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Parameter Identification in Tidal Models with 
Uncertain Boundaries* 

A R U N A B H A  BAGCHI t  and PAUL TEN BRUMMELHUISt~  

A simultaneous estimation of  states and unknown parameters by the 
method of  maximum likelihood is used for calibrating large-scale tidal 
models with uncertain boundary conditions. 
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Almtraet--ln this paper we consider a simultaneous state and 
parameter estimation procedure for tidal models with 
random inputs, which is formulated as a minimization 
problem. It is assumed that some model parameters are 
unknown and that the random noise inputs only act upon the 
open boundaries. The hyperbolic nature of the governing 
dynamical equations is exploited in order to determine the 
smoothed states etticiently. This enables us to also apply the 
procedure to nonlinear tidal models without an excessive 
computational load. The main aspects of this paper are that 
the method of Chavent (Identification and System Parameter 
Estimation. Proc. 5th IFAC Syrup. Pergamon, Oxford, pp 
85-97, 1979), used to calculate the gradient of a criterion 
that is to be minimized, is now embedded in a stochastic 
environment and that the estimation method can also be 
applied to practical, large-scale problems. 

INTRODUCTION 

TIDAL MODELS are used to describe the water 
movement in a restricted area, enforced by a 
tidal wave that enters this area through one of its 
open boundaries. The propagation of the wave is 
governed by the dynamical equations, whereas 
the driving tidal force is represented by the open 
boundary condition(s). Examples of such models 
are a model that describes the flow in a tidal 
estuary in the southwestern part of the 
Netherlands (Fig. 1) and CSM-16, a model of the 
continental shelf of the northwestern part of 
Europe (Fig. 2). Although a lot of effort has 
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been taken to increase the accuracy of these 
deterministic models, there still remain uncer- 
tainties in this representation. If these uncer- 
tainties are described by means of stochastic 
noise processes, data assimilation techniques can 
be applied in order to find solutions of the 
stochastic model that meet certain optimality 
demands. The technique used if the underlying 
deterministic model is one-dimensional is the 
Kalman filter. In this case there is no need to 
impose linearity restrictions on the dynamics, 
and the favorable properties of the filter can be 
fully exploited to" 

• estimate simultaneously uncertain parameters 
and states (both on-line and off-line), 

• process the data up to the actual time, to 
determine an optimal initial condition that is 
used for a prediction model (this application 
has a very great practical relevance), 

• optimize measurement networks by analyzing 
the amount of information that is associated 
with a certain measurement point. 

The usefulness of the Kalman filter is illustrated 
by ten Brummelhuis et al. (1988) where it is 
applied to an operational model of the tidal 
estuary (Fig. 1). However, if the model is 
two-dimensional, computational problems arise 
and a direct application of Kalman filtering 
techniques is out of the question, unless one is 
satisfied with the steady state approach to 
process the data. Therefore, if we focus our 
attention on these stochastic, two-dimensional 
nonlinear tidal models, alternative algorithms 
have to be developed to accomplish the goals 
mentioned above. 

In this paper we describe a method that is 
suited for the simultaneous estimation of 
uncertain parameters and states in large-scale 
models in the presence of uncertainties in the 
open boundaries. This estimation problem is 
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FIG. 1. The model of the tidal estuary in The Netherlands. 
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F]o. 2. The Continental Shelf Model. 

treated as a constrained minimization problem, 
based on the Maximum Likelihood (ML) 
method. The original idea of using the ML 
method for the estimation of the state of a 
lumped dynamical system goes back to the 1960s 
(Cox, 1964; Detchmendy and Sridhar, 1965; 
Mortensen; 1968). A big disadvantage is that it 
leads to a two-point boundary value problem 
(TPBVP) that can usually only be solved at 
relatively high (computational) cost if large-scale 
systems are involved. Therefore we make use of 
two important facts that enable us to find the 
solution of the TPBVP (which is the smoothed 

state) in a direct way: 

• Due to the hyperbolic nature of the model 
equations, the solution is (after some time) 
completely determined by the boundary 
conditions. 

• In case the noise sequences are assumed to be 
Gaussian and the model is linear, the solution 
of the ML equations can also be derived using 
a Kalman filter. This is based on the fact that, 
for linear systems, the mean and the mode of 
a probability density function coincide. 

The parameter estimation is performed with a 
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gradient-based search algorithm. It will be 
shown in one of the next sections that such an 
algorithm is well suited to use in combination 
with the ML method to estimate the states, 
because the gradient of the criterion is 
completely determined by the solution of the 
TPBVP and the original model simulation: a 
result of the application of the method of 
Chavent (1979). This method is well known in 
the field of deterministic control theory to derive 
the exact gradient of some constrained cost 
function. Here, the method can be used in a 
stochastic environment if the original stochastic 
model is transformed first into a 'deterministic' 
one, where the new 'deterministic' variables are 
the estimates of the states in the stochastic 
model. 

We start in the next section with a brief 
description of numerical tidal models in general, 
and the specific stochastic aspects that are 
considered here. In the sections thereafter the 
state and parameter estimation procedures are 
presented in a formal way. Subsequently, the 
solution method of the TPBVP and the 
parameter estimation problem are treated. The 
paper ends with a large-scale application and 
some conclusions. 

