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Abstract 

We use the representation theory of the infinite matrix group to show that (in the polynomial case) 
the n-vector k-constrained KP hierarchy has a natural geometrical interpretation on Sato's infinite 
Grassmannian. This description generalizes the k-reduced KP or Gelfand-Dickey hierarchies. 
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1. Introduct ion 

It is well known that the kth Gelfand-Dickey hierarchy, which generalizes the Korteweg- 

de Vries (KdV) hierarchy, can be obtained as a reduction of the Kadomtsev-Petviashvili 

(KP) hierarchy. The latter is defined as the set of deformation equations 

OL [(L~)+, L] 
Otk 

for the first-order pseudo-differential operator 

L --  L ( t ,  O) = O + u l ( t )O  - I  + u2(t)0 -2 + . . . ,  
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here 0 = O/Otl, t = (q ,  t2 . . . .  ) and (Lk)+ stands for the differential part of  L k. Now L 

dresses as L = P O P  -1 with 

P -- P ( t ,  O) = 1 + a l ( t ) O  - l  + a2(t)0 -2 + . . .  

One can choose P in such a way that 

r ( t  - [ z - l ] )  
P ( t ,  z) -- 

r( t )  

where r( t )  = r ( q ,  t2, t3 . . . .  ) is the famous r-function, introduced by the Kyoto group 

[DJKM1-3] and [z] = (z, ½z 2, ½z 3 . . . .  ). Sato [S] showed that such a r-function corre- 

sponds to a point of  some infinite Grassmannian Gr (see e.g. [S,SW]). Let H be the space 

of formal Laurent series y~ ant n such that an = 0 for n >> 0. The points of Gr are those 

linear subspaces W C H for which the projection zr+ of  W into H+ = {Y~ ant n E H lan = 

0 for all n < 0} is a Fredholm operator. The kth reduction or kth Gelfand-Dickey hierarchy 

is obtained by assuming that 

L k = (Lk)+, 

which corresponds to a r-function for which 

Or 
- - - - ) ~ r  for s o m e L e C .  
Otk 

In the polynomial case, i.e. r is a polynomial, clearly ~. = 0. The point in the Grassmannian 

that corresponds to such a reduced r-functi0n satisfies 

t k W  C W.  

In recent years a lot of  attention has been drawn to a new kind of  reduction of  the KP 

hierarchy, viz. the so-called k-constrained KP hierarchies [AFGZ,C,CSZ,CZ,D,DS,OS,Z] 

(and references therein). Here one assumes that 

L k = (Lk)+ + q O - l r ,  (1.1) 

q = q ( t ) ,  r = r ( t )  being functions. Under this condition the KP hierarchy is constrained 

to 

0_LL Oq Or 
= ( L k ) + ,  q ,  - -  = - ( L ~ ) * + r .  ~1.2) Otk [(Lk)+, L], 0--~k = Otk 

Here A* stands for the adjoined operator of A (see e.g. [KV] for more details about pseudo- 
differential operators). The AKNS, Yajima-Oikawa and Melnikov hierarchies are some of  
the examples that appear amongst these constrained KP families. 

In this paper we consider the generalization of  this k-constrained KP hierarchy, which 

was introduced by Sidorenko and Strampp [SS], the n-vector k-constrained hierarchy. We 
assume that 

L k = (Lk)+ + ~ ~ q j O - l r j ,  (1.3) 
j= l  
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then one obtains the following integrable system: 

0rj OL Oqj (Lk)+qj,  (Lk)*+rj for 1 < j < n. 
Otk [(L~)+, L], 8tk Otk 

(1.4) 

For k ---- 1 this hierarchy contains the coupled vector non-linear Schr6dinger. Zhang and 

Cheng showed [ZC] that if one assumes that 

pj(t)  aj( t)  
q j ( t ) - -  and r j ( t ) - -  , (1.5) 

r ( t )  r ( t )  

then L, qj and rj, 1 < j < n satisfy the n-vector k-constrained hierarchy if and only if r (t), 

pj (t) and aj (t) satisfy the following set of  equations: 

Res:=0e-~(t'z) r (t)e~(t'Z)e °(t''z)r (t')e -~(t''z) = O, 
12 

Resz=0zke - o(,,z) r (t)e~(t'Z)e rift ,z) r (t )e -~(t ,z) : Z PJ (t)crj (t'), 

where 

j=l 
_ _ ~ t . ! _ t . t 

Res~=0z le °(t'z)r(t)e~(t'~)e ~l(, "~)pj(t )e ~{' ' ' )  = p j ( t ) r ( t  ), 
! ! ! 

