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A method to construct differential calculi on quantized universal enveloping alge- 
bras is discussed. These differential calculi are obtained by quantizing calculi on 
“classical” enveloping algebras provided with appropriate co-Poisson structures. 
The procedure is demonstrated by applying it to the standard quantizations of the 
Heisenberg algebra and the algebra gl(2). 0 1996 American Institute of Physics. 
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I. INTRODUCTION 

Noncommutative differential geometry, currently a field of active research, deals with differ- 
ential calculus on algebras which are generally noncommutative. There are a few basic principles 
to construct such a noncommutative theory. One can replace the commutative function algebra on 
a space by some noncommutative algebra and try to generalize the basic concepts of the traditional 
case to this more abstract situation. Then there is the approach, already standard in algebraic 
geometry, to encode the structure of the underlying space into the function algebra defined on the 
space, which in turn is deformed. This is the approach customary in quantum group theory. These 
ideas led Connes (see, e.g., Ref. 1) and his collaborators to create “noncommutative geometry.” 
Here, the commutative function algebra is replaced by some noncommutative C*-algebra. 

In quantum group theory it was Woronowicz,* who first developed the theory of differential 
calculus on quantum groups, giving a very interesting example of noncommutative differential 
geometry. This rather abstract theory has been reformulated in more concrete terms by Wess and 
Zumino.3 A substantial number of very interesting papers, proposing other approaches, elucidating 
various aspects, studying concrete examples or dealing with applications have been written since. 
See, e.g., Refs. 4-7. 

In this paper we discuss a method to construct a differential calculus on a quantized universal 
enveloping algebra U,(g) of a Lie algebra 8. We follow the idea of Faddeev and his school’ that 
all objects of a quantized theory should appear naturally as a result of quantization of appropriate 
Poisson structures. Accordingly, our starting point should be a differential calculus on U(g). These 
differential calculi are provided and studied in Ref. 9. Moreover, they turn out to be Hopf algebras 
and actually such a differential calculus turns out to be the universal enveloping algebra of a color 
Lie superalgebra, see Ref. 10. Consequently, our starting point is this enveloping algebra U(L) 
equipped with an appropriate co-Poisson bracket 8. Its restriction to L, notation 8, , defines a color 
Lie bisuperalgebra structure which may be obtained by extending the cocommutator 8, of g. 

The procedure is illustrated by two examples. We apply it to the standard quantizations of the 
enveloping algebra of the Heisenberg algebra and the algebra g/(2). 

Matrix quantum groups can be embedded as Hopf algebra in a quantization of the enveloping 
algebra of the dual Lie algebra, see’ Ref. 11. This indicates that our construction can be used to 
obtain differential calculi on quantum groups. Work on this is in progress; we will report on this 
in the near future. 

4166 J. Math. 
0022-2488/96/37(8)/4166/l O/$1 0.00 

Phys. 37 (8), August 1996 0 1996 American Institute of Physics  Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.89.45.231

On: Thu, 08 Dec 2016 08:46:44



van den Hijligenberg, Martini, and Post: Quantization of differential calculi 4167 

II. THE QUANTIZATION METHOD 

Let g be a finite dimensional Lie algebra over the field of complex numbers C. We present a 
procedure to construct differential calculi on quantized universal enveloping algebras of g by 
quantizing differential calculi on the classical universal enveloping algebra U(g). This method 
connects the following two concepts related to U(g): quantization and differential calculus. In the 
classical limit the inter-relation between these concepts is expressed by a compatibility condition 
between the cocommutator that determines the Lie bialgebra structure on g and the differential d. 
In order to explain the origin of this compatibility condition we shortly recall some notions related 
to differential calculi and quantization. 