NUMERICAL TIDAL MODELS 

The dynamical equations of tidal models are 
the so-called shallow water equations, stating the 
conservation of mass and momentum. In 
differential form these equations are: 

Oh O[O+h]u O[D+h]v 
at + ax + ay = 0 (1) 

Ou Ou Ou Oh 
-~  + U-~x + V-~y + g-~x + fV + gS I . n, 

_ C d Pa V 2 cos dp 1 ap~ 
Pw D + h  Pw Ox = 0  (2) 

Ov Ov Ov Oh OTy+ gTy-fU + 

_ cd Pa V2 sin ~b 1 maP" 
Pw D + h  pw Oy =0' 

(3) 

with: 

x, y, t the space and time coordinates, 
h the water elevation above some 

reference level, 
u, v the vertically averaged velocity com- 

ponents in the x, y directions, 
Ca the wind stress coefficient, 
D(x, y) the water depth below the reference 

level, 
g the gravitational acceleration, 

f 
n~,ny 
sl 

V 

Pa 
Pa 
Pw 

the Coriolis coefficient, 
unit vectors in the x and y directions, 
the resistance slope, 
the wind angle, 
the wind velocity, 
the atmospheric pressure, 
the density of air, 
the density of water. 

Boundary conditions must be imposed to 
obtain a unique solution of this tidal model. At 
closed boundaries the velocity perpendicular to 
the coast is set equal to zero and at open 
boundaries the water level elevation is given as 
an explicit function of time. Because of the 
nonlinearity of the dynamics, an additional 
boundary condition has to be imposed in case of 
inflow to ensure the well-posedness of the 
problem. This condition states that the velocity 
parallel to the boundary vanishes. The interested 
reader is referred to Stelling (1983) for a detailed 
treatment of the boundaries. 

With respect to the discretization of the 
dynamical model just described, two aspects 
should be emphasized. Because we are dealing 
with operational tidal models, the dimension of 
the state is up to 20,000. Therefore, a lot of 
effort has already been taken to optimize the 
numerical codes for these models. One of the 
ways to reduce the dimension of the state 
without affecting the accuracy of the computa- 
tion is to use a staggered grid where the location 
of the computed water level and the two velocity 
components do not coincide (Fig. 3; Hansen, 
1956; Patankar and Spalding, 1970). 

The discretization scheme that is used to 
represent equations (1)-(3) in discrete time is 
known as an ADI-type scheme (Alternate 
Direction Implicit; Mitchell and Griffiths, 1980). 
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FIo. 3. The computational grid. 
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Characteristic of this representation is the 
splitting of the time step from k to k + 1 in two 
half time steps. In the first part the velocity in 
the y-direction v,.,.~+]a is determined explicitly, 

k k k 
h r n , n ~  based on Urn.,, Vm,. and while the 

remaining variables, the velocity in the x- 
direction " k+~r2 and the water level elevation U r n , n  
hk+la m,. are found as the solution of implicit 
equations. In the second part the roles of m and 
n are changed: the velocity component " k+l is /'gtn, n 

. k + l / 2  . k + l / 2  and hk+l/'2 and - k+~ and based o n  urn, n , Um,n "'m,n Ura,n 
hk+l m,. are again the solution of implicit equations. 
It is not our purpose to go into detail about the 
characteristics of this discretization method; we 
will only remark that this method has proven its 
usefulness in the area of numerical tidal 
modeling (Stelling, 1983). To simplify the nota- 
tion, the time splitting will be ignored and the 
numerical model is formally written as: 

Xk+,  = f,(p, Xk) + Bluk+~ (4) 

with Uk a deterministic input representing the 
boundary conditions and p the vector of 
unknown parameters. 

The next step is to introduce the uncertainty 
into the model to make it stochastic, which 
becomes imperative when the open boundary 
condition is described. In dealing with tidal 
motion problems, the water level and the 
velocity components can be expressed in terms 
of a number of harmonic constituents with 
known frequencies (Fig. 4). 

f~ 

" i l ql q2 

Fro .  5. A s imple  g e o m e t r y  Q wi th  a n  o p e n  b o u n d a r y  a t  
n = 0. T h e  o t h e r  b o u n d a r i e s  a r e  c losed .  

This means that the uncertainty in the open 
boundary condition can also be interpreted in 
terms of harmonic components. For con- 
venience, consider the open boundary of a 
simple basin (Fig. 5). If we represent the open 
boundary by equation (5) 

k _ hm.o - uk + 'unknown part' (5) 

we may model this 'unknown part' in its simplest 
form, as an AR(1)-model [see equations 
(7)-(8)]: 
hkm,o = Uk + I~mqf + (1 -- I~m)q~, 

with O~</~m~<l (6) 

q~ = pqk--~ + Tl~-l, ~l~ = N(O, Q1) (7) 

q~ = pq~- i  + Tlk-1, ~l~ = N(O, Q2), (8) 
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with p a correlation coefficient 0 ~< p ~ 1. From 
equation (6) one can see that the processes q l 
and q2 are linearly interpolated along the 
boundary where n = 0  by taking # m = l  - 
m/m=ax, for re=O, 1 . . . . .  mm~x. The idea 
behind this description is that the 'unknown part' 
of the open boundary condition consists of 
harmonic constituents, similar to Uk. By 
choosing p close to 1, the low frequency waves 
are taken into account. On the other hand, the 
high frequency waves are represented by the 
noise sequences th and r/2. The introduction of 
the processes ql and q2 at the edges of the open 
boundary allows us to account for (linear) 
variations of both the amplitude and the phase 
of the 'unknown part' in the open boundary 
condition. This is of course a very simple 
approach. However, the extension to higher 
order AR-models (and the introduction of 
additional processes q) is straightforward. In 
matrix notation this stochastic model now reads: 

I 
q~+'d  pq~ _] 

[i l l + nk÷~+ 1 k~.l" (9) 
0 

Now, if the noise sequences ~1 and 72 are 
denoted by the system noise wk and a new state 
vector Y~ is defined as Yk = [Xk, q~, q~]T the 
stochastic model becomes: 

Yk+l = f(P, Yk) + BUk+I ÷ G w k + l  (10) 

zl = HYk + v~ (11) 

with: 

Ill k 

Zk 
H 

Wk = N(O, Q) 
Vk = N(O, R) 

This prescription 

a deterministic input, 
the measurements, 
the measurement matrix, 
the system noise, 
the measurement noise. 

will be the basic model 
formulation, used throughout this paper. 