Resz=oZ- l e-n(t'z)~j (t)e ~(t'zl e ~(t ,z) r ( t ) e  -~(t ,z) = r (t)~j (t'), 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

~-~ 8 z- i  
rift, z) = - ~(t, z) ---- tiZ i (1.10) 

i=10ti  i ' i=1 

and Resz=0 ~ i  aizi : a-1. 
In the case that n ---- 1, Loris and Willox [LW] show that one can deduce some additional 

bilinear identities, but now involving Or/Otk. It is unclear if this is possible for n > 1, but 

we will not need these extra bilinear identities. 

We will show in this paper that in fact L satisfies the n-vector k-constrained KP hierarchy, 

(1.3) and (1.4), if and only if the corresponding point W in Gr has a linear subspace W' C W 

of codimension n such that 

t kW ' C W. (1.11) 

We will prove this only in the polynomial case, i.e. polynomial r,pj and (rj, but Gerand 

Helminck and the author recently obtained the same result in the Segal-Wilson scattering 

[HV]. We use the representation theory of  the infinite-dimensional matrix group G L ~ ,  
developed by Kac and Peterson [KP1,KP2] (see also [KR]), to achieve this result. 

Notice that in this way we get a filtration of  hierarchies, i.e. the n-vector k-constrained 

hierarchy is a subsystem of the (n -t- 1)-vector k-constrained hierarchy, n ---- 0 being the 

k-reduced KP or Gelfand-Dickey hierarchies. 
Finally we want to mention that recently Aratyn et al. [ANP] have related these n-vector 

k-constrained KP hierarchies to: (1) the general rational reductions of  the KP hierarchy as 
considered by Krichever [K] and (2) matrix models that generalize the familiar ones with 

standard polynomial matrix potentials. 
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2. The semi-infinite wedge representation of the group GLoo and Sato's 
Grassmannian 

Consider the infinite complex matrix group 

GL~o = {A = ( a i j ) i , j & 7 + l / 2 l A  is invertible 

and all but a finite number of  aij - -  ~ij are 0 

and its Lie algebra 

gloo = {a = (ai j ) i , jey_+l /2]  all but a finite number o f  a i j  are 0} 

with bracket [a, b] = ab - ba. The Lie algebra gloo has a basis consisting of  matrices 

E i j ,  i, j E 7/+ 1, where E i j  is the matrix with a 1 on the (i, j ) t h  entry and zeros elsewhere. 

Let Coo = ~ j J - + U 2  Cvj be an infinite-dimensional complex vector space with fixed basis 

{ v j  } j e Z + l / 2 .  Both the group GLoo and its Lie algebra gloo act linearly on C °O via the usual 

formula: 

Eij(1)k) = ~jkl)i. 

The well-known semi-infinite wedge representation is constructed as follows [KP2] (see 

also [KR,KV]). The semi-infinite wedge space F = A1/200C00 is the vector space with 

a basis consisting of all semi-infinite monomials  of  the form 1)il A 13i2 A / ) i3  ' "  ', where 

il > i2 > i3 > - - -  and il+l = il - 1 fo r /  >> 0. We can now define representations R of 

GLoo and r of gloo on F by 

R(A)(vi l  A vi2 A I)i3 A ' '  ") : Avij A Avi2 A Avi3 A ' ' ' ,  

r(a)(vil A 1)i2 A Ui3 A ' '  ") : E v i I  A Ui2 A • • • A 1)ik_l A a u i k  A I)ik+l A • ' '  
(2.1) 

k 

These equations are related by the usual formula 

exp( r (a ) )  = R ( e x p a )  for a e gloo. 

