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Several techniques exist to automatically put together a test meeting a number of
specifications. In an item bank, the items are stored with their characteristics. A test
is constructed by selecting a set of items that fulfills the specifications set by the test
assembler. Test assembly problems are often formulated in terms of a model consist-
ing of restrictions and an objective to be maximized or minimized. A problem arises
when it is impossible to construct a test from the item pool that meets all speci-
fications, that is, when the model is not feasible. Several methods exist to handle
these infeasibility problems. In this article, test assembly models resulting from two
practical testing programs were reconstructed to be infeasible. These models were
analyzed using methods that forced a solution (Goal Programming, Multiple-Goal
Programming, Greedy Heuristic), that analyzed the causes (Relaxed and Ordered
Deletion Algorithm (RODA), Integer Randomized Deletion Algorithm (IRDA), Set
Covering (SC), and Item Sampling), or that analyzed the causes and used this infor-
mation to force a solution (Irreducible Infeasible Set-Solver). Specialized methods
such as the IRDA and the Irreducible Infeasible Set-Solver performed best. Recom-
mendations about the use of different methods are given.

Test construction is an important step in high-stakes educational measurement.
The purpose of test construction is to assemble tests from a pool of items that
meet the specifications developed by test committees. Because of the impor-
tance the test results of an admission test, a final exam, or the SAT (Scholas-
tic Aptitude Test) might have for the examinee’s life, the test construction algo-
rithms have to be developed carefully, and quality control is necessary. In order
to guarantee quality, several automated test assembly (ATA) models have been
developed.

Most ATA models are based on mathematical programming techniques. A com-
monly used objective is to measure the ability level of the examinees as precisely
as possible, under restrictions defined by the test specifications. These restrictions
might specify the content of the test, the item type, time limit, gender-neutral ori-
entation of the items, minority orientation, or total word count. ATA models have
been developed for paper and pencil tests (Adema, Boekkooi-Timminga, & van der
Linden, 1991; Armstrong, Jones, & Wang, 1995; van der Linden & Adema, 1998;
van der Linden & Boekkooi-Timminga, 1989; Veldkamp, 2002), for computerized
adaptive tests (Stocking & Swanson, 1993; van der Linden, 2000; van der Linden &
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Reese, 1998; Veldkamp & van der Linden, 2002), for mastery tests (Vos, 1999), and
for multistage tests (Luecht & Nungester, 1998, 2000).

All applications of ATA deal with Linear Programming (LP) models with binary
decision variables xi, i = 1, . . . , I, and a number of constraints, indicated by j =
1, . . . , J. Here, the index i refers to items, and I is the total number of items available
in the pool. The choice xi = 1 indicates that item i is included in the test, where xi =
0 describes the choice that it is not. In matrix vector notation, where a bold printed
variable or parameter represents a vector or matrix, such an LP model can be written
as follows:

Maximize c′x (1)

Subject to

Ax
≥
=
≤

b
(2)

xi ∈ {0, 1}, i= 1, . . . ,I , x = (xi , . . . , xI ) (3)

where c is the objective coefficient vector, and ci represents the relative importance
of item i with respect to the other items according to the objective function. The
matrix of constants A has elements aij, i = 1, . . . , I, and j = 1, . . . , J, and b is the
vector of parameters bj, j = 1, . . . , J. The parameters bj are called the bounds of
their respective constraints. Decision variables are usually written at the left side of
an inequality or equality sign, and the bounds at the right side. This general model
will be used throughout this article.

When some of the constraints in Equation (2) contradict each other, no test can be
constructed. The test assembly model is then said to be infeasible, and causes for this
infeasibility have to be found. Several methods have been developed to analyze in-
feasibility in mathematical programming models (Chinneck, 1993, 1997; Chinneck
& Dravnieks, 1991; Greenberg, 1987, 1992; Huitzing, 2004a, 2004b; Timminga,
1998). The topic of this article is to describe which approaches have been devel-
oped to deal with infeasible test assembly problems, and how they behave in practice
for problems of large size.

First, the problem of infeasibility is explained. Then, different methods for ana-
lyzing causes of infeasibility are introduced. Two-test assembly problems illustrate
the methods. Finally, the methods are discussed and recommendations about their
use are given.

Infeasibility in Linear Programming Test Assembly Models

Disregarding typing errors in writing the demands into a mathematical model,
there are two main reasons for infeasibility. The first is a contradiction between the
demands: for example, wanting to assemble a test that consists of 10 items, while also
requesting that for the 3 specified content categories, say mathematics, geography,
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and biology, at most 3 items are selected. The second main reason for infeasibility is
a deficient item bank. As a very simple example, consider the previous test assembly
model, where a test of ten items has to be assembled, containing at least 3 categories
(and no constraints on the number of items of each category), while the item bank
only has items on biology and mathematics. A deficient item bank appears in a math-
ematical model either as a contradiction between the number of decision variables
and the constraint bounds, i.e., the item bank is too small, or as a contradiction be-
tween the coefficients in the constraints and the constraint bounds, i.e., the item bank
cannot satisfy the specific item characteristic demands. In the first case, it is clear
that the item bank has to be extended, while in the second case, the quality of the
items in the item bank is deficient. From a mathematical point of view, all types of
infeasibility are of the same form, and are caused by a contradiction between one or
several groups of constraints.

