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A second order discontinuous Galerkin method for advection
on unstructured triangular meshes
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SUMMARY

In this paper the advection of element data which are linearly distributed inside the elements is addressed.
Across element boundaries the data are assumed discontinuous. The equations are discretized by the
Discontinuous Galerkin method. For stability and accuracy at large step sizes (large values of the
Courant number), the method is extended to second order. Furthermore the equations are enriched with
selective implicit terms. This results in an explicit and local advection scheme, which is stable and
accurate for Courant numbers less than .95 on unstructured triangle meshes. Results are shown of some
pure advection test problems. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this note we study the transient evolution of a data �eld f(x; t), which is governed by
the scalar advection equation.

@f
@t
+ a · ∇f (1)

a(x) is the advective velocity. The advection equation is discretized using �nite elements.
The discretized �eld fh(x; t) is assumed discontinuous across element boundaries.
The method as presented in this paper has been developed for use in the Arbitrary

Lagrangian Eulerian (ALE) method in solid mechanics [1–3]. Other applications may be
in the �eld of �uid mechanics, such as pollution transport [4], sub sonic and supersonic
aerodynamics [5–7] or visco-elastic �ow [8, 9].
Equation (1) is discretized using the Discontinuous Galerkin method [10]. The Discontin-

uous Galerkin Method and the extensions as proposed in this paper will be demonstrated on
the one dimensional advection equation in Section 2. Generalization to the multi-dimensional
case is shown in Section 3.
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2. ONE DIMENSIONAL ADVECTION

We want to solve for f(x; t); (x∈[0; L]; t∈[0; T ]), such that

@f
@t
+ a

@f
@x
=0

f(0; t)=f0 and f(x; 0)=F(x)

(2)

The time axis [0; T ] is partitioned into Nt intervals [ti−1; ti], where i∈[1; Nt]. A deferred task
is to construct the solution at t= ti based on the distribution at t= ti−1.
In literature increments at �nite time steps are typically obtained by time integration.

�fi=
∫ ti

ti−1

@f
@t
dt (3)

For accuracy high order time integration is used, e.g. a Taylor Galerkin approach [9] or second
or third order Runge–Kutta [5]. For stability and monotonicity often limiters are employed
[4, 5].
Instead of integrating in time, we will regard the advection equation as a projection in

space. We assume that we know the advective displacement c rather than the advective
velocity.

c=(ti − ti−1)a (4)

In that case we can calculate the convective increment �fi(x) straight away.

�fi(x)=f(x; ti)− f(x; ti−1)=f(x − c; ti−1)− f(x; ti−1) (5)

The increment �f is written by means of Taylor expansion in x as

�f(x)=−c(x)@f
@x
+
1
2
(c(x))2

@2f
@x2

+O(c3) (6)

For conservation type equations a similar approximation can be derived [11, 12].

2.1. The second order discontinuous Galerkin method

The spatial domain [0; L] is partitioned into Nx intervals In=[xn−1; xn], where n∈[1; Nx]. The
�eld f as well as the increment �f are discretized on In using discontinuous base functions
wn(x) (Figure 1).

fnh (x; t) =
∑
k
wkn (x)f

n
k (t)

�fnh (x) =
∑
k
wkn (x)�f

n
k

(7)
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Figure 1. Discontinuous function
discretization on In.

Figure 2. First order vs second order
boundary �ux.

The second order expansion (6) for the increment �fn on In is written in a weak form.∫ xn

xn−1

�fnh (x)w
k
n dx=−

∫ xn

xn−1

(
c(x)

@fnh
@x

− 1
2
c(x)2

@2fnh
@x2

)
wkn dx ∀wkn (8)

The fh-�eld is assumed discontinuous across interval boundaries. We follow [10] and weakly
enforce continuity of f at the in�ow boundary xn−1. We deal with a �nite step, therefore we
enforce continuity during the whole time step [ti−1; ti].

∫ xn

xn−1

�fnh w
k
n dx=−

∫ xn

xn−1

(
c
@fnh
@x

− 1
2
c2
@2fnh
@x2

)
wkn dx

−
∫ ti

ti−1

a(xn−1)wkn (xn−1)(f
n
h (xn−1; t)− fn−1h (xn−1; t)) dt ∀wkn (9)

Using (2) a second order approximation to the boundary term is derived.