A quantization of the Lie algebra g is a Hopf algebra deformation U,,(g) of U(g). Usually, 
U,(g) is called a quantized universal enveloping algebra. The map 6 defined by 

S(x) = A,(x) - AIp(x) 
h 

mod h &U(g)-U(g)@U(g) (2.1) 

is a co-Poisson bracket on U(g). In this formula Ah represents the comultiplication of Uh(g) and 
Ai” the opposite comultiplication given by Aip = (T 0 A,, , where o is the ordinary flip operator on 
the tensor product. The restriction of 6 to g, which will be denoted by 8, , defines a Lie bialgebra 
(g,a,). This means that 8s :gHg@g is a 1-cocycle and 8: :g*++g* 8 g* is a Lie bracket on g*. The 
Lie bialgebra (g,S,) is called the classical limit of the quantization U,(g) and 8s is called the 
cocommutator. For more details on this we refer to Ref. 12. 

A differential Hopf algebra (see, e.g., Ref. 13) is an N-graded Hopf algebra fi=Z,“=O~p 
equipped with a differential d. This operator d is a graded derivation of degree fl with the 
property d*=O. Furthermore it satisfies (d@ id+ ~@d)oA = Aod and pd=O, where A denotes the 
comultiplication and E the counit of Sz. The linear map ~:%+a has degree zero and satisfies 
T(U) = ( - l)Pa for all a E op. A differential calculus on U(g) is a differential Hopf algebra R 
with the additional properties fi’=U(g) and s1 is generated by fi’Ud(fi’). 

In Ref. 10 we showed that a differential calculus on U(g) of Poincare-Birkhoff-Witt-type can 
be described as the universal enveloping algebra of a color Lie superalgebra L which is a natural 
extension of the Lie algebra g. For the sake of clarity, we recall the definition of color Lie 
superalgebra (see Ref. 14). Let G be an abelian semigroup and cy a 2-cocycle on G with values in 
C*. An (cu)-color Lie superalgebra is a G-graded algebra L with product [,] satisfying 

[x,y]= - a(p,q)[y,x] and ~(p,r)[[n,yl,zl+ a(q,p)[[y,zl,xl+ 4r,q)[[z,xl,~l=O 

for all x E LP,y E Lq,z EL’. As in the case of ordinary Lie algebras, one can define the universal 
enveloping algebra of a color Lie superalgebra and a corresponding Hopf algebraic structure on it. 
The structure of the above mentioned color Lie superalgebra L, which represents the differential 
calculus on U(g), is as follows. L is the N-graded algebra L= cBpE~LP, where 
LO=g=(x’,x* ,..., xy, L’=(2,i2 ,..,?‘), and Lp=O for all ~22. The corresponding 2-cocycle cz 
is given by 

a:NxN-+C* 4p,q) = (- 1 Jpq. 

The Lie bracket of L is such that its restriction to Lo is simply the Lie bracket of g and the linear 
map d:LwL given by d(xi)=ii and d(2i) =0 for all 1 < icn =dim(g) is a graded derivation of 
degree + 1 on L. So the bracket of L is of the following form: 

[Xi ,Xj]=CfjXk; [Xi ,~j]=akj;k; [ii ,ij]=O. 
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We use the notation ii to emphasize the fact that these elements have been formally introduced to 
represent the differentials of the elements xi. The differential d on sZ=U(L) is defined as the 
unique graded derivation extending the operator d on L. 

We come to the introduction of a differential calculus on U,,(g). According to the foregoing, 
a differential calculus on Uh(~) is a differential Hopf algebra CXh, with differential denoted by d, , 
which is generated by fi:U dh(R$, where fli = U,(g). On the other hand, as analog to the 
quantization procedure, it is natural that, by putting h equal to zero, Q, reduces to U(L), where L 
is a color Lie superalgebra extension of g of the form described above, and d, reduces to the 
differential d of U(L). This implies that (a, ,dh) is a differential Hopf algebra deformation of 
(U(L),d). We demand this deformation to be homogeneous of degree zero such that the 
N-grading of U(L) induces the N-grading on Uh(L). In particular fi, = Uh(L) is a Hopf algebra 
deformation of U(L), or in other words a quantization of the color Lie superalgebra L. The 
classical limit of this quantization is a color Lie bisuperalgebra (L, &) extending the Lie bialgebra 
(g,S,), which is the classical limit of Uh(g). This gives rise to the following commutative diagram: 

Uhb) --+ U/I(L) 
I I 

k9 &) -+ (L&) 
The vertical arrows denote the classical limit and the horizontal ones denote the canonical em- 
beddings of (N-graded) Hopf algebras and color Lie bisuperalgebras. 