In the short term, to solve infeasibility, some constraints have to be violated, i.e.,
they have to be adjusted or deleted. This means that either the bound has to be re-
laxed, or the coefficients in the constraint have to be adjusted. As a long-term strat-
egy, more decision variables (i.e., items) have to be added to the model (i.e., the item
bank). If, in the short term, a test has to be assembled anyhow, a feasible model has
to be “forced.” As the item characteristics, expressed as the elements of the matrix
A, are usually considered as fixed, only adjusting the constraint bounds can force a
feasible model. A small illustration is the following set of constraints:

6∑
i=1

xi = 3 (4)

x1 + x2 + x3 ≤ 1 (5)

x4 + x5 + x6 ≤ 1 (6)

xi ∈ {0, 1}, i = 1, . . . , 6. (7)

It is obvious that constraints (4)–(6) together are in conflict. Possibilities of forcing a
feasible model include enlarging the bound of either constraint (5) or constraint (6)
to 2, or setting the bound of constraint (4) to 2. In those cases, the original constraints
are said to be violated.

In practice, most infeasibilities will be caused by an item bank deficiency. To repair
the infeasibility, the item bank should be updated, i.e., expanded with new or better-
suited items. However, before that can be done, the causes of infeasibility should be
made clear.

Theory of Infeasibility Analysis

A first step in the analysis of infeasibility is to detect and pinpoint the causes.
In the literature, there exist a number of concepts that can elucidate causes of in-
feasibility. An important definition is the following: An irreducible infeasible set
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(IIS) of constraints (Chinneck & Dravnieks, 1991; Chinneck, 1997; Timminga, 1998;
Huitzing, 2004a) is a minimal set of constraints that together are infeasible, but for
which every subset of constraints is feasible. Thus, taking one or more constraints
out of an IIS ensures that the remaining set of constraints is feasible again (for a
proof, see Chinneck & Dravnieks, 1991). A small illustration at the end of this para-
graph will perhaps clarify the mathematical formulation. An infeasible model can
have several IISs, which can also overlap, i.e., a constraint can belong to more than
one IIS. A minimal cardinality IIS set cover (MCISC) (e.g., Amaldi, 1994; Chinneck,
1997, 2000; Huitzing, 2004b) is a set of constraints in which all IISs of the infeasible
model are represented by at least one constraint. Removing even one constraint from
a MCISC means that one or more IISs are not represented in the MCISC anymore.
There can be several MCISCs in an infeasible model, but they all share the next
feature. Removing a MCISC from an infeasible model makes the remaining set of
constraints feasible again. This follows from the fact that removing a MCISC is the
same as removing one or more constraints from every IIS in the infeasible model.
Each MCISC has a complementary set of constraints, called a maximum feasible
set of constraints (MFS), which is a maximum number of constraints that together
are still feasible, while adding another constraint (of the original infeasible model)
would make the set infeasible again.

To elucidate these concepts and their potential use in practice, we will present an
example. Say we want a test that fulfills the following five demands:

(1) the test should contain not more than three items;
(2) the test should contain two items on history;
(3) the test should contain two items on mathematics;
(4) the test should contain one item on geography;
(5) in a test with an item on geography only one item on mathematics is allowed.

Moreover, suppose that all items have one subject only, but that there are suffi-
cient items on all subjects. The above model is infeasible. Already demands (1)–(3)
are together infeasible. Removing any of these three demands from the set {(1), (2),
(3)} makes the remaining set of two constraints feasible again. Thus, {(1), (2), (3)}
is an IIS. Another IIS is {(3), (4), (5)}. If we want to make the Model (1)–(5) feasi-
ble again, we must remove a number of demands. Of course, a minimal number of
demands to remove are preferred. From both IISs at least one demand must be re-
moved, and (3) seems the obvious choice. A MCISC is {(3)}, as it covers both IISs,
and its complementary MFS is {(1), (2), (4), (5)}.

Methods

Different methods that are able to either bypass the infeasibility problem or ana-
lyze the causes are described in the literature.

Forcing Methods

Forcing methods force a solution to the infeasible model by violating the
constraints. These methods result in a test, but the test does not meet all the
specifications. Forcing methods are sometimes referred to as repairing methods.

