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replacing the nonlinear load by a I 0 resistor. The dominant impulse 
response poles and residues of the circuit are then cau la t ed  using 
AWE technique. For this circuit, two sets of poles and residues are 
required: from input to output and from a current source connected 
parallel to load to output. The first order response is then obtained 
using the first set of pole-residue by exciting the circuit with the actual 
input. Subsequently, the input is killed and the higher order responses 
are calculated by exciting the circuit with a current source connected 
parallel to load and using the second set of pole-residue. The order 
is increased until the algorithm converges. The output waveforms, 
obtained with the proposed method and HSPICE, are given in Fig. 2 
for comparison. The first, third, fifth, and eleventh order outputs are 
shown in Fig. 3. 

Example 2: The second example, which is shown in Fig. 4, has 
been taken from [16]. The nonlinear elements are defined as: I, = 
0.001v2, I b  = &/750 + 0.002v2, and Iout = o.oo1vd3,t The 
applied input voltage waveform for this circuit is 4.5 ns pulse with 
1.5 ns rise and fall times. The amplitude of the input pulse is 5 
volts. The output waveform obtained using the proposed method is 
compared with HSPICE result in Fig. 5. 
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On Lyapunov Control of the Duffing Equation 

Henk Nijmeijer and Harry Berghuis 
IV. CONCLUSION 

A new method has been proposed for the transient analysis of 
circuits with relatively few and mildly nonlinear terminations. In 
this approach, the method of Volterra-series analysis of the nonlinear 
elements is combined with AWE-based techniques for the linear part 
of the circuit. The method is noniterative and corresponds to recursive 
analysis of a linear circuit with different excitations. Therefore, it has 
no convergence problem. Since it is based on AWE technique, it 
uses a very small number of LU decompositions with respect to the 
traditional methods. 
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Abstract-In this brief, we develop feedback control strategies for a 
chaotic dynamic system such as the Duffing equation. Our controllers are 
of the so-called Lyapunov-type and are inspired by robot manipulator 
feedback controls. The different controllers we propose include observer- 
based controllers that even can cope with parametric uncertainties of 
the original system. Some simulation examples support the developed 
methods. 

I. INTRODUCTION 
Recently, an increasing interest has been developed in controling 

chaotic nonlinear systems as arising in physics and engineering; from 
the various relevant references we mention [4]-[8], [12], [13], [151, 
and references therein. A very essential element in the control of 
chaos is that, in many cases, the ultimate goal of control is to decrease 
random effects and to stabilize the system at an equilibrium point, or 
more general, about a given reference trajectory. In such cases, one is 
in fact naturally led to reduce or even more completely annihilate the 
chaotic dynamics that an uncontrolled system may exhibit. Depending 
on the specific desired behavior of the system, several methods for 
controlling chaotic systems have been proposed, see, e.g., [6], [13]. 
Among the methods given there, a prominent role is played by the so- 
called Lyupunov-type methods. At the same time and earlier, various 
authors have investigated stabilizing control schemes for second-order 
mechanical systems, as in particular robot manipulators. Let us give 
a sample of relevant references [I], [IO], [14], [17], [19], noting 
that also this field is strongly progressing at the moment. It should 
be noted that also in this context Lyapunov-type methods are very 
popular and useful. 

The purpose of this paper is essentially to develop a controller- 
observer scheme for controlling a chaotic second-order system such as 
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the Duffing equation; see also [5] where a controller without observer 
has been derived. Our controller-observer analysis is insgired by 
the aforementioned papers on robot control. Recall that Duffing’s 
equation describes a specific nonlinear circuit or a pendulum moving 
in a viscous medium and is in controlled form given by 

;;. + p i  + P I X  + p 2 z 3  = u ( t )  + q c o s ( w t )  (1.1) 

or, setting 2 1  E 2, cz 5,  as 

where p ,  PI ,  p z ,  q,  and w are constants, and ‘U(.) is the physical 
control input. Depending on the choice of these constants, it is known 
that solutions of (1.2) exhibit periodic, almost periodic, and chaotic 
behavior; see [5]. The general problem that we will study throughout 
this note is whether we are able to find a suitable output-feedback 
controller 

‘U = d ( z l , i 2 , X d , t )  (1.3) 

such that for the closed loop (1.2), (1.3) the solution ~ ( t )  = zl(t) 
asymptotically converges to a desired trajectory Z d ( t ) , t  2 0. Here, 
iz is obtained via an observer for the “velocity” XZ, and Z d ( t )  may 
represent any smooth time-function, including fixed points or periodic 
orbits. 

