.i<0\right)$ and let $\tau_{m} \in \mathcal{O}_{m}$ be of the form (2.9), i.e.,

$$
\tau_{m}=A_{m-1 / 2} \wedge A_{m-3 / 2} \wedge A_{m-5 / 2} \wedge \cdots
$$

with $A_{j}=\sum_{i \in \mathbb{Z}+1 / 2} A_{i j} v_{i}$ and $A_{-k}=v_{-k}$ for all $k>N \gg 0$. Set $A=$ $\left(A_{i j}\right)_{i \in \mathbb{Z}+1 / 2, m>j \in \mathbb{Z}+1 / 2}$ and let $\Lambda=\sum_{i \in \mathbb{Z}=1 / 2} E_{i, i+1} \in \overline{g l_{\infty}}$. Then

$$
\begin{equation*}
\sigma\left(\tau_{m}\right)=\operatorname{det}\left(\sum_{i, j=-n+1 / 2}^{m-1 / 2}\left(\sum_{l=-N+1 / 2}^{\infty} S_{l-i} A_{l j}\right) E_{i j}\right) q^{m} \tag{5.1}
\end{equation*}
$$

Proof. The proof of this proposition is the same as the proof of Theorem 6.1 of [KR]. One computes

$$
\sigma\left(\exp \left(\sum_{i=1}^{\infty} t_{i} \Lambda^{i}\right) \tau_{m}\right)
$$

and takes the coefficient of q^{m}. One thus obtains (see also [DJKM1,M]):

$$
\begin{equation*}
\sigma\left(\tau_{m}\right)=\operatorname{det}\left(\left(\exp \left(\sum_{i=1}^{\infty} t_{i} \Lambda^{i}\right) A\right)_{<m}\right) q^{m} \tag{5.2}
\end{equation*}
$$

where $B_{<m}$ denotes the submatrix of B where one only takes the rows $j \in \mathbb{Z}+\frac{1}{2}$ with $j<m$. Notice that $\sum_{i} t_{i} \Lambda^{i} \in \overline{g l_{\infty}}$ and $\exp \left(\sum_{i} t_{i} \Lambda^{i}\right) \in \overline{G L_{\infty}}$. Here we calculate the determinant of an infinite matrix. However, there is no problem since the matrix is of the form $\left(B_{i j}\right)_{m>i, j \in \mathbb{Z}+1 / 2}$ with all but a finite number of $B_{i j}-\delta_{i j}$ with $i \geq j$ are zero.

It is clear that one can subtract $\sum_{i<-N} A_{i j} v_{i}$ from every A_{j}, with $j>-N$, in τ_{m}, this will not change τ_{m}. Then the new A is of the form

$$
A=\sum_{-N<i,-N<j<m} A_{i j} E_{i j}+\sum_{i<-N} E_{i i},
$$

it is then straightforward, using the elementary Schur functions, to calculate the right-hand side of (5.2). One finds formula (5.1).

We will use this proposition to obtain all polynomial solutions of the n-vector k constrained KP hierarchy. Notice that our approach is different from the one in [ZC]. Instead of taking τ_{m} of the form (2.9), we may choose another basis of $W_{\tau_{m}}$ and construct the corresponding perfect wedge, it is clear that this will be a multiple of τ_{m}. We can choose this basis in such a way

$$
W_{\tau_{m}}=\left\langle A_{m-1 / 2}, A_{m-3 / 2}, A_{m-5 / 2}, \ldots, A_{-N+1 / 2}, v_{-N-1 / 2}, v_{-N-3 / 2}, \ldots\right\rangle
$$

such that $A_{j}=\sum_{i=-N+1 / 2}^{\infty} A_{i j} v_{i}$ and that, except for at most n vectors A_{j}, all A_{j} satisfy the following condition:

$$
\Lambda^{k} A_{j}\left\{\begin{array}{l}
=A_{l} \quad \text { for some }-N+\frac{1}{2} \leq l \leq m-\frac{1}{2}, \text { or } \\
\in\left\langle v_{-N-1 / 2}, v_{-N-3 / 2}, \ldots\right\rangle
\end{array}\right.
$$

Of course every A_{j} is bounded, i.e. there exists an integer M such that all $A_{j}=\sum_{i=-N+1 / 2}^{M-1 / 2}$ $A_{i j} v_{i}$. Now making a shift in the index and permuting the columns we obtain the following result.

Proposition 5.2. Let $M, N \in \mathbb{Z}$ such that $M>N>0$ and let $e_{j}, 1 \leq j \leq M$, be an orthonormal basis of \mathbb{C}^{M}. Let R be the $M \times M$-matrix $R=\sum_{i=1}^{M-k} E_{i, i+k}$ and let $A=\left(A_{i j}\right)_{1 \leq i \leq M, 1 \leq j \leq N}$ be an $M \times N$-matrix of rank N. Denote by $A_{j}=\sum_{i=1}^{M} A_{i j} e_{i}$. If all A_{j} satisfy the condition that $R A_{j} \neq A_{i}$ for all $1 \leq i<j$ and if all A_{j}, except for at most n, satisfy the condition that

$$
R A_{j}= \begin{cases}A_{j+1} & \text { or } \\ 0, & \end{cases}
$$

then

$$
\begin{equation*}
\tau=\operatorname{det}\left(\sum_{i, j=1}^{N}\left(\sum_{l=1}^{M} S_{l-i} A_{l j}\right) E_{i j}\right) \tag{5.3}
\end{equation*}
$$

is a τ-function of the n-vector k-constrained KP hierarchy. All polynomial solutions can be obtained in this way.