We denote the comultiplication of Uh(L) by Ai,. From the definition of a differential Hopf 
algebra we know that Ahodh = (dh)eoAh with (dh)@ = d,@ id + r@dh . The co-Poisson bracket 
S :U(L)* U(L) @ U(L) is defined as in the classical case described in formula (2.1), with the 
exception that, in the definition of Ai” the operator CT denotes the graded flip operator, which is 
defined by 

a(x@y)=( - l)pqy@x for all x E 17~(L)~,y E Uh(L)q. 

One can easily verify that d, has the property (+O(dh)@ = (dJ@Oc. From this it follows that 

Ah-Aip A,,-AiP 
- Odh=(d,,)@o h 

h 

and for h equal to zero this reduces to 

so the differential operator should commute with the co-Poisson bracket 6 on U(L). The restric- 
tion to L yields the following condition for the cocommutator 8, : 

(2.2) 

To understand the meaning of this condition, let us assume we have a color Lie superalgebra 
L equipped with an operator d representing a differential calculus on U(g). Any Lie bialgebra 
@,a,) gives rise to a unique extension 6, :L*L@ L satisfying condition (2.2). We call the differ- 
ential calculus on U(g) and the Lie bialgebra (g,Q compatible if and only if (L, SL) is a color Lie 
bisuperalgebra. From the preceding reasoning we learn that this is a necessary condition in order 
to obtain a differential calculus on Uh(g) starting from the differential calculus on U(g) given by 
L. The examples we have studied so far seem to indicate that the condition is also sufficient. 

Thus from the discussion above we can subtract the following procedure to construct a 
differential calculus on a quantized universal enveloping algebra. 
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(1) Construct a differential calculus on U(g). 
(2) Compute a Lie bialgebra (g,S,) which is compatible with the constructed differential calculus. 
(3) Quantize (&a,), i.e., construct a quantized universal enveloping algebra U,(g) with classical 

limit (g,S,). 
(4) Quantize (L,S,) where 6, is the unique extension of 8, given by formula (2.2). 

Note that in the last step one can fruitfully use that Uh(L) is an extension of Uh(g) and that the 
differential dh should respect the defining relations of U,(L) . We will illustrate this in more detail 
in the examples. 

Finally, we mention that there is a nice algebraic interpretation for the compatibility condition 
(2.2). The linear operator d on L is a graded derivation, this means that 

d([x,y])=[d(x),y)l+(- l)P[x,d(y)] for x~L~,yeL, 

or equivalently [,>da=df,], h w ere [,I denotes the Lie bracket of L. Analogously, the linear 
operator d * is a graded derivation on L * with Lie bracket St if it satisfies 82 0 (d *) 8 = d * 0 62 . 
But this is equivalent to Eq. (2.2). So we can express the compatibility condition appropriately by 
saying that d should be a color Lie bisuperalgebra derivation on (L, 8,). 

III. THE HEISENBERG ALGEBRA 

As first example, we will consider the Heisenberg algebra H. A basis of H is given by {p ,q ,c} 
and the Lie product is given by 

[p,ql=c; [p,c]=O; [q,cl=O. 

A. The differential calculus on U(H) 

In Ref. 9 we constructed all differential calculi sZ=E~=O@’ of Poincare-Birkhoff-Witt-type 
on H. Here, R’=U(H) and @ denotes the space of p-forms; in particular fl’=d(fl”). As we 
described in Sec. II, fl is isomorphic to U(L), where L is a color Lie superalgebra such that 
Lo = H and L’ = A. In particular, the differential calculus is completely determined by the map 
p:H-gZ(&, which is in fact the commutator in L of elements from Lo and L,. (L, is a repre- 
sentation of Lo using the commutator). As basis of fi we will use G,{,;}, where d(x) denotes the 
element i. It turns out that the simplest and most elegant solution is described by 