The manuscript is organized as follows: In Section 11, we briefly 
recall some results on feedback control of second-order (mechanical) 
systems. Next, in the third section, we translate these results to the 
control of the Duffing equation (1.2). In Section IV, we discuss 
some related issues. Section V provides simulations that support our 
findings. Finally, Section VI contains the conclusions. 

11. FEEDBACK CONTROL OF SECOND-ORDER SYSTEMS 

Consider the second-order dynamics 

where J > 0, F >_ 0, T is the control, and T ( t )  is a (known) 
disturbance. Note that this is exactly the dynamics of a one degree- 
of-freedom robot system [17], where in that case q represents the 
angular position. Our control objective is to let the system (2.1) follow 
an arbitrary smooth reference trajectory q d ( t ) .  For this purpose, we 
select the control input as 

where e 
This controller consists of three components, namely 

q - q d  represents the tracking error, and l i d  > 0, K p  > 0. 

1) a position error feedback part - I ipe  
2) a velocity error feedback part - l i d 6  
3) a feedforward part J i d  + Fqd - T ( t )  

The feedback terms are required to guarantee that the robot system 
converges towards Qd ( t )  . Once on this trajectory, the feedforward 
component keeps the robot moving along it. 

The closed-loop consisting of (2.1) and (2.2) is described by the 
second-order dynamics 

Jg + ( F  + K d ) d  + I i p e  = 0. (2.3) 

As can be seen from (2.3), the transient behavior of the error 
dynamics can be influenced by a suitable choice of the proportional 
and derivative gain hYp and l i d ,  respectively. For this system, we 
have the following result (cf. [19]): 

Proposition 2.1: The feedback controller (2.2) guarantees that 
(2.1) asymptotically converges towards any smooth and bounded 
reference trajectory q d ( t ) ,  i.e., 

lim e ( t )  = 0 and lim a(t)  = 0. (2.4) 
t-w t-w 

Pro08 Consider the candidate Lyapunov function 
1 1 
2 2 Vl(e , i )  = - J (d  + Xe)’+ - ( K p  + X(F + h - d )  - X2J)e2 (2.5) 

with X > 0 constant. A sufficient condition for VI(.) to be positive 
definite in (e ,d)  is 

0 < < J - ’ h h .  (2.6) 

Along the closed-loop error dynamics (2.3), the time-derivative of 
VI (e, 6) becomes 

V I ( e , a )  = - ( F  + h - d  - XJ)a2 - XhWpe2. (2.7) 

Because X satisfies (2.6), we have that VI (.) is negative definite in 
the error state (e ,  6) .  Consequently, the closed-loop system (2.3) is 

The Lyapunov function (2.5) is very familiar in robotics literature, 
e.g., [19]. This function originates from and closely resembles the 
natural energy contents of the open-loop (robot) dynamics (2.1); see, 
for instance, [IO], [111, [181. 