In order to perform calculations later on, it is convenient to introduce a larger group 

GLoo = {A = ( a i j ) i , j e Z + l / 2 [ A  is invertible and all but a finite 

number of  aij - 6ij with i > j are O} 

and its Lie algebra 

gloo = {a = (ai j ) i , jeF_+l/2[  all but a finite number o f a i j  with i _> j are 0}. 

Both GLoo and gloo act on a completion C a of  the space Coo, where 

CC~= [ Z c j v j l c j = O f o r j > > O  1 .  
I j 

It is easy to see that the representations R and r extend to representations of  GLoo and gloo 
on the space F .  
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The representation r ofgloo and gloc can be described in terms of  wedging and contracting 

operators in F (see e.g. [KP2,KR]). Let vf be the linear functional on C °~ defined by 

(l)t, Vj) :=  V*(Vj) = ~ij and let C °~* = ~ j c 2 e + l / 2  C1); be the restricted dual of C °~, then 

for any w 6 C °~, we define a wedging operator ~p+(w) on F by 

1/.r+(II2)(Uil A Ui2 A '" ') = 13) A Uit A Ui2 " ' '  (2.2) 

Let w* E C °°*, we define a contracting operator 

1/f--(t0*)(Oil A 1)i2 A . . .) 

---- Z ( - - 1 ) s + l ( / / )  *, Uis)Vil A Ui2 A . . .  A /)i~--i A Vi,+l A - . .  (2.3) 
. ' , =  1 

For simplicity we write 

1 ~p+=~p+(v_ j ) ,  ~ f  = ~p- (vj*) f o r j  c Y + 7 .  (2.4) 

These operators satisfy the following relations (i, j E 77 + ½, k, # = + ,  - ) :  

# q  + q #  = _,,8, _j, 

hence they generate a Clifford algebra, which we denote by C& 

Introduce the following elements of  F (m c 7/): 

Ira) = urn_l~ 2 A I)m_3/2 A V m 5/2 A . - .  

It is clear that F is an irreducible Cg-module generated by the vacuum 10) such that 

~ P ; 1 0 ) = 0  for j  > 0. 

It is straightforward that the representation r is given by the following formula: 

r(Ei j  ) = ~+-i~;" (2.5) 

Define the charge decomposition 

F = @ F (m) (2.6) 

mE~ 

by letting 

charge(10)) -- 0 and cha rge0p? )  ---- -4-1. (2.7) 

It is clear that the charge decomposit ion is invariant with respect to r ( g l ~ )  (and hence with 

respect to R(GLe¢)) .  Moreover, it is easy to see that each F (m) is irreducible with respect 

to gloo (and GLoo). Note that Im) is its highest weight vector, i.e. 

r (Ei j ) lm)  =- 0 fo r /  < j ,  

r(Ei i ) lm)  = 0 (resp. = Im)) i f /  > m (resp. i f i  < m). 
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Let w e F,  we define the Annihilator space Ann(w) of  w as follows: 

Ann(w) = {v e C ~ [ v / x  w = 0}. (2.8) 

Notice that Ann(w) ~ 0, since vj e Ann(w) for j << 0. This Annihilator space for perfect 

(semi-infinite) wedges w e F (m) is related to the GLoo-orbit 

Om = R ( G L ~ ) I m )  C F (m) 

of the highest weight vector Ira) as follows. Let A = (Aij)i,je2v 6 G L ~ ,  denote by 

Aj  = Y~ieY_ A i jv i  then by (2.8) 

rm = R(A)Im)  = Am-l~2 A Am_3~ 2 A Am-5~2 A . . .  (2.9) 

with A _ j  = v_j  for j >> 0. Notice that since rm is a perfect (semi-infinite) wedge 

Ann(tin) = Z CAj C C °°. 
j<m 

By identifying vi = t - i -1 /2  fori  e Y+½, wecan write Aj = Aj (t) = ~ i J _ + l / 2  Aij  t - i - l~2  

as a Laurent polynomial in t. In this way we can identify Ann(tin) with a subspace W~= = 