∫ ti

ti−1

a(xp)wq(xp)f(xp; t)dt ≈ a(xp)wq(xp)
∫ ti

ti−1

(
f(xp; ti−1) + (t − ti−1)@f@t

)
dt

= a(xp)wq(xp)
∫ ti

ti−1

(
f(xp; ti−1)− (t − ti−1)a(xp)@f@x

)
dt

= c(xp)wq(xp)
(
f(xp; ti−1)− 1

2
c(xp)

@f
@x

)
(10)

This result is illustrated in Figure 2. Substitution into (9) yields

∫ xn

xn−1

�fnh w
k
n dx=−

∫ xn

xn−1

(
c
@fnh
@x

− 1
2
c2
@2fnh
@x2

)
wkn dx
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− c(xn−1)wkn (xn−1)
(
fnh (xn−1; ti−1)−

1
2
c(xn−1)

@fnh
@x

)

+ c(xn−1)wkn (xn−1)

(
fn−1h (xn−1; ti−1)− 1

2
c(xn−1)

@fn−1h

@x

)
∀wkn (11)

After partial integration the jump term at the in�ow boundary splits up into two �ux terms,
an in�ux from the upwind element and an out-�ux at the out�ow boundary.

∫ xn

xn−1

�fnh w
k
n dx=

∫ xn

xn−1

(
d(cwkn )
dx

fnh − 1
2
d(c2wkn )
dx

@fnh
@x

)
dx

+c(xn−1)wkn (xn−1)

(
fn−1h (xn−1; ti−1)− 1

2
c(xn−1)

@fn−1h

@x

)

− c(xn)wkn (xn)
(
fnh (xn; ti−1)−

1
2
c(xn)

@fnh
@x

)
∀wkn (12)

�f is solved for on an element by element basis. When discretized using a linear interpolation
per element, based on function values in Gauss integration points the ‘mass’ matrix in the
left hand side of Equation (12) is diagonal.
Equation (12) is equivalent to the result of the two step procedure of Reference [4], which

is derived from a �rst order discretization. The presentation as in Equation (12) shows, that
improved stability stems from the second order boundary �uxes as well as from a (naturally
arising) di�usion term (1=2)c2(@2f=@x2). In 2D or 3D this term takes the form of stream-line
di�usion.

2.2. Element-wise point-implicit scheme

The scheme of Equation (12) is stable for Courant numbers (Cr)¡0:7 (see Figure 6). For
many applications this is already su�cient. To extend the stability region we follow [6] and
apply an element-wise point-implicit scheme. To this end implicit terms are added to selected
terms coming from weight functions, whose support is the domain of one element, with respect
to the degrees of freedom associated with that same element.

∫ xn

xn−1

�fnh w
k
n dx=

∫ xn

xn−1

(
d(cwkn )
dx

(fhn + ��f
n
h )−

1
2
d(c2wkn )
dx

@(fhn + ��f
n
h )

@x

)
dx

+c(xn−1)wkn (xn−1)

(
fn−1h (xn−1; ti−1)− 1

2c(xn−1)
@fn−1h

@x

)

−c(xn)wkn (xn)
(
fnh (xn; ti−1)− 1

2c(xn)
@fnh
@x

)
∀wkn (13)
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Note that the implicit terms are only added to the terms in the integral. Adding these terms
to the fnh terms at the out�ow boundary xn, as is proposed in Reference [6], will make the
method non-conservative. When this is remedied by also adding implicit terms to the fn−1h
terms at the in�ow boundary, again a conservative method is obtained but then the local
character is lost.
Numerical experiments indicate that �=−1=60 and �=2=3 is a good choice. A priori it

may be expected that the �-term will have a stabilizing e�ect. This term adds an additional
(stream line) di�usion within each element. A small negative value for � seems to prevent
the system from being overly damped.
Although after collecting all terms with �f in the left hand side, the ‘mass’ matrix is

neither diagonal nor symmetric anymore, it remains local. The preferred explicit element by
element solution is still possible.

3. MULTI DIMENSIONAL ADVECTION

In two (or three) dimensions Equation (6) is written as

�f=−c · ∇f + 1
2cc:∇∇f +O(c3) (14)

The domain is divided into non-overlapping triangles or quadrilaterals, on which f and �f
are discretized in a way similar to Equation (7) to obtain a linear distribution in each element.
Equation (14) is written in the weak form while weakly enforcing continuity over the in�ow
boundary to obtain the counterpart of Equation (11).

∫
Vn
wkn�f

n
h dV =−

∫
Vn
wkn c · (∇fnh − 1

2 (∇∇fnh ) · c) dV

+
∫
�−n
wkn c · n(fnh − fn(−)h − 1

2c · (∇fnh −∇fn(−)h )) d� ∀wkn (15)

Here �−
n is de�ned as that part of the boundary of the nth element where c · n¡0, where n is

the outward pointing normal. fn(−)h is the value of f in the elements which share boundaries
�−
n with the nth element.
After partial integration the terms with � and � are added like in Equation (13) and all

terms containing �f are collected in the left hand side.