The controller (2.2) requires full-state information, i.e., “position” 
q and “velocity” q measurements are necessary in its actual im- 
plementation. However, in practice, velocity sensoring equipment 
is generally not available. To overcome this velocity measurement 
problem, we modify the controller (2.2) as follows [l]: 

asymptotically stable (cf. [9]). 0 

7 = J i d  + F q d  - ~ ( t )  - Kdd - I ip6  (2.8a) 

. (2.8b) t = w + 2 ~ - ’ 1 i d ( e  - 6)  - J-lFe 
tij = 2 J - ’ I i P ( e  - 6)  Observer 

This output-feedback controller (i.e., it only requires knowledge of 
the position q )  consists of two parts: a linear observer part (2.8b) that 
generates an estimated error state (a ,  6) from the position error e and 
a controller part (2.8a) that utilizes this estimated error state in the 
feedback loop. Let us assume that 

lip = X K d  (2.9) 

where X > 0 scalar. Then we can prove 

closed-loop dynamics (2.1, 8) is asymptotically stable. 
Proposition 2.2: Let K p  satisfy (2.9). Under condition (2.6), the 

Proof: The closed-loop system (2.1, 8) can be written as 

J e  + ( F  +- K d ) a  + K p e  = h ’ d z  KpE (2.10a) 

Jz + I i d e  + KpE = - I C d a  - Kpe (2.10b) 

where E = e - d .  Define the Lyapunov function as 

V(e, 6,  E ,  Z )  = VI (e, 6)  + v~(G,  Z )  
with VI ( e ,  6) as in (2.5) and in analogy with this 

1 .  Vz(E,h) = A J ( k  + XE)’ + Z(hp + Xh’d  - X 2 J ) E Z .  (2.11) 
2 

Condition (2.6) guarantees that V(.) is positive definite in ( e ,  6,  e ,  z ) .  
The time-derivative of V(.) along (2.10) equals 

i y z )  = -2Q2 (2.12) 

where xT = [Xe i: X E  21 and 

Q = d i a g ( I i d ,  F + h * d  - X J ,  l i d ,  h - d  - XJ). (2.13) 

Condition (2.6) is sufficient for Q > 0. This completes the proof. 0 
We stress that Propositions 2.1 and 2.2 are valid for arbitrary bounded 
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reference trajectories q d ( t ) .  This is due to the presence of the 
feedforward term in the controller. In the next section, it iLshown that 
the previous results can be employed in the context of controlling the 
Duffing equation. 

111. FEEDBACK CONTROL OF DUFFING'S EQUATION 

In [5] ,  the (modified) Duffing equation in controlled form is 

(3.1) 

where p ,  p l ,  q ,  and w are constant. In contrast to [5] ,  we do not 
assume beforehand that p > 0. The dynamics of this system is 
similar to that of (2.1) by putting J E 1, F E p ,  7 E U ,  and 
T ( t )  = q cos(&). The only differences are the linear and cubic term 
in x, but these terms do not cause any problems in both the control 
design and the stability analysis, as will be shown below. 

As before, assume we want the system to follow any smooth 
desired trajectory Z d ( t ) .  For this purpose, we define the control input 
as 

introduced as 

i + p i  + p l z  + x3 = U + qcos(wt)  

U = X d + p k d + p l x d + x d 3  

- qcos(wt)  - l i d 6  - Iipe + v (3.2a) 

U = 3 x x d e  (3.2b) 

with e x - Xd and l i d  > 0, lip > 0. Essentially, one recognizes in 
(3.2a) the three parts as in (2.2), namely, proportional and derivative 
feedback and a feedforward term. Note that v is introduced in order 
to deal with the cubic term in (3.1). 

Proposition 3. I :  The closed-loop system (3. l), (3.2) is asymptot- 
ically stable, so 

lim e ( t )  = 0 and lim 6 ( t )  = 0 (3.3) t-03 t-03 

if 

l i d  > -p ,  lip > -PI. (3.4) 

Proposition 3.1 demonstrates that the Duffing equation (3.1) can be 
forced asymptotically towards arbitrary smooth reference trajectories 
Z d ( t ) .  This is achieved by incorporating in the controller a suitably 
selected feedforward compensation. A special situation that might be 
of general interest, see [5] ,  [7], occurs when the desired trajectory 
Z d ( t )  represents a (stable or unstable) equilibrium motion of the 
uncontrolled dynamics (3.1). Hence 

Xd + P X d  + p l x d  + 2 d 3  = q C O S ( W t ) .  (3.5) 

As a consequence, the feedforward component in (3.2a) reduces to 
zero. Then we have 

Corollary 3.1: If (3.5) is satisfied, then the controller 

U = - l i d 6  - h-pe + 3 x x d e  (3.6) 

guarantees that the Duffing equation asymptotically converges to- 
wards the equilibrium motion (3.5). 