~ j < m  CAj  (t) of the space H of  all Laurent polynomials. Notice that this space H differs 

from the one described in Section 1. So from now on let Gr consist of all linear subspaces 

of  H which contain 

oo 

Hj :=  Z Cti 
i=--j 

for j >> 0 and let Gr = Ume•  Grin (disjoint union) with 

Grm = {W E Grl Hj C W and dim W / H j  = m - j for j << 0}, 

then we can construct a cannonical map 

¢ " Om -'-> Grin, ¢(rm) = Wr,, :=  Z C A i ( t ) .  
i<m 

It is clear that ¢ (Im)) = Hm and that ¢ is surjective with fibers C ×. This construction is due 
to Sato [S], we call Gr the polynomial Grassmannian. From now on we will call a perfect 

wedge also a r-function (note that r = 0 is also a r-function). 

3. The boson-fermion correspondence 

Introduce the fermionic fields (z e C ×): 

dee 

ke2[+l/2 
(3.1) 
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Next we introduce bosonic fields: 

c~[z] = Z ~kZ -k-1 d e f  
= :  ~0+[z]~O-[z] :, (3.2) 

kE2~ 

where : : stands for the normal ordered product defined in the usual way (X, lz = + or - ) :  

z~p/u i f /  > k, 
• l P ~ 0 / u : =  - ~ t  u ~  i f /  < k .  

One checks (using e.g. Wick's formula) that the operators Otk satisfy the commutation 

relations of the associative oscillator algebra, one has 

[Otk,Otl]=k6k,-I and C tk lm)=0  i f k > 0 .  (3.3) 

In order to express the fermionic fields ~p+ (z) in terms of  the bosonic operators at, we need 

some additional operator Q. This operator is uniquely defined as follows: 

Q(vij/x vi2 A . . . )  = (vil+l A Vi2+! A . . . ) .  (3.4) 

So 

QI0/= tl/, = L,Q 

and Q satisfies the following commutation relations with the u 's :  

[Otk, Q] = SkoQ. 

In this paper the operator Q-k will play an important role. If  win-l~2 A tom-3~ 2 A . .  • is a 

perfect wedge then 

Q-k(wm_l /2  A tom_3~ 2 A . . . )  -~- AkWm_l/2 A AkWm-3/2 A . . - ,  ( 3 . 5 )  

where A = ~ j ~ + 1 / 2  Ej,j+1. 

Theorem 3.1. [DJKM1,JM] 

1 - k  1 - k  

Proof See [TV]. 

The operators on the right-hand side of  (3.6) are called vertex operators. They made their 

first appearance in string theory (cf. [FK]). 
We now describe the boson-fermion correspondence. Let C[t] be the space of  polyno- 

mials in indeterminates t = (tl, t2, t3 . . . .  ). Let B = C[q, q - l  t] = C[t] ~ c  C[q, q - l ]  be 
the tensor product of  algebras. Then the boson-fermion correspondence is the vector space 

isomorphism 

~:F- -~  B, 
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given by 

o (°t-ml "" "~-ms Ik)) = ml " "  mstml "'" trn~q k. 

Notice that the power of q is the value of the charge. The transported action of the operators 

Otm and Q looks as follows: 

a Q a  -1 = q, aOlrna -1 

Hence 

- m t m  
0 

= Otm 

q oq 

i f m  < 0 ,  

i f m  > 0 ,  

i f m  = 0. 

(3.7) 

¢r~+[Z]a -1 = q±lz+qO/Oqe+~(t,Z)eq:O(t,z) (3.8) 

with 0(t, z) and ~(t, z) given by (1.10). 

4. Identification of the bilinear identities 

From now on we assume that r 6 F (m), hence that r is the inverse image under a .  