P(P)(4) = [p,Gl= it P(d(P)=cq,d=-~c 

and all others equal to zero. 
Summarizing we start with the quotient of the free N-graded associative algebra on the 

alphabet {p,q,c,@,$,2}, where (p,q,c} are homogeneous of degree 0 and {1;,;,;} are homoge- 
neous of degree 1, divided by the ideal I which is generated by the following homogeneous 
relations: 

pq-qp=c; pc-cp=o; qc-cq=o 

cfi=jk; clj=cjc; ci=& 

jq= -(@; fic^= -@; g=-;(i 

fi@=O; &=O; ;;c(). 
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The differential d is the unique graded derivation of degree + 1 satisfying d(p)=j, d(q)=i, 
d(c)=; and d(fi)=O, d(i)=O, d(;)=O. 

B. The compatible cocommutator on H 

Next we have to construct a Lie bialgebra structure on H, which is compatible with d. This is 
a matter of straight computation, which we performed using computer algebra. There is a unique 
solution, given by 

6(c)=O; S(p)=pAc; S(q)=qAc; 

and consequently the continuation to a= d(H), which is prescribed by S(i) = (d@ id 
+ T @  d)o S(X), yields 

S(c^)=O; &?)=~Ac+pK; $~)=~Ac+q/v. 

Note that the restriction of S to H is a cocommutator of coboundary type with corresponding 
R-matrix 

R=pAq. 

One can easily verify that S itself is not of coboundary type. 

(3.1) 

C. Quantization of (H,S) 

In order to quantize the situation above, we note that the R-matrix (3.1) is the standard one. 
This suggests that we can take for Uh(H) the standard quantization 

Ah(p)=p@eehc+l@p; Ah(q)=q@l+e-hc@q; Ah(c)=c@l+l@c 

and the only relation in U,(H) that differs from the relations in U(H) is 

sinh( hc) 
[p141= sinh(h)’ 

The unit and counit are unchanged. The antipode is rather easy to compute, from Ref. 12 we know 
that it exists. For example to calculate S,(p), we consider 

O=phO(Sh@id)OAh(p)=Sh(p)ehc+p. 

Hence we find 

Sh(p) = -peThc 

and similarly 

Sh(q)= -qehc; Sh(c)= -c. 

Although U,(H) is clearly not cocommutative, one can easily verify that the antipode still satisfies 
S;= Id. 

D. Quantization of (L,6) 

From here on we will use 2 to denote the element dh(x). Due to AhOdh= (dh)@oAh, we have 
A,(?)=?@ 1+ l@c* and 
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It remains to determine the new relations in ah ; since Ah(c) and Ah(Z) are unchanged it is natural 
to require that only the relations [p,;], [I;,q], and [c,i] will change. 

So, let us assume that [p,G] =(~t and [@,q] =cQ,. From [p,q] =[sinh(hc)]/[sinh(h)] it follows 
that 

cosh( hc) 
~~‘~~=CP,~I’[~,qI=dh([P,qI)=‘~ sinh(h) 1 (3.2) 

Further we have 

so. 

Ah(~,)=~l@ehc-hhe-hC@ 
sinh( hc) 
sinh( h) 

+e-hCC3al. 

In the same way we find for cy2 

A&I’2)=cTf&?hc+ 
sinh( hc) 
sinh( h) 

@hc^e-hcte-hc@ff2. 

Equations (3.2), (3.3), and (3.4) suggest to take 

Xiehc+ pieehC 
Lyi= 

sinh( h) 
h;; (i= 1,2). 

Substitution yields a unique solution 

e-he ehc n ,. 
CP,qI=‘c 2 sinh(h) ’ 

,. I) 
[P,qI=‘c 2 sinh(h). 

(3.3) 

(3.4) 

(3.5) 

This also dictates the relation between b and { by differentiation of Eq. (3.5) 

Finally, from Sh”dh=dhoSh it follows that the extension of the antipode is given by 

&(fi)=-($-hpi)ePhC; &(4)=-(++h$;)ehc; sh(;)=-2. 