Corollary 3.1 relates our work to that of [5].  In [5] ,  the problem 
of controlling the Duffing equation (3.1) with p > 0 to one of its 
periodic motions (3.5) is considered. For this purpose, the authors 
propose controllers of the form 

U = -ripe + 3 x x d e  (3.7) 

and prove that these yield asymptotic convergence towards (3.5) when 
lip > -PI. If we assume p > 0, we may select l i d  = 0; see (3.4), 
and consequently, (3.6) reduces to (3.7). However, this means that 
the error convergence of (3.1, 5, 6) stands or falls with the presence 
of damping (the physical meaning of p > 0) in the open-loop system 

(3.1). More importantly, this open-loop damping plays a major role 
in the transient performance of the error dynamics, which can hardly 
be influenced in this way. Hence, it is attractive to inject additional 
damping in the system via velocity feedback, which motivates the 
velocity error component - h 7 d 6  in the controllers (3.2) and (3.6). 
Consequently, under condition (3.4a) on h - d  asymptotic stability of 
the controlled Duffing equation is guaranteed even when p 5 0. 
Furthermore, transient characteristics like overshoot and rise-time can 
naturally be selected by tuning l i d .  In addition, via the inclusion 
of the feedforward term in (3.2), we do not necessarily require the 
desired motion to be a periodic solution of the Duffing dynamics, in 
contrast to [5] .  

closed-loop 
(3.1), (3.2) is described by 

Proof of Proposition 3.1 and Corollary 3. I :  The 

i + ( p  + I i d ) i  + ( p i  + I i p ) e  + e3 = 0. (3.8) 

In correspondence to (2.5), consider the candidate Lyapunov function 

(3.9) 

with X > 0 satisfying 

O < X < p + l i d .  (3.10) 

Together with (3.4), this implies that V3( . )  is positive definite. Along 
(3.8), %(e, 6)  becomes 

v 3 ( e ,  6)  = - ( p  + l i d  - X)t? - X(p1 + Iip)e2 - Xe4 (3.11) 

which is negative definite if (3.4, 10) are satisfied. Then the proof 
0 

In order to inject additional damping in the loop, controllers 
(3.2) and (3.6) require ?, as opposed to (3.7). The need for 5 can 
be eliminated by a simple observer, without affecting the stability 
properties of the closed loop. In particular, the output-feedback 
controller 

can be completed along the lines of Section 11. 

c o I I t ~ O l k ! ~ { U  = X d  + p k d  + P l Z d  + Z d 3  - Q c o s ( d )  

- I i d d  - I i p 6  + 3 x x d e  (3.12a) 
i = w + 21id(e - 6 )  - p e  
lir = 21i,(e - 6)  - p l e  - e3 Observer (3.12b) 

can be employed, where 

and X > 0 scalar. Since measuring 5 in the controlled Duffing 
equation (3.1) might be difficult and noise-sensitive, the controller- 
observer combination (3.12, 13) seems very attractive. 

Proposition 3.2: The closed-loop system (3.1, 12, 13) is asymp- 
totically stable under the conditions (3.4, 13) and 

O < X < min(l id ,p  + l i d ) .  (3.14) 

Corollary 3.2: Assume that (3.4, 13, 14) are satisfied, and that 
X d ( t )  satisfies (3.5). Then 

U = - K d d  - lip; + 3 x x d e  (3.15) 

where ( 6 . 6 )  as in (3.12b), provides asymptotic error convergence. 
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Proofi Take the Lyapunov function candidate 

where V3(e,d) as in (3.9) and 

The function V( . )  is positive definite under (3.14). This condition 
together with (3.4) are also sufficient for V( . )  to be negative definite 

0 
Proposition 3.2 demonstrates that even in the absence of open-loop 
damping, i.e., p 5 0, for the Duffing equation asymptotic convergence 
towards any desired trajectory x d ( t )  can be guaranteed with an 
output-feedback type of controller, i.e., by only using x .  

along (3.1, 12, 13). This completes the proof. 