The method that will be introduced in the next 
sections is a tool in calibrating a simulation 
model in the sense that it tries to find a 
trajectory, being the solution of equations (10) 
and (11) that fits best to the observed data 
series. Here, the difference between the model 
outcome and the data is measured, taking into 
account the covariances of the measurement and 
system noise processes. This trajectory can be 
influenced by adaptations o f  the unknown 
parameters and the open boundary condition. In 
our model we assume that the values of the 

parameters are constant in time, whereas the 
errors in the open boundary prescription that 
affect the trajectory have a time-dependent 
nature: the 'unknown part' of this boundary is a 
function of time. Despite the different character 
of these two error sources, the estimation of the 
parameters and the estimation of the open 
boundary will be performed simultaneously, by a 
method that is based on the maximum likelihood 
approach. 

THE MAXIMUM LIKELIHOOD APPROACH 

In the sequel a method will be discussed to 
estimate the parameters and the states simul- 
taneously by maximizing a likelihood function 
L(p, Yk). Usually, this is treated as the 
minimization of J(p, Yk) with J(p, Yk) ---- -- 
log L(p, Yk) and J(p, Yk) is referred to as the 
error criterion. The criterion that is considered 
here consists of two terms, one of them 
representing the measurement error, the other 
the system error. So, the minimization of J with 
respect to states and parameters can also be 
interpreted as finding the smallest realization of 
the covariance of the measurement and system 
noise sequences. For J we take: 

N N--1 

J(P, Y~) = ½ ~'~ llZk -- HYkll 2-' + ½ 
k= No k=O 

x I]Yk+l f(P, Yk) 2 - - BUk+II[(cQC~)-'- (12) 

AS already mentioned, we will derive p* and Y~,, 
which minimize J(p, Yk), in two steps: 
(1) First to find the minimizing trajectory 

{Y~,(p), k = 0, 1 , . . .  , N} for a certain value 
of p. 

(2) The second step selects from this class of 
minimizing trajectories the trajectory, para- 
metrized by p*, which minimizes J globally. 
In this sense, the class of minimizing 
trajectories acts as a constraint for the 
minimization of J w.r . t .p .  

State estimation 
In order to find the minimizing trajectory 

w.r.t, the state, equation (12) is rewritten as: 
N 

J(p, Yk) = ½ ~ IIzk - HYkll~-~ 
k=No 

N--1 

+½E IIGWk 2 IIcGQOT)-' 
k=O 

N--I 
+yT 

Vk+t[Yk+l --f(p, Yk) 
k=O 

- BUk+1 -- GWk], (13) 

where the adjoint states Vk, k = I, 2 ..... N are 
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introduced to incorporate the constraint in the 
minimization. At this point the discrete Pontrya- 
gin minimum principle (Boltjanski, 1976), may 
be applied to find a realization of the system 
noise sequence w~. This leads to the requirement 
that Gwk--GQGTvk+~. For the minimization of 
J, aJ/aYk and aJ/avk are set equal to zero, so 
the smoothed state Y~, and the adjoint state Vk 
satisfy: 

YT,+~ = f(p, Y~) + Buk+~ + GQGrvk+,, 

k = 0 . . . . .  N -  1 (14) 

Vk = F(p, Xk)TVk+,  + HTR -1 

x [z, - HY~ l, 

vk = F(p, Xk)Tv,+I, 
k =No . . . . .  N (15) 

k = l ,  2 . . . . .  No-  1 

(16) 

(17) 

(18) 

VN+ 1 ---~ 0 

Y~=O, 

where F is the Jacobian Gf/OXk. These equations 
must be satisfied by the states Y~ in order to 
minimize the criterion J for a certain value of the 
parameter p. The second part of the estimation 
procedure now consists of finding the minimum 
of J w.r.t.p. 

Parameter estimation 
As already mentioned in the Introduction, the 

parameter estimation is performed by a gradient- 
based algorithm, where the gradient of J(p, Yk) 
w.r.t, p is determined by the method of Chavent 
(1979). In trying to find p* we are minimizing 
J(P, Yk) under the restriction that the equations 
(14)-(16) are satisfied, including the conditions 
(17) and (18). Then, p* can be estimated 
iteratively, using a gradient-based algorithm. 
The way to derive VJ is (ten Brummelhuis and 
Heemink, 1990; Chavent; 1979): 

(1) Introduce Lagrange multipliers ~k and ~k 
to incorporate the TPBVP as the new 
constraints: 