Using the boson-fermion correspondence of Section 3, we rewrite the bilinear identities 
(1.6)-(1.9), of  Zhang and Cheng now as equations in F ® F. Notice first the following 

equality of  operators on F ® F: 

Resz=0~z+[z] ® 7z-tz] = ~ l~r/ @ l/r_- i. 
i677+1/2 

Now (1.6)-(1.9) turn into the following equations: 

~ /+r  ® ~p_-i r = 0, (4.1) 
iE71+1/2 

n 
y ~  ~ / z"  @ ~ t - i a - k ' c  = ~-~pj  @tTj, (4.2) 

iE2~+1/2 j=l  

y ~  ~ + r  ® ~ i P j  = Pj @ r, (4.3) 
i677+1/2 

~t+aj @ ~t-- i a - k r  = Q - k r  ® o'j. (4.4) 
ic~'+1/2 

Here Q - i t  6 F (m-k), pj c F (m+l) and aj E F (m-k- l )  for all 1 < j < n. Eq. (4.1) is 

called the KP hierarchy in the fermionic picture, it characterizes the GLoo-orbit  Om, i.e.: 

Proposition 4.1. [KP2] A non-zero element r o f  F (m) lies in Om if  and only i f  r satisfies 
Eq. (4.1). 
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If r ~ Om, then we can write r as a perfect wedge 

Z" = Wm-l /2  A tom_3/2 A Wm-5/2 A Win-7~2 A . . . ,  (4.5) 

such that w - /  = v - / f o r  l >> 0. The corresponding point Wr 6 Grin is then given by 

W r = (tOm_l~2, Wm_3/2, tom_5~2, 11)m_7/2,...). (4.6) 

The geometrical interpretation of  (4.3)-(4.4) is given by the following proposition. 

Proposit ion 4.2. Let r c Om, /9 E F (re+l) anda ~ F (m-l),  then 
(1) r and p satisfy 

Z ~ + r ® ~ - i  p = p ® T  
ic~'+1/2 

if and only if  p E Om+l and W~ C Wp, 
(2) T and ~ satisfy 

Z Oi+a®l[fZir /--=Z'®~7 
iczZ+l/2 

if  and only if a 6 0 m - 1  and Wcr C Wr. 

(4.7) 

(4.8) 

Proof. Without loss of  generality we may assume (since the operator Y~i ~t~ ® ~--i com- 

mutes with the action of R ( G L ~ )  ® R(GL~) )  that r = Im). Then (4.7) is equivalent 

to 

Z vi A[m)  ® ~p/-p = p ® Im). 
i>m 

Since all elements vi A[m) ,  for i > m, are linearly independent, we deduce that ~p~p = 

Xilm) and that p ~ (vi A Im)li > m). Hence p = w AIm)  for some w E C ~ and thus 

p E Om+l and Wr C Wp. 
The converse, since Wr C Wp, p = w A [m) for some w c C ~ .  Then 

Z ~ P + r ® ~ P ~ i ( w A r ) = ( w A r ) ® r - - ( l ® ~ + ( w ) ) (  Y ~  lPi+'r®~Eir) 
iE#+l/2 \i62~+1/2 

= ( w A r )  Q r  

For r = Im), (4.8) is equivalent to 

y~(v i  A~r) ® 7z/- Ira) = Ira) ® a .  
i<m 

Since the elements 7z/-Im) for i < m are all l inearly independent, we conclude that vi A a = 
: ~.-~m-1/2 ~,i[m) and that a c (aP/-Im)]i < m). Hence a ~....,i=-~ ailPi-lm). Since a ~ F <m-l), 

ai = 0 for all i < - N  << 0. We now calculate Ann(a ) .  Clearly A n n ( a )  C (vi li < m) = 
~-~m-1/2 

Ann(Im)),  so let v = Y~d<m(--)ibivi, then 2- , i=-s+1/2  aioi = O. Hence, i f a  -~ 0, we only 
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find one restriction for the collection of  bi 's, from which we conclude that t7 is a perfect 

wedge. The converse of  this statement follows immediately by writing r = w/x  or. [] 

We next prove the following. 

Proposit ion 4.3. Let r E O m, pj E (-~(m+l) and trj ~ O(m-k-l), 1 < j < n, be related by 

Wr C Wpj, Waj C AkWr, (4.9) 

then r satisfies Eq. (4.2) if and only if there exists a subspace W' C Wr of codimension n 
such that A k W f C Wr. 

Proof. Notice first that AkWr ---- WQ_~ z . We assume that n is minimal, so that all aj and 

pj are non-zero perfect wedges, and that r is of  the form (4.5). Then 

Z lp?15 ~ ~ i  a - k r  
ie2~+1/2 

oo 

-~- ~ - ~ ( - - ) l  A k W m _ l _ l / 2  A r ~ A k W m - 1 / 2  A . . .  