226



Infeasibility in ATA Models

However, the term repairing is not ambiguous, as it also implies that true errors are
really mended, while in fact a solution is forced by violating the constraints, therefore
we prefer the term “forcing methods.”

Goal-programming models. While a standard LPTA model cannot give a solu-
tion in the case of infeasibility, goal-programming (GP) models (Swanson & Stock-
ing, 1993; Timminga, 1998) can help. One such model is the Weighted Deviations
Model (WDM) (Swanson & Stocking, 1993; Stocking & Swanson, 1993; Stocking,
Swanson & Pearlman, 1993). The general form of a goal programming is

Minimize
j∑

j=1

v+ j d+ j +
j∑

j=1

v− j d− j (8)

Subject to

Ax + d+ − d−
≥
=
≤

b (9)

xi ∈ {0, 1}, i = 1, . . . , I , (10)

d+ j , d− j ≥ 0, j = 1, . . . , J , (11)

where d+ j and d−j are the amounts by which the constraint are violated positively or
negatively, called the deviation variables, whose weighted sum has to be minimized
(i.e., the goal function) and the nonnegative coefficients v + j and v−j are the weights.
In an optimal solution of a GP model, for every constraint j at most one of the d+ j

and d−j will be positive when the bound is violated, i.e., for a “≥” constraint j, d+ j

will be positive if the constraint is violated, while in the case of a “≤” d− j will be
positive. For an equality constraint, either d+ j or d−j will be positive if the equality
is not satisfied. The weights v + j and v−j represent the importance of not violating
constraint j.

Multiobjective goal programming. Adapting the constraints by means of a GP
model results in a feasible region. However, sometimes the test assembler is not only
interested in obtaining a set of feasible solutions, but also has other wishes, such as,
e.g., maximizing the test information function (TIF). This can be achieved by vary-
ing the coefficients v + j and v−j, usually by trial-and-error, or by adding a second
objective function,

Maximize c′x (12)

which is the original objective function of the Model (1)–(4). Using a GP model with
two objective functions, also called a Multiobjective Goal-Programming (MOGP)
model (Nemhauser & Wolsey, 1988; Nering & Tucker, 1993; Veldkamp, 1999), one
has the following choices. Either solve the model using only Model (8)–(11), and
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when a feasible region has been forced by relaxing some of the constraints, solve the
model again now with Equation (12) as objective function, or solve the GP model
using a combination of the two objective functions, where each objective is given
a weight representing its importance. The drawback of the first choice is that, after
solving Model (8)–(11), the obtained feasible region often consists of one or a few
feasible solutions only, which gives very little room for the second objective function.
The shortcoming of the second choice is that combining the objective functions into
one usually leads to larger violations of the original constraint bounds. In this article,
MOGP models apply a combination of the objective functions.

Greedy heuristics. Most used in test assembly are greedy heuristics: start with an
initial item and add a next best suited item according to the wishes of the test as-
sembler until certain prefixed number of items is reached. In the case of infeasibility,
these heuristics systematically allow the constraints to be violated in a more or less
controlled way. This is done by setting weights representing the cost of violating a
constraint, and minimizing the sum of these costs when choosing a next item for the
test, effectively introducing a goal function. For example, the WDM and the Normal-
ized Weighted Absolute Deviation Heuristic (NWADH) (Luecht, 1998) are usually
solved with greedy heuristics (the WDM can also be solved with an LP solver). Both
WDM and NWADH have successfully been used in test assembly for several years.
However, while they do deliver a solution even if the model was infeasible, they do
not focus on the causes of infeasibility, but allow constraint bounds to be relaxed “in
the case of need.” Moreover, they do not present the test assembler a tool to fix the
causes for future tests. In this article, a modified version of the heuristic WDM will
also be investigated.

The original objective function, which is to maximize the test information, is also
a constraint in the WDM with Heuristic solver. Setting its bound as a very large
number, the Heuristic (while seeking to minimize the deficit between the value of
the test information in the constraint and the constraint bound) maximizes the test
information.

Analyzing Methods

While GP models offer a forced solution in the case of infeasibility, they do not
analyze its causes. Some methods described in the literature are more focused on
finding causes of infeasibility such as IISs, MFSs, or MCISCs. Information about the
causes can help a test assembler to decide whether additional items have to be added
to the item bank, or whether the test assembly model has to be reformulated.

Deletion algorithms IRDA and RODA. An algorithm capable of distilling an IIS
out of an infeasible LPTA model is the deletion algorithm (Chinneck & Dravnieks,
1991; Huitzing, 2004a). The deletion algorithm works as follows. An arbitrarily or-
dered set of constraints is checked for feasibility. If the set is not feasible, then the
first constraint of the ordered set is temporarily excluded, and the remaining set is
checked for feasibility. If this new set is feasible, then the temporarily excluded con-
straint is restored to the set; otherwise, it is definitively excluded. The next step is to
temporarily remove the next constraint of the ordered set, check the remaining set
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for feasibility, and restore the constraint in the case of feasibility or delete in the case
of infeasibility. This is done for all the constraints in the original ordered set. The
remaining set of constraints is then an IIS. This algorithm is usually programmed in
commercial software packages such as CPLEX (ILOG, 2001) to detect an IIS, and
will be called the Relaxed and Ordered Deletion Algorithm (RODA).