N 

J(P, Yk) = ½ ~ IIz~ - HYkII~-, 
k=No 

N--I  

+ ½ E IlGQGrVk+l[[~oc +-' 
k=O 

N--1 
+ ~  T ~,+,[Yk+, - f(P, Yk) 

k=0 

- -  B U k +  1 - -  GQGTvk+I] 
No-1 

+ E ~T[Vk -- F(p, Xk)Vk+l] 
k=0 

N 

+ E ~kr[v* - F(p, X,)v,+, 
k=No 

-- HTR-I[z, - HYk]]. (19) 

(2) The method of Chavent (1979) considers 
the effect of infinitesimal changes Ap in one of 
the components of p on J, Yk, Vk, gk and gk- 
This is done by linearizing the expression given 
above: 

OJ N 
t J =  Tp Ap = E -HTn AV T 

k f N o  

× [Zk -- HYk] 
N--1 

+ avT+,cQCTvk+, 
k=O 

N - 1  

"1- E ~ ' + ' [ A V k + l  - -  F ( p ,  V k )  AY, 
k=O 

-- GQG T Ark+l] 

N--1 ,~ 

k=O 

- (GQGT)Vk] 

/%/o--1 
-4- ~ ~,T[Avk -- F(p, Yk) T AVk+I] 

k=O 

No-I 

+ ~ A~'[Vk -- F(p, Vk)rVk+l] 
k=0 

N 
+ ~ ~T[Avk -- F(p, Yk) T AVk+l 

k=No 

+ HTR-1H AYk] 

N 

"~- E A ~ k [ V k  - -  F ( p ,  y k ) T V k + l  
k f N o  

+ 2HTR- X[Zk - HYk]] 

0F r 

k=O k=O 
(20) 

(3) In equation (20) the terms with A~k and 
A~k can be neglected because the factors 
between brackets are the left-hand sides of 
equations (14)-(16) which are equal to zero. 
Then, by rearranging the remaining terms, one 
finds: 

aJ 

No-1 
= E AYT[~k -- F(p, yk)T~k+l] 

k=l  

N 
+ ~ AyT[~k -- F(p, yk)r~k+, 

k=No 

- HTR-t[z, - HYk -- H~k]] 

N 

-4- '~ AvT[~k -- F(p, Yk)~k-1 
k=l  

- GQGT[~k -- Vk]] 
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N-I  O~ 

k=o 

N a F  T 
+ ~ ~T--:--Vk+, Ap. (21) 

k=O ~P 

(4) The expressions under the summation 
signs are quite similar to equations (14)-(16), 
including the boundary conditions, except that ~k 
now plays the role of vk whereas ~k can be 
associated with Yk. In looking for a simple 
expression for VJ we can exploit this similarity: if 

= 0 and ~k = Vk for all k, then 

OJ ~-. af(p, Yk) 
vT+I (22) 

ap k=o ap 

This implies that VJ is simply derived from the 
solution of the TPBVP; or with a slightly 
different interpretation: the only problem for the 
simultaneous estimation of states and parameters 
is to find the solution of the TPBVP. 

The fact that the condition for Y* is given for 
the initial time and the condition for v at the 
final time, eliminates the possibility to find a 
solution of equations (14)-(16) in a direct way. 
Although a number of methods are available in 
the literature to solve two-point boundary value 
problems, such as iterative shooting methods, 
none of them seems very appropriate here, 
because they require an excessive computational 
load. Therefore, it is necessary to develop an 
alternative strategy that makes use of the special 
characteristics of the problem in order to make 
procedure applicable also to large-scale 
problems. 

THE ESTIMATION PROCEDURE 

In the previous sections, all the ingredients of 
the complete estimation procedure are de- 
scribed, and they are now put together. It was 
shown there that the ML estimate of the state 
and VJ are both determined by the solution of 
the adjoint model. This is the main reason to 
choose a gradient-based algorithm for estimating 
the parameters. In our approach, an iterative 
quasi-Newton method is used to find the value 
!~ that minimizes J. Therefore we need, besides 
VJ(p), information about the Hessian H(p) of 
J(.). By approximating J(.) locally by a 
quadratic function Jq(Ap): 

Jq(Ap) = J(p) + Ap T VJ(p) + ½ApTH(p) Ap. 

(23) 

The value for Ap that minimizes Jq is found from 
v J q = 0 ,  or, A p = - H - t ( p ) V J ( p ) .  Generally, 
the criterion J is not locally quadratic w.r . t .p .  
The vector s ( p ) = - H - l ( p ) V J ( p )  is therefore 

interpreted as a search direction in the 
parameter space. The new parameter estimate is 
now found as the line minimum in the direction 
of s(p). 

The exact calculation of H-t(p)  requires a 
large amount of computation time. To avoid 
these types of problems, the calculation of 
H-l(p)  is replaced by a recursive update of a 
positive definite symmetric matrix for which we 
used the BFGS method (Fletcher, 1980). It 
makes the convergence of the iteration nearly 
second order and it can be proved that in case 
the function J is purely quadratic w.r.t, the 
parameter p, the number of iterations equals the 
dimension of p plus one. The whole procedure is 
schematically shown in Table 1. 

SOLUTION OF THE TPBVP FOR LINEAR MODELS 

In this section, the strategy to determine the 
solution of the TPBVP is described for linear 
tidal models where the random input for the 
open boundaries is modelled by an AR(1) 
model. Fundamental to this alternative strategy 
for solving the TPBVP is the fact that the 
components of GQGTvk+I in equation (14) only 
contribute to Yk+l through the components q~+l 
and q2 T M  as is the case in the example with the 
simple geometry (Fig. 3). This means that the 
smoothed states directly follow from equation 
(14) once the smoothed boundary is known. The 
second crucial point is the linearity of the model. 
This property implies the equality of the mean, 
which can be found by the Kalman filter, and the 
mode, the maximum of the likelihood function 
(or the minimum of the criterion J). 