/=0 

A A k W m - l + l / 2  A A k w m _ l _ 3 / 2  A • • • 
n 

= ~ - ~ u j  A r ~ t Y j ,  

j = l  

where pj = uj A r .  Since all v e c t o r s  A k w m _ l / 2  A • • • A A k t O m _ l + l / 2  A A k W m - l - 3 / 2  A • • • 

are linearly independent, we deduce that 

A k W m - l - 1 / 2  A Ul A U2 A " . . A Un A Z" = 0  

for all l = 0, 1, 2 . . . .  Since we have assumed that n is minimal, also all uj's are linearly 

independent and moreover Ul A u2 A • • • A Un A r ¢ 0, hence 

A k t O m - l - l / 2  E (Ul,  U2 . . . .  , Un, W m - l / 2 ,  W m - 3 / 2  . . . .  ), 

so there exists a subspace W' C Wr of  codimension n such that A ~ W r C Wr. 

For the converse, choose a basis win_ n_ 1/2, W m - n - 3 / 2  . . . .  of  W' and extend it to a basis 

tOm-l~2,  W m - 3 / 2  . . . . .  W m - n + l / 2 ,  W m - n - l / 2 ,  W m - n - 3 / 2  . . . .  of  Wr, then 

y ~  ~p+r ® ap- i a - k r  
ic7/+1/2 

oo 

= y~(--)lAICwm-l_l/2 A r @ Akwm-1/2 A . . .  
/=0 

A A k t O m _ l + l / 2  A A k w m _ l _ 3 / 2  A . . .  

n - I  

= ~ - ~ ( - - ) l A k W m _ l _ l / 2  A r @ A k W m - 1 / 2  A . ' '  

/=0 

A A k t O m _ l + l / 2  A Ak l lOm- l_3 /2  A . .  • 
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So choose 

pj = Aktom_j+l/2  A r, 

crj = AkWm_l/2 A • • • A AktOm_j+3/2 A AkWm_j_ l /2  A . .  •, 

then W~, A k W~, W~j and Wpj clearly satisfy Eq. (4.9). E3 

From this proposition we deduce the main theorem of this paper. 

Theorem 4.4. The pseudo-differential operator 

L = 0 + u l 0  - l  + u 2 0  -2 + . - -  

satisfies the n-vector k-constrained KP hierarchy i f  and only i f  the corresponding point 

W E Grin has a subspace W I ofcodimension n such that t k W  ~ C W. 

As an easy consquence we obtain 

Corol lary  4.5. Let r be a polynomial r-function o f  the n-vector k-constrained KP hierar- 

chy, then Or~ark = Y]~-l rt where every rt satisfies the KP hierarchy, i.e. Eq. (4.1). 

Proof  Follows immediately by taking the same basis for Wr as in the converse part of  the 

proof of  Proposition 4.3. E3 

If n = 1, one can prove [V] that every polynomial r-function r,  for which Or/Otk is 

again r-function, is a solution of  the k-constrained KP hierarchy. 

Notice that we have constructed a natural filtration on the space Grm, which is determined 

by the n-vector k-constrained KP hierarchy for n = 0, 1,2 . . . .  Let 

Gr~ n'k) = {W E Grm[ there exists a subspace W' C W 
(4.10) 

of  codimension n such that t k W' C W}, 

then 

Gr(m 0'k) C Gr(m l'k) C ' - -  C Gr(m n'k) C Gr~ +l'k) C ' "  (4.11) 

It is obvious that every point W ~ Grin (in this polynomial case) is contained in Gr~ 'k) for 

n >> 0, in other words 

G r m =  U Gr(mn'k)" (4.12) 
nEZ+ 

So for every r-function of  the KP hierarchy tkere exists a non-negative integer n such that 
for all m > n, r is also a r-function of  the m-vector k-constrained KP hierarchy. In other 

words, for every L, corresponding to a polynomial r-function, one can find a non-negative 

integer n such that L satisfies (1.3). 
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5. Polynomial solutions of the n-vector k-constrained KP hierarchy 

We will now state an immediate consequence of  the boson-fermion correspondence, viz., 

we calculate the image under tr of  a perfect wedge of  the form (2.9). One finds the following 

result. 