It still satisfies 5: = Id. In order to compute the action of Sh on an arbitrary element of ah, one 
can use linearity and the antialgebra-morphism property 

L!?,(ab)=(-l)‘SS,(b)s,(a); (aEflR’,bE.nS). 

E. Summary of results for H 

For clearness’ sake, we summarize the results of this section in the following theorem. 
Theorem 1: The standard quantization of the Heisenberg algebra H, given by 
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sinh(hc) 
b741= sinh( b,cl=O; [q,cl=O 

and 

admits a differential calculus d, . If we denote dh(x) by .? for all elements x in H, then ? is 
primitive and 

The commutation between functions and forms is described by 

and [x,j] =0 for all other choices of elements x and y from {p,q,c}. Finally, the commutation of 
forms is determined by the relation ij = -ji for all x,y E H. 

Finally, we remark that by an obvious and small modification the same result is obtained for 
the general 2n+l-dimensional Heisenberg algebra with basis {Pi,qi,C}l~i~n and Lie product 
given by 

[Pi ,qj]= +; [pi ,C]=O; [qi ,c]=o; [Pi ,Pjlzo; [Si ,Sj]=O. 

IV. THE ALGEBRA g/(2) 

The next example that we consider is g/(2). We will denote 

E+=E,,; E-=E,,; H+=E,,; H-=&. 

Hence in the enveloping algebra U(g1(2)), we have the following relations: 

[H+ ,H-]=O; [H, ,E+]= kE+ ; [H-,E,]=TE,; [E+,E-]=H+-H-. 

A. The differential calculus on U(g/(2)) 

On U(gf(2)) we can construct differential calculi of Poincare-Birkhoff-Witt type; as said in 
the previous sections, these calculi are completely determined by an appropriate representation 
p:g1(2)+gc2. For gl(n) there is a natural solution, namely, 

where xy denotes the product of x and y as n X n matrices. We will use this p in the sequel. Hence 
we can determine the differential calculus a. Apart from the relations above, it satisfies the 
following relations (~?=d(x); x E gZ(2)): 

[He ,k]=& ; [H, ,&]=O; [H, &,I=& ; [H, ,&]=O 
[E, ,k]=O; [E, ,&]=l;r, ; [E, ,fi,]=O; [Et ,ri,]=k,. 
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Note the similar roles that H, and H- play; hence the basis chosen (instead of H, - H- and 
H+ + H-) is very natural. One can note that the representatio? p is the dire!t su,m of two 
24mensional gl(2)-representations V, and V,, where V1=(E+ ,H-) and V2=(E- ,H+). 

B. The compatible cocommutator on g/(2) 

Again compatible Lie bialgebra structures can be computed. There is a unique solution if we 
demand the solution to be homogeneous of degree zero with respect to the natural grading on 
g1(2) defined by IH,j=O, jE,I=kl. This solution is given by 

S(H,)=O; 6(E+) = E+AH- ; 6(E-) =H+AE- 

which extends to L as 

S(ii,)=O; S&)=&AH-+E,/k; S(i-)=Ei+AE-+H+Ai-. 

As in the case of the Heisenberg algebra, aitself is not of coboundary type. Its restriction to gl(2) 
is coboundary, the corresponding R-matrix is given by R = &E,AE- + H+AH-). 

C. Quantization of (g/(2),6) 

The way of quantizing is similar as in the case of the Heisenberg algebra. Again bIH,)=O 
suggests to take 

Similarly &E+) = E+AH- and S(E-) =H+AE- suggest 

L\h(E:)=E+@ehH-+l@E+; hh(E-)=E-@l+ehH+@E-. 

From this it follows that the antipode is given by 

Sh(H,)= -H, ; sh(E+)= -E+emhH-; sh(E-)= -eehH+E-. 

The commutation relation between E, and E- has to be changed, all others in gl(2) remain the 
same 

ehf-f+ _ ehH- 
CE+ ,‘-I= 2sinh(h) . 