Proposition 1. The smoothed states {YT~l k = 
0, 1 . . . . .  N} can be calculated directly, without 
using equations (14)-(16). 

The proof of this proposition is given in the 
Appendix. With this result, the solution of the 
TPBVP is found after the following steps: 
(1) Introduce a new state Y~, = [Yk, qk-1, q2k-l, 

qf-2, q2k-2 . . . . .  q0, q20]T, which contains the 
history of the stochastic processes ql and q2 
from the starting time until the present time 
k. 

(2) If a Kalman filter is used to process the data 
{zt, l = 1, 2 . . . . .  N - 1, N} one finds at the 
final time, k = N, the filtered estimate of the 
state 

Y ' ( N I N ) = [ Y ( N I N  ), q~(N-  1 IN), 

q2(N - 1 IN) . . . . .  q~(O I N), q2(0 1N)] T. 

(3) Based on the proposition, equation (9) may 
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TABLE 1. THE ESTIMATION PROCEDURE 

i= +1 ] 

Starting value Pi = P0, i = 0 

, Solve TPBVP to find {Yk*, v~[ k = 0, 1 . . . . .  N} 

J 
IVJ(Pi) -k~=o k'~p ] 

Determine H -I (pi) and the new search direction s(Pi) = - H(Pi) -1 VJ(pi) ] 

I a* = min J(Pi) + as(p/) ] 
19/ 

Pi+l = Pi + t~ s(Pi) 

1 
yes t i</max ~ 

be rewritten as 

X~,+I = f1(P, X~) + BlUk+l 

+ Gl[ql(k + 1 I N),q2(k + 1 IN)] T. 

(4) Finally, equations (15)-(16) are solved, 
substituting X~,, q,~k and q~k. 

The essence of this proposition is that the 
backwards integration of equations (15) and (16) 
is avoided while the smoothed states can still be 
determined. In case we are only interested in the 
estimation of unknown parameters (and there- 
fore not in the smoothed states), the backward 
integration can also be avoided by making use of 
the observation in S~derstr6m (1989) that for 
linear systems the likelihood function is a known 
function of the one-step ahead prediction error 
and its covariance. This implies that the 
smoothed states do not have to be computed 
explicitly. In this paper, we in fact do compute 
the smoothed states explicitly because only in 
this way can the uncertainties of the open 
boundary prescription be analyzed properly. 

In practice, the whole history of the stochastic 
processes {q~.2[ l=0,1  . . . . .  k - l , k }  is not 
included in Y~,÷I but only the limited history 

{q~.2ll=k-ko, k - k 0 + l  . . . . .  k - l , k ) .  The 
length of this time lag ko is chosen so large that 
qk-ko do not influence the state Yk anymore. 1,2 

This is a direct consequence of the fact that the 
dynamical equations are hyperbolic, implying 
that every signal entering the model has only a 
limited residential time. 

NONLINEAR MODELS 

If the parameter estimation is considered for a 
nonlinear model with uncertain boundary inputs, 
the TPBVP is similar to the one in the linear 
case. The only difference is the occurrence of a 
nonlinear dynamics term f(P, Yk) instead of 
F(p)Yk. The solution strategy for nonlinear 
models is again based on the fact that for 
hyperbolic systems, the smoothed states can be 
easily computed once the smoothed boundaries 
are known. For linear models this could be 
achieved by first using the Kalman filter to 
determine the smoothed boundaries by aug- 
menting the state vector with the history of the 
boundary variables qk. 

In the case the model is nonlinear, the natural 
extension would be to replace the steady state 
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filter by an extended filter. This straightforward 
adaptation, however, requires too much com- 
putational power. So, besides the argument that 
an extended filter assumes a (local) linearization 
of the dynamics and can therefore only generate 
an approximated smoothed boundary, it cannot 
be used for large-scale models. For solving the 
TPBVP fast, we have to include some 
approximations. For example: 
• linearize the dynamics globally and apply a 

linear filter to determine a smoothed 
boundary, 

• derive a smoothed boundary by recursively 
minimizing a criterion J(p, Y~,): (Y~,)* is the 
minimizing solution of 

minimize Jk(P, Y~) = Ilzk -- HYkIIR-" 2 

+ ]lYe, - f(p, Y~,-~) - eukll 2-, (24) 

w.r.t. Yk if ' * ' (Yk-l) is given. In equation (23) 
the matrix p can be interpreted as the 
covariance of Y~,. This gives the same solution 
as the linear filter if the prediction step is 
based on the nonlinear dynamics: 

(Y~,+I)* = f(P, (Y~)*) + K{zk+l - Hf(p, Yk)' *}. 

(25) 

The justification of an approximation can be 
done by a close physical inspection of the 
dynamics, as is done in the application that is 
examined in the next section. 

APPLICATION TO THE CONTINENTAL SHELF 
MODEL 

The Continental Shelf Model (CSM) is one of 
the most important models for the simulation 
and prediction of the tidal flow in the North Sea. 
It covers an area of 2.3106 km 2 [25 (western) by 
14 (northern) degrees in latitude]. Because of 
the large size of the domain, the dynamical 
equations have to be considered within a 
spherical coordinate system (ten Brummelhuis, 
1992). The state vector has a dimension of 
approximately 15,000. 