IV. DISCUSSION 
An important issue is that of robustness of the proposed controllers 

to parametric uncertainties and bounded disturbances. From Propo- 
sition 3.1, it follows that for asymptotic tracking of an arbitrary 
reference Q ( t )  exact knowledge of the system parameters p, P I ,  
q, and w is required, cf. (3.2). In practice, however, it may be 
difficult to determine exactly the parameters of a (chaotic) system 
(see also [7] about a related point on model uncertainties). So, it 
would be attractive to implement (3.6) instead of (3.2), even if 
x d ( t )  does not belong to the set of periodic motions (3.5). It is 
interesting to know that despite this simplification the boundedness 
of the tracking errors can still be guaranteed under some high-gain 
condition on Kd. In particular, the tracking errors can be shown to 
be ultimately uniformly bounded (UUB) or practically stable, which 
implies that the error state tends in final time towards a closed region 
around zero. The proof is a straightforward extension of the UUB- 
results for the robot dynamics as given in [16]. By analogy, also the 
system-parameter-independent output-feedback controller 

' 

Controller{u = -Kdi - ~~6 (4.la) 

0 bserver (4.lb) 

yields practical stability of the tracking errors for arbitrary smooth 
and bounded reference motions under a high-gain assumption; see 
[3]. Notice, however, that high-gain feedback may have practical 
limitations because of, for instance, noise amplification. 

V. SIMULATIONS 

To support our results, we simulated with MATLABTM Duffing's 
equation (3.1) under output-feedback control (3.12, 13). The Duffing 
parameters were selected a s p  = 0.4, p l  = - 1.1, q = 2.100, and w = 
1.8, in which case the Duffing equation displays chaotic behavior [ 5 ] .  
To illustrate that feedback control enables us to completely annihilate 
the chaotic dynamics and force the system towards an arbitrary 
desired trajectory, we define the reference motion as 

z d ( t )  = sin(t), t 2 0. (5.1) 

To satisfy (3.4, 14), the controller parameters were chosen to be 
I ( d  = 12.5 and = 4.0. This choice yields a proportional feedback 
gain Kp = X K d  = 50.0, which corresponds to k'21 in [SI. The 
resulting control performance is depicted in Fig. 1, where Fig. l(a) 
and l(b) shows the time-trajectories of e(t) and 6 ( t ) ,  respectively, 
and Fig. l(c) contains the state error trajectory ( e ,  6). To clearly show 
the effect of feedback control, the controller is only applied for t 2 

4, I 4,  1 

2 - 2  - B 

3 
2 0  p0 
m 

-2 -2 

-4 
0 10 20 30 40 0 10 20 30 40 

-4 

time (s) 

(a) 

lime (s) 

(b) 

2 

I -41 

e (4 e (rad) 
-0.5 0 0.5 

-4' 
- 4 - 2  0 2 4 

(C) (d) 

Fig. 1. Duffing's dynamics under output-feedback control (3.12, 13). 

I I 
- 4 - 2  0 2 4 -0.5 0 0.5 1 

e (4 e (rad) 

-4' 

(a) (b) 

Fig. 2. Duffing's dynamics under robust output-feedback control (4.1). 

25. After a short transient, the position tracking error e and velocity 
tracking error 1 converge to zero, and the control objective is attained. 
This can particularly be seen in Fig. l(d), which contains the latter 
part of the state error trajectory. 