∫
Vn
(wkn�f

n
h − �∇ · (wkn c)�fnh + 1

2�∇ · (wkn cc) · ∇�fnh ) dV

=
∫
Vn
(∇ · (wkn c)fnh − 1

2∇ · (wkn cc) · ∇fnh ) dV −
∫
�−n
wkn c · n(fn(−)h − 1

2c · ∇fn(−)h ) d�

−
∫
�+n

wkn c · n(fnh − 1
2c · ∇fnh ) d� ∀wkn (16)

where �+n is de�ned as (�+n ∪�−
n =�n; �

+
n ∩�−

n = ∅).
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Figure 3. Advection of a Gaussian bump, initial distribution.

3.1. Implementation

Equation (16) has been implemented for 3-node triangular 2-D elements. The displacement
�eld is C0-continuous and piece wise linear. The interpolation of element data f is linear and
discontinuous over element boundaries. Inspection of Equation (16) shows that the boundary
�ux terms are of degree 3. The volume integrals involve polynomials of degree 2.
We choose to evaluate the boundary �ux integrals as accurately as possible. Two integration

points per edge are used for evaluation of the �uxes. Three integration points are used to
evaluate the volume integrals.

4. SIMULATIONS

The proposed method will be demonstrated on simulations of pure advection with a constant
and a varying velocity �eld.

4.1. Advection of a Gaussian bump

The objective of this series of calculations is to asses the stability and accuracy of the method.
A rectangle of size 2×3:2 is divided into 1318 elements. The initial value of the �eld to be
convected is a discontinuous least squares approximation of a Gaussian bump (Figure 3).

f=0:014(x
2+y2) (17)

This bump is convected over a distance of 2 in x-direction. In Figure 4 the �nal distribution
is shown when the advection is done in 81 steps. The maximum Courant number in any
element is 0.95. The Courant number is de�ned as

Crn=
1
2Vn

∫
�n
‖c · n‖ d�; Crmax = max(Crn) (18)

In Figure 5 the evolution of the maximum and minimum values of the nodal averaged f is
given. No instabilities are visible. The maximum value remains close to 1, while there is no
undershoot. The error in the phase velocity is less than 10−5.
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Figure 4. Advection of a Gaussian bump, �nal pro�le (Crmax = 0:95).
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Figure 5. Evolution of minimum and maximum f value during advection (Crmax = 0:95).

A series of similar runs with di�erent step sizes is done in order to asses the accuracy of
the method in relation to the maximum Courant number. In Figure 6 the L1 and the L2 norms
of the error at the end of the advection are shown. These norms are de�ned as

E1 =
∫
V
|fh − fref | dV

/∫
V
|fref | dV

E2 =

√∫
V
(fh − fref )2 dV

/∫
V
(fref )2 dV

(19)

Also shown in Figure 6 are these error norms for the 2nd order method without the implicit
terms. Inclusion of implicit terms according to Equation (13) extends the stability region by
approximately 30%.
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Figure 6. Error of the �nal distribution as function of the maximum Courant number.

4.2. A non-uniform velocity �eld

To demonstrate pure advection in a varying velocity �eld, the simulation of advection of a
Gaussian bump is repeated with velocities de�ned as{

u

v

}
=

{
1 + 1

2 cos�(x − 1)
�y
2 sin �(x − 1)

}
;
1
2
¡x¡

3
2
;

{
1

0

}
elsewhere (20)

This is a divergence free velocity �eld. In order to avoid spurious in�ow from the sides, the
boundaries are adapted to follow the stream lines.
A distance of 2 is covered in 93 steps. The maximum Courant number in any element is

again 0.95. The resulting distribution is shown in Figure 7.

4.3. A sharp front

In these calculations the performance of the method in the presence of a sharp front is
shown. The initial distribution is f(x; 0)=0. At the in�ow boundary a condition f0(y)=0; y
¡−0:053;f0(y)=1 elsewhere is prescribed. The result after 85 steps (Crmax =0:92) is shown
in Figure 8. The front is typically smeared out over 3 elements. Loss of monotonicity is visible
as a slight Gibbs e�ect.

5. CONCLUSIONS

We have presented a second order discontinuous Galerkin method for advection of element
data. The data to be convected are discontinuous across element boundaries.
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Figure 7. Advection of a Gaussian bump in a non-uniform velocity �eld, �nal distribution (Crmax = 0:95).

Figure 8. Advection of a sharp front (Crmax = 0:92).

A discretization is shown based on a second order Taylor expansion of the advection equa-
tion. This discretization results in an advection scheme which is stable for Courant numbers
up to 0.7 in an unstructured mesh of triangular elements.
In order to extend the stability region of the scheme, the discretized equations are enriched

with selective implicit terms. The result is an explicit and local scheme, which is stable and
accurate for Courant numbers up to 0.95.
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