Acknowledgements

It is a pleasure to thank Gerard Helminck, Ignace Loris and Gerhard Post for helpful discussions, and Walter Strampp for drawing my attention to this subject.

References

[AFGZ] H. Aratyn, L. Ferreira, J.F. Gomes and A.H. Zimerman, Constrained KP models as integrable matrix hierarchies, hep-th 9509096.
[ANP] H. Aratyn, E. Nissimov and S. Pacheva, Constrained KP hierarchies: Additional symmetries, Darboux-Bäcklund solutions and relations to multi-matrix models, hep-th 9607234.
[C] Yi Cheng, Modifying the KP, the nth constrained KP hierarchies and their hamiltonian structures, Commun. Math. Phys. 171 (1995) 661-682.
[CSZ] Yi Cheng, W. Strampp and B. Zhang, Constraints of the KP hierarchy and multilinear forms, Commun. Math. Phys. 168 (1995) 117-135.
[CZ] Yi Cheng, Y.-J. Zhang, Bilinear equations for the constrained KP hierarchy, Inverse Problems 10 (1994) L11-L17.
[DJKM1] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Operator approach to the Kadomtsev-Petviashvili equation. Transformation groups for soliton equations. III, J. Phys. Soc. Japan 50 (1981) 38063812.
[DJKM2] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations. Euclidean Lie algebras and reduction of the KP hierarchy, Publ. Res. Inst. Math. Sci. 18 (1982) 1077-1110.
[DJKM3] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations, in: Nonlinear Integrable systems-Classical Theory and Quantum Theory, eds. M. Jimbo and T. Miwa (World Scientific, Singapore, 1983) pp.39-120.
[D] L.A. Dickey, and On the constrained KP, preprint.
[DS] L. Dickey and W. Strampp, On new identities for KP Baker functions and their application to constrained hierarchies, preprint.
[FK] I.B. Frenkel and V.G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980) 23-66.
[HV] G.F. Helminck and J.W. van de Leur, An analytic description of the vector constrained KP hierarchy, in preparation.
[JM] M. Jimbo and T. Miwa, Solitons and infinite dimensional Lie algebras, Publ. Res. Inst. Math. Sci. 19 (1983) 943-1001.
[K] I. Krichever, General rational reductions of the KP hierarchy and their symmetries, preprint.
[KP1] V.G. Kac and D.H. Peterson, Spin and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Nat. Acad. Sci. USA 78 (1981) 3308-3312.
[KP2] V.G. Kac and D.H. Peterson, Lectures on the infinite wedge representation and the MKP hierarchy, Séminaire de Mathematiques Supérieures, Vol. 102 (Presses University Montreal, Montreal, 1986) pp.141-184.
[KR] V.G. Kac and A.K. Raina, Bombay lectures on highest weight representations of infinitedimensional Lie algebras, Advanced Series in Mathematical Physics, Vol. 2 (World Scientific, Singapore, 1987).
[KV] V.G. Kac and J.W. van de Leur, The n-component KP hierarchy and representation theory, in: Important Developments in Soliton Theory, eds. A.S. Fokas and V.E. Zakharov, Springer Series in Nonlinear Dynamics (Springer, Berlin, 1993) pp.302-343.
[LW] I. Loris and R. Willox, Bilinear form and solutions of the k-constrained Kadomtsev-Petviashvili hierarchy, preprint.
[M] M. Mulase, Algebraic theory of the KP equations, in: Perspectives in Mathematical Physics, eds. R. Penner and S.-T. Yau (International Press Company, 1994) pp.157-223.
[OS] W. Oevel and W. Strampp, Constrained KP hierarchies and bi-hamiltonian structures, Commun. Math. Phys. 157 (1993) 51-81.
[S] M. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, Res. Inst. Math. Sci. Kokyuroku 439 (1981) 30-46.
[SS] J. Sidorenko and W. Strampp, Multicomponent integrable reductions in the KadomtsevPetviashvilli hierarchy, J. Math. Phys. 34 (1993) 1429-1446.
[SW] G. Segal and G. Wilson, Loop groups and equations of KdV type, Inst. Hautes Etudes Sci. Publ. Math. 63 (1985) 1-64.
[TV] F. ten Kroode and J. van de Leur, Bosonic and fermionic realizations of the affine algebra $\hat{g l} l_{n}$, Commun. Math. Phys. 137 (1991) 67-107.
[V] J. van de Leur, A geometrical interpretation of the constrained KP hierarchy, preprint.
[Z] Y.-Z. Zhang, On Segal-Wilson's construction for the τ-function of the constrained KP hierarchies, Lett. Math. Phys. 36 (1996) 1-15.
[ZC] Y.-J. Zhang and Yi Cheng, Solutions for the vector k-constrained KP hierarchy, J. Math. Phys. 35 (1994) 5869-5884.

[^0]: ${ }^{1}$ Supported by the "Stichting Fundamenteel Onderzoek der Materie (F.O.M.)". E-mail: vdleur@math. utwente.nl.