As discussed in Section IV, when knowledge of p, PI ,  q,  and w 
is lacking, the system-parameter-independent controller (4.1) can be 
employed. The error-state performance of this controller is shown in 
Fig. 2, where all gains were selected as before. The results in Fig. 2 
indicate that the error state does no longer converge to zero, but that 
it approaches a bounded region around zero as implied by UUB- 
stability; see Fig. 2(b). Note that the size of the ultimate error region 
is small relative to the amplitude of the reference motion (5.1). This 
implies that the state ( x ,  E )  of the Duffing equation closely follows 
the reference trajectory ( Z d ,  E d ) .  So, even in the absence of parameter 
knowledge, we can largely suppress chaotic dynamics by (output) 
feedback control! 

In a third simulation, we select p = -0.1, so we have negative 
damping in the open-loop system. For this choice, the Duffing 
dynamics grows unstable without feedback control. To stabilize the 
dynamics (3.1), we need to inject (positive) damping in the system, 
which can be done with both the controllers (3.2) and (3.12). Fig. 3 
gives the tracking error data obtained with the output-feedback 
controller (3.12), where the controller gain settings were as given 
above. Before control the phenomenon of instability can clearly 
be observed, whereas for t 2 25, asymptotic error convergence is 
attained, as proved in Proposition 3.2. Note that controller (3.7) of [5] 
does not yield a stable closed-loop system in the absence of open-loop 
damping, i.e., when p < 0. 
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10, I 20 I 

Y I 
0 10 20 30 40 

-20 ‘ 
time (5) 

-100-0 
time (s) 

(a) (b) 
Fig. 3. Duffing’s dynamics with negative damping under control (3.12, 13). 

VI. CONCLUSION 
In this paper, we have described how to design Lyapunov-type 

controllers to steer a chaotic dynamic system as the Duffing equation 
towards a given desired trajectory. Our methods are inspired by 
Lyapunov-type controllers that were recently developed for tracking 
control of rigid robots. The class of controllers that are discussed 
include observer-based controllers that may cope with parametric un- 
certainties and bounded disturbances in the to-be-controlled system. 
Some simulations illustrate the newly proposed feedback controllers. 
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Shift-Variant m-D Systems and Singularities 
on T”: Implications for Robust Stability 

Sandra A. Yost and Peter H. Bauer 

Abstract- This brief addresses the robust asymptotic and BIB0 
(bounded-input bounded-output) stability of a class of linear shift- 
variant multidimensional systems. Using a shift-invariant comparison 
system, necessary and sufficient conditions for the stability of the entire 
family of systems are derived. 

NOMENCLATURE 
The first m-D hyperquadrant. 
Theclosedunitpolydisk: ( (2)  : Iz t l  5 l , i  = l , . . . , m }  . 

The distinguished boundary of unit polydisk: ( (4 )  : 
Izz I  = 1, i = l , . . . ,m}  . 
The spatial vectors (nl,...,nm), ( i l  : . . , i m ) ,  and 

The output of the m-D system. 
The input of the m-D system. 
The shift-varying coefficient of a shifted output in a m- 
D difference equation. (For example, in a 2-D difference 
equation, a ( 3 , 2 ) ( n l , n z )  is the coefficient of y ( n l  - 
3,nz  - 21.1 
The shift-varying coefficient of a shifted input in a m-D 
difference equation. 
The order of the m-D system in the n3 direction, j = 
1,. . . , m. 
{(il,...,im) : 0 5 i k  5 Nk, k = 1 ,..., m, and 

{(ji,...,jm) : 0 5 j k  5 Nk, k = 1 , . . . ,  m, and 

The open unit polydisk: { (4) : Izl 1 < 1, i = 1,. . . 3 m}. 

(jl,. . ., jm). 

(i1,’.’>im) # Q}. 

(j1,...>jm) # Q}. 

I. INTRODUCTION 

Results addressing the robust stability problem for 1-D discrete 
interval polynomials have generated interest in analogous results for 
the m-D case. Yet even in the work on shift-invariant m-D systems, 
only a few results address the m > 2 case [l], [2].  As for 1- 
D systems, conditions for the robust stability of shift-variant m-D 
systems are more restrictive than for the shift-invariant case. Some 
recent results concerning the robust stability of shift-variant m-D 
systems can be found in [3]-[5]. 
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