Due to its importance, a lot of effort has 
already been invested to calibrate this model. 
This is done manually. In the sequel, this 
manually calibrated model is referred to as the 
operational model. In order to test our method 
to simultaneously estimate states and para- 
meters, it is applied to CSM. Therefore we 
consider the estimation of some parameters in 
this tidal model where the open boundary is 
assumed to be uncertain. 

In the operational model, Cm.n and Din, n a r e  

the bottom friction coefficient and the depth in a 
gridpoint with coordinates (m, n). Obviously, 

not every Cm,,, and Dm,n c a n  be conceived as 
unknown parameters of the simulation model. 
Hence, we assume that the numerical domain G 
is divided into subdomains [2i, i = 1 , . . . ,  L For 
each of these subdomains a correction coefficient 
ci is defined that is related to Cm.,, by 

o p  Cm,,, = Cr,,,,, + Ci for (m, n) e g)i, (26) 
o p  with Cm., the value of the coefficient in the 

operational model. The new coefficients c~ are 
treated as the unknown parameters that are to 
be estimated: they act as a correction for the 
mean level of the Cm,,, in a subdomain fl~ and 
leave the spatial dependence inside f~ unaltered. 

The same can be done with respect to the 
depth. Again we introduce correction 
coefficients dj, j = 1 , . . . ,  J that are related to 
the depth by 

O m  n op , = D m , , , + d j  for (m,n)  eQj.  (27) 

Obviously, the division f~ = [._J ~,. (correction 
coefficients for the bottom friction) may differ 
from f2 = U ~ (correction for the depth). 

The open boundary condition of CSM is a 
prescribed water level elevation (see the section 
on Numerical Tidal Models), given in the form 
of a series of 10 harmonic constituents 

10 

k _ hm~,,,~ - ~ A~m~,,,~ cos (took At + ¢'~m~,,~). (28) 
I = 1  

The uncertainty in the open boundaries [denoted 
by coordinates (mb, rib)] is represented by a 
number (=5) of stochastic processes qi satisfying 
AR(1) models 

qk+~ = pq~ + Tik+l (29) 

that are located at the edges of the open 
boundary (Fig. 6). In between, the correction of 
the boundary condition is found by linear 
interpolation. This is a straightforward extension 
of the boundary treatment in the example with 
the simple geometry (Fig. 3). The increased 
number of stochastic processes qk is due to the 
more complex form of the open boundary. 

The data are processed by means of a steady 
state Kalman filter. Although the dynamical 
equations of CSM are nonlinear this approxima- 
tion is legitimate; first because the nonlinearities 
are weak, and second because the open 
boundaries are located in deep water regions just 
outside the continental shelf. This implies that 
the propagation of the tidal waves in the area 
along the open boundaries is a rather linear 
process and admits the steady state approxima- 
tion for data processing in order to determine 
the smoothed boundaries. In other parts of the 
geometry, the smoothed states are determined 
from the original dynamical model with the 
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FIG. 6. The adjustment of the depth. 

smoothed open boundaries as input. The 
nonlinearity of the dynamical model is then fully 
taken into account. However, a prerequisite for 
this approach is the availability of data 
observation points in the deep water areas along 
the open boundary. 

The effectiveness of our simultaneous state 
and parameter estimation procedure will now be 
illustrated by comparing it to the performance of 

52' 
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FIG. 7. The reduction of the output least squares function. 

TABLE 2. THE RMS ERRORS [M] IN SOME DATA OBSERVATION 
POINTS 

Operational After 
Station model calibration 

Wick 0.157 0.089 
North Shields 0.152 0.115 
Lowestoft 0.104 0.076 
Dover 0.171 0.144 
Vlissingen 0.261 0.200 
H.v.Holland 0.124 0.117 
Ijmuiden 0.157 0.131 
Den Helder 0.121 0.101 

CSM (before using the operational model). One 
of the first quantities to consider is the reduction 
of the output least squares function (Fig. 7) 

N 

Ilzk - HYT, II 2. (30) 
k=N~ 

For the operational model we found a value of 
45.7 where we used data of a one-day period. 
We see from Table 2 that the RMS error is 
substantially reduced, the average reduction is 
22% compared to the RMS errors in the 
operational model. 

The smoothed boundary (Fig. 8), indicates that 
only a small additional forcing is needed. The 
realization of the processes q2 and q5 are very 
minor; in absolute sense they do not exceeed 
0.01 [m]. The realizations of the remaining 
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Fro. 8. The smoothed correction at the edges of the open boundaries. 

processes are somewhat larger, but still they do 
not exceed a 0.035 [m] bound. It is remarkable 
that ql, q2 and q3 are strictly positive. We may 
conclude that the mean level of the prescribed 
open boundary must be increased. Looking at 

the realizations of the processes qi ,  i = 1 . . . . .  5 ,  

we notice a time dependence that can be 
interpreted in terms of tidal constituents. 
Especially from the realizations of q3, q4 and qs, 
an oscillation with a period of approximately 

2.0 

-10 

- 1 . 0  

Fro. 9. The adjustment of the bottom friction. 
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FIG. 10. Water level elevation according to the manually 
Wick .  

18 h can be recognized. This can be interpreted 
as an interaction between the ME and Oi tidal 
constituents. In general, a harmonic analysis 
could be performed to derive qi adjustments for 
the amplitude and phases of the various 
components. They, in their turn, could be used 
to adjust the open boundary forcing for the 
operational model. The adjustment of the 
bottom friction is shown in Fig. 9. 