D. Quantlzation of (LJ) 

Extending Ah to z) is straightforward, the only complication is that [Ht ,h,] = fi, . Due 
to this, we have 

dh(ehH’)=iii,ehH’(eh-1). 

So we find 

Ah(k)=&@l+l@& 
and 

A/,(ii,>=&h? hH-+E+@l?-ehH-(eh- l)+ 1@1!?+; 

Ah(s-)=i?-@l+Ei+ehH+(eh-l)@E-+l@k-. 
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Now we have to adjust the relations between g1(2) and g1( 2)) so that Ah becomes an algebra- 
morphism. One can check by direct calculation that we can take all commutators involving either 
HZ or fi, unchanged. We will require that [;,j] =0 remains unchanged for all x,y E g1(2). Hence 
our problem is to adjust the co*fnmutators [E+ ,&,I and [F, ,,$,I. 

Let us first consider [E+ ,E+]. For this we consider [E, ,E+] =O, so that i+,@+ =O. Apply- 
ing Ah, we find 

U~+Md~+) = ~~~=(-E+it++eh~+E+)c&e2hH-(eh-1)=0. 

Here, we used that ehH-fi- = fi-ehH- h 
,. 

e , since [H- ,fi-] =H- . So this forces 

E+.&-eh&E,=O. 

Similarly we find 

E-k--ehi-E-=0. 

One must check that these relations are compatible with Ah, i.e., that Ah(E+i?+ -ehi?+E+) =O. 
This is indeed the case. 

Finally, it remains to obtain [E+ ,ii]. A tedious calculation shows that we can choose 

[E, ,&]= 2 t& filehH+. 

Finally, the antipode is not difficult to calculate. In fact we have S,(fi,)= -&, and 

s&t+)= -(i++E+k(e-h- I))c?-~~-; 

s,&)= -fZ-hH+,k-I;T+(,-h- I)e-hH+E- 

as follows from the formula Shod,= dhOSh . We remark that the square of the antipode on 
uh(gl(2)) is given by 

S;(H,)=H, ; S;(E+)=ehH-E+e-hH-=e-hE+ S;(E-)=e-hH+E-ehH+=ehE- 

and again due to the commutation of Sh and d, also 

SpL)=B,; S#+)=eThi,. 

Concluding we can say that we completed the quantization. The choice of Ah was quite 
natural, and led to deforming the commutation relations involving only E, and k, . 

E. Summary of results for g/(2) 

For clearness’ sake, we summarize the results of this section in the following theorem. 
Theorem 2: The quantization of the algebra gZ(2), given by 

ehH+ - ,hH- 
[H, ,H-]=O; [H, ,Ec]= ZE, ; [H- ,E,]=iE,; [E, ,E-]= 2 sinh(h) 

and 

bh(H,)=H,@l+l@HH,; 
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Ah(E+)=E+@ehH-+l@E+; Ah(E-)=E-@l+ehH+@E- 

with corresponding antipode given by 

s,(H,)= -Ht ; S,(E+)= -E,eehH-; Sh(E-)= -eYhH+E- 

admits a dlrerential calculus d, . If we denote dh(x) by i for all elements x in g1(2), then l?% is 
+ primitive and 

Ah(i+)=s+@ehH- +E+@Z?-ehH-(eh- 1)+ 182, ; 

Ah(i-)=k@ 1 +fi+ehH+(eh- l)@E-+ 1 BE- ; 

Sh(k+)=-(k++E+fi-(e-h-l))e-hH-, Sh(k?-)=-e-hH+k--Ei+(e-h-l)e-hH+E-. 

The commutation between functions and forms is described by 

[Hz ,k,]=k,. ; [H, ,&]=O; [H, ,ri,]=Ei, ; [He ,&]=O, 

Etkc-ehk,E,=O; [E, ,k7]= 
eh-1 

2 sinh( h) 
EitehHz; [E, ,Ei,]=O; [E, &]=&. 

Finally, the commutation of forms is determined by the relation ij= -y^i for all x,y egl(2). 
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