Proposition 5.1. Let Si be the elementary Schur functions, defined by exp Ei°~__l tiz i = 
oo 

~i~27 Si(t) zi (Si = O for i < O) and let rrn E On be of the form (2.9), i.e., 

rm =- Am-l~2 A Am-3~2 A Am-5/2/x  . . .  

with Aj = ~ie~_+l/2Aijl)i and A-k = v-k for all k > N >> 0. Set A = 

(Aij)ic~_+l/2,m>jEZ+l/2 and let A = }-:~ieZ=l/2 Ei,i+l E gl~. Then 

°'(Z'm)=det( E ~ Sl- iAl j  Eij qm. (5.1) 
\ i , j=-n+l/2 l=-N+l/2 

Proof The proof of  this proposition is the same as the proof of  Theorem 6.1 of  [KR]. One 

computes 

tr exp E tiAi ~5 m 
\ \i=1 / 

and takes the coefficient of  qm. One thus obtains (see also [DJKM 1,M]): 

tT(rrn) = det exp ti Ai  A qm, (5.2) 
\ \  \i=1 <m 

where B<m denotes the submatrix of  B where one only takes the rows j E 7 / +  1 with 

j < m. Notice that Y~i tiAi E gl~ and exp(Y~ 4 ti Ai )  E GL~.  Here we calculate the 

determinant of  an infinite matrix. However, there is no problem since the matrix is of  the 

form (Bij)m>i,j6~_+l/2 with all but a finite number of  Bij -- 8ij with i > j are zero. 

It is clear that one can subtract ~-,i<-N Aijvi from every Aj, with j > - N ,  in rm, this 
will not change rm. Then the new A is of  the form 

A =  E Z i j E i j +  E Eii, 
-N<i,-N<j<m i<-N 

it is then straightforward, using the elementary Schur functions, to calculate the right-hand 
side of  (5.2). One finds formula (5.1). [] 

We wilt use this proposition to obtain all polynomial solutions of  the n-vector k- 
constrained KP hierarchy. Notice that our approach is different from the one in [ZC]. 
Instead of  taking "rm of the form (2.9), we may choose another basis of  W~,, and construct 
the corresponding perfect wedge, it is clear that this will be a multiple of  rm. We can choose 
this basis in such a way 
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Wrm : (Am-l~2, Am-3~2, Am-5~2 . . . . .  A-N+U2,  V-N-U2,  V-N-3~2 . . . .  ) 

such  that  Aj -D- ~--~4=-N+1/2 Aij I)i and  that,  excep t  for  at mos t  n vec tors  Aj,  all Aj sat isfy 

the fo l lowing  cond i t ion :  

AkAj  { = At for  some  - N + t < l < m - 1, or  

c (V-N-I~2, V-N-3~2 . . . .  ). 

O f  course  every  Aj is bounded ,  i.e. there  exis ts  an in tege r  M such  that  all Aj ~ M - 1 / 2  /-..~i=-N + l /2 
Aij 1)i. Now m a k i n g  a shif t  in the  index  and  p e r m u t i n g  the c o l u m n s  we ob ta in  the  fo l lowing  

result .  

Proposition 5.2. Let M , N  c Y such that M > N > O and let ej, 1 ~ j <_ M, be 

an orthonormal basis o f  C M. Let R be the M × M-matrix R : y~Mlk  Ei,i+k and let 

A = (Aij)I<_i<_M,I<_j<N be an M × N-matrix of  rank N. Denote by Aj = ~-~M 1 Aijei. I f  

all Aj  satisfy the condition that RAj  5~ Ai for  all 1 < i < j and if  all A j, except for  at 

most n, satisfy the condition that 

then 

Aj+I  or  
RAj  = O, 

r = det  Sl - iAl j  Eij (5.3) 
\ i , j=l  /=1 

is a r-function o f  the n-vector k-constrained KP hierarchy. All polynomial solutions can be 

obtained in this way. 
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