Without the estimation of the open boundary, 
the depth was partly corrected for the neglected 
open boundary errors. This implies that the 
depth is adjusted for very specific open boundary 
errors and it makes these adjustments only 
useful for that particular situation in order to 
reduce the RMS error. If, for instance, the 
adjusted depth was used in a simulation model 
to represent the tidal motion in a different 

i A , * , A t , , , , i , 

12 14 16 18 20 22 24 
time [hour] 

calibrated operational version of CSM in station 

period (which means with different open 
boundary errors), the simulation results could be 
worsened. 

The effect of the calibration on the simulation 
of the water level elevation is illustrated in Figs 
10-13. Figures 10 and 12 represent the water 
level elevation according to the manually 
calibrated operational version of CSM. By 
estimating some parameters and a correction on 
the open boundary condition, the performance 
of CSM is improved substantially. The fact that a 
lot of effort was already invested to calibrate the 
operational version of CSM emphasizes the 
strength of our approach. 

C O N C L U D I N G  R E M A R K S  

In this paper we discussed a method to 
estimate simultaneously uncertain parameters 

3 5  
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FIG. 11. Water level elevation based on the simultaneous estimation of state and parameters in station Wick ,  
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FIG. 12. Water level elevation according to the manually calibrated version of CSM in station ljmuiden. 
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FIG. 13. Water elevation based on the simultaneous estimation of state and parameters in station ljmuiden. 

and states in tidal models with uncertainties in 
the prescription of the open boundary condi- 
tions. By exploiting 
• the power of the method of Chavent (1979) to 

determine gradients of cost functions, 
• the equivalence of the Kalman filter and ML 

solutions in the case where the model is linear 
and disturbed by Gaussian white noise, and 

• the special characteristics of the dynamics. 
A method could be developed that is applicable 
for large-scale models, without an excessive 
computational load. However, if the dynamics 
contain nonlinearities, approximations have to 
be made. The best way to choose the 
approximations is a subject for further research. 

REFERENCES 

Boltjanski, V. (1976). Optimale Steuerung Diskreter Systeme. 
Akademische Verlagsgesellschaft Geest und Portig K.-G., 
Leipzig. 

ten Brummelhuis, P. G. J. (1992). Parameter estimation in 
tidal models with uncertain boundary conditions. Ph.D. 
Thesis, University of Twente, Enschede. 

ten Brummelhuis, P. G. J. and A. W. Heemink (1990). 
Parameter identification in tidal models with uncertain 
boundary conditions. Stochastic Hydrol. Hydraulics, 4, 
193-208. 

ten Brummelhuis, P. G. J., A. W. Heemink and B. de Jong 
(1988). Stochastic dynamic approach to predict water 
levels in estuaries. J. Hydraulic Engng, 114, 1339-1358. 

Chavent, G. (1979). Identification of distributed parameter 
systems: about the least square method, its implementa- 
tion and identifiability. Identification and Syst. Parameter 
Eaamaaon, Proc. 5th IFAC Symposium, Darmstadt. 
Pergamon, Oxford, pp. 85-97. 

Cox, H. (1964). On the estimation of state variables for noisy 
dynamical systems. IEEE Trans. Aut. Control, AC-9, 
5-12. 

Detchmendy, D. M. and R. Sridhar (1965). Sequential 
estimation of states and parameters in noisy non linear 
systems. Proc. Joint Automatic Control Conf. Troy, New 
York, pp. 56-63. 

Fletcher, R. (1980). Practical Methods in Optimization, 1 
and 2. Wiley, New York. 

Hansen, W. (1956). Theorie zur Errechnung des Was- 
serstandes und der Stromungen in Randmeeren nebst 
Anwendungen. Tellua, $. 

3.5 

[m] 3.0 

2.5 

w 2.0 
a 

el 0 . 0 ~  

-05 



758 A.  BAGCHI and P. TEN BRUMMELHUIS 

Mitchell, A. R. and D. F. Gritfiths (1980). The Finite 
Difference Method in Partial Differential Equations. Wiley, 
Chichester. 

Mortensen, R. E. (1968). Maximum likelihood recursive 
nonlinear filtering. J. Optimiz. Theory Applic. 2, 386-394. 

Patankar, S. V. and D. B. Spalding (1970). Heat and Mass 
Transfer in Boundary Layers: A General Calculation 
Procedure• lntertext, london .  

Soderstr6m, T. (1989) System Identification. Prentice-Hall, 
New York. 

Stelling, G. S. (1983). On the Construction of Computational 
Methods for Shallow Water Flow Problems. 
Rijkswaterstaat Communictions, The Hague. 

APPENDIX:  T H E  P R O O F  OF PROPOSITION 1 

To prove the proposition we consider the related system 
where only one stochastic process qk is introduced to account 
for uncertainties in the open boundary prescription, which is 
done to simplify the notation. The state of this model is 

Y~ = [Xk, qk, qk-~ . . . . .  qO]T, (A.1) 

SO the entire history, up to the actual time index k, is 
included in the state. It evolves in time according to equation 
(A.2) 

:11 
I 

I 

_ q O j  

F(p) 

1 . . . . . .  

1 . . . . .  

1 . . . .  

1 

. . . .  1 

. . . . .  1 

. . . . . .  1 

U k + l  

0 

0 
+ B  

0 

Xk 

qk 
qk-! 

qO 

0 

0 

W k + 

i o  

+ G (A.2) 
I 

I l " 

0 

To abbreviate the notation, g,(k, p) is introduced as the new 
state transition matrix to describe the stochastic model by 
equations (A.3) and (A.4): 

Vk+l  = ~ ( k ,  p)Y~ + B ( k  + 1)Uk+, + G ( k  + l ) w k + , ,  ( A . 3 )  

z k = H(k)Y~, + vk• (A•4) 

Hence, if the smoothed states {Y~,* [ k = 0 ,  1 . . . . .  N }  

minimize the analogon of the criterion, defined by equation 
(12), then they satisfy the TPBVP, equations (A.5)-(A.9):  

Y~,*l = ~0(k, p)Y~,* + B ( k  + l )uk+  I 

+½G(k+l)QG(k+l)+vk+l,  k=O, 1 . . . . .  N - 1  (A.5) 

v k = ~O(k, p)TVk+ l + 2H(k)TR-t[zk - H(k)Y~,*], 

k=No,  No+l  ..... N (A•6) 

v k = lp(k, p)vk+t, k = 0, 1 ..... N o -  1 (A•7 )  

and the conditions 

Y;* = 0, (A.8) 

VN+I = 0• (A.9) 

Proposition 1 states that the smoothed states can be 
determined using Kalman filter solutions. In the following 
Lcmma, the smoothed states Y* of the TPBVP are first 
related to the Kalman filter solutions• 

Lemma. If Y'(k [ k) is defined by 

Y'(k [ k) = Y~* - ~C(k)~y(k, p)'rvk + I, 

with 

k = 0 ,  1 . . . . .  N, 

(A.IO) 

C(k) = [! + P(k)H(k)TR- 'H(k)]- 'P(k)  (A• l l )  

P(k) = ~#(k, p)C(k)lp(k, p)T + G(k)QG(k)T (A.12) 

then 

"Y'(k  + 1 t k + 1) -- ~o(k, p)Y'(k [k) 

+ C(k + 1)H(k + 1)TR -~ 

x [zk+, -H(k  + 1)~,(k, p)Y'(k I k)], 
(A•13) 

k=No-l,N o ..... N-l 

Y'(k + 11 k + 1) = ~,(k, p)V'(k I k), k = 0, 1 . . . . .  N o - 2 

, v ' (010)  = 0 

Proof. 

Y~,*I - ~0(k, p)Y~,* - ½G(k)QG(k)vk+t = 0 (A.14) 

:> (A.10)-(A.11) 

Y'(k + 1 [ k + 1) + ½C(k + 1)g,(k + 1, p)Tv~+ 2 

-- Ip(k, p)Y'(k I k) - ~2P(k + 1)%+1 = 0 (A.15) 

::> (A.5)-(A.6)  

'V ' (k  + 1 I k + 1) - Xa(k, p)V'(k I k) 

+ ~[C(k + 1) - P(k + l)]vk+ ~ - C(k + 1) 

x H(k + 1)TR-I[zk+t -- H(k + 1)~(k, p)Y~,* 
(A.16) 

- ~H(k + 1)G(k + I)QG(k + I)TVk+,I = 0  

Y'(k + 1 [k + 1) - ~a(k, p)Y'(k [k) + ½[C(k + 1) 

- P(k + 1)]v ,+  I = 0 ,  

where the equation above is valid for k=No-1, 
No ..... N-I and the equation below for k= 
0,1 . . . . .  N o - 2 .  

(A.5)-(A.6)  

"Y'(k + 1 [k + 1) - ~(k, p)Y'(k [ k )  - C(k  + 1) 

x H(k + 1)TR-~[Zk+~ -- H(k + 1)~O(k, p)Y'(k [k)] 

+ ½[C(k + 1) - P(k + 1) + C(k + 1) 

H(k + 1)TR-~H(k + l )P(k + 1)]vk+ ~ = 0  

V'(k + l [ k  + 1) - ~a(k, p)V'(k I k) 

+ [[C(k + I)- P(k + l)]vk+ I =0. 

(A.17) 
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The fact that P(k + 1) and C(k + 1) are the covariances of 
Ip(k, P)Yt + Gwk and Yk+l respectively makes P(k + 1) and 
C(k + 1) symmetric. Moreover, in the absence of data for 
k < No, P(k) --- C(k). If we apply this to the last equations, 
we can complete the proof: 

Y'(k + 1 J k + 1) - I/,(k, p)Y'(k I k) 

- C(k + 1)n(k + I)TR -'- 

, X [Zk+ , -- H(k + I)Ip(k, p),V'(k I k)l = 0 

Y (k + 1 I k + 1) - ~/(k, p)Y (k I k) = 0. 

(A.18) 

Now, suppose that the data {z k [ k = No, No + 1 . . . . .  N) are 
recursivcly processed by equation (43), we finally establish 
the equivalence of Y'(N[N)  and Y~ because VN+I=O. 
This, on its turn, immediately implies that q(k [ N) = q,k for 
all k. 

The analogon of equation (14), in case only one stochastic 
process is introduced, is 

Bj oC, l[Xq÷[o ]..+, 
tqT,+,_l L 0 p ]tq~J 

1 GI T (vx)k+l 

from which it follows that 
I T q(k + 1 [ N) = q,k+, : pq,k + ~QG,(vx)k+, + ½Q(Vq)k+, 

(A.20) 

and 

X *k+l = FI(p)X *k + BlUk+ I + Giq(k + 1 ] N), (A.21) 

which completes the proof of the proposition. [] 
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