The RODA programmed in CPLEX only uses the so-called relaxed LP model,
where all binary variables are relaxed into being real variables that can take values
between 0 and 1. Usually, integer LP models (i.e., the variables must take on integer
values) are first solved for a relaxed version, and, by means of an algorithm (e.g., the
branch-and-bound algorithm; Nemhauser & Wolsey, 1988; Nering & Tucker, 1993),
integer values for the variables must be found. It is, however, possible that while
the relaxed model is feasible, the integer model is not. A DA that only analyzes the
relaxed version of the LPTA model will then fail.

Because a deletion algorithm makes use of a given order in the set of constraints,
running the deletion algorithm twice on the same set will always give the same re-
sult. However, an infeasible model can have a number of different IISs. Randomizing
the order of the constraints may yield a different IIS. A version of the deletion algo-
rithm that first randomizes the order of constraints and respects the binary variables
is programmed in NuzLight (Huitzing, 2002), and will be called the Integer and Ran-
domized Deletion Algorithm (IRDA).

Set covering and item sampling method. It was argued that a good tool for infeasi-
bility analysis is the use of IISs. Although algorithms exist that are able to distill an
IIS out of an infeasible model, this can be quite a time-consuming job. Feng (1999)
showed that another option is to sample a large number of points in the solution
space, i.e., the vector x, and using a set-covering model (Boneh, 1984; Papadim-
itriou & Steiglitz, 1982; Wolsey, 1998), to find one or more IISs. Huitzing (2004b)
implemented the idea of item sampling and set covering (set covering with item sam-
pling (SCIS)) to test assembly models and LPTA models in particular. Also, it was
shown that SCIS can also be used to find MCISCs, and, probably most appealing to
test assemblers, MFSs, i.e., the largest set of constraints of the original model that
together is still feasible. The remaining set of constraints, after deleting an MFS in
an infeasible model, form an MCISC, which can be solved by means of a GP model.

The first decision when using SCIS regards the sampling of the items. In LPTA,
the variables are usually binary: either an item is selected or not. Therefore, at each
replication, a vector of zeros and ones of size I is sampled, where each one means
that the corresponding item has been selected for the test, and a zero otherwise. Such
a replication corresponds to a draw of a set of items from the item bank, i.e., a test.
A test consisting of, say, 500 items out of an item bank of 1,000 items when the test
length is 40 will not satisfy many constraints for that test, and will not give us much
information. Therefore, we set the probability that a variable gets the value one equal
to the number of items demanded for the test divided by the number of items in the
item bank, increasing the probability that the constraint representing the test length
will be satisfied. The probability that the other constraints will be satisfied is now
also higher.
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In the next step, this set of selected items is checked as to whether it satisfies the
constraints of the LPTA model. If the set of selected items satisfies all constraints, we
have a feasible test. But in the case of infeasibility, this will not occur. One sample
vector only represents one sampled set of selected items. But by sampling a large
number of such sets of selected items, information on which constraints are never
satisfied and which constraints are relatively easily satisfied can be obtained. The
general form of an SCIS algorithm can now be given.

1. Generate a large number of random points in {0,1}I with the aim of covering
all of the combinations. Any such point represents a set of selected items, i.e., a
test;

2. Check each test for all individual constraints: construct a matrix P, where each
row z represents a test, and each column j, a constraint. If the test z does not
satisfy constraint j, then pjz = 0, otherwise 1.

3. To find an IIS, solve the following SC problem,

Min{eTy | Py ≥ e, y binary} , (13)

where e is a vector with elements 1, and yj = 1 if element j, j ∈ {1, . . . , J}, is
selected, otherwise, it is 0. Supposing that all combinations have been sampled, the
solution to Model (13) is a minimal set of constraints that makes the whole model
infeasible, which is a smallest cardinality IIS (i.e., a smallest IIS, where smallest
refers to the number of constraints in the IIS). The solution may not be unique, as a
number of smallest IISs may exist.

The solution space is the set of all possible solutions, i.e., all possible combinations
of selecting items from an item bank. Each constraint divides this solution space into
two subspaces, i.e., one subspace where the constraint is satisfied and one where it is
not. In theory, the number of subspaces of an LPTA model with J constraints is 2J .
For example, a model of 100 constraints may have 1.26 × 1031 subspaces. Huitzing
(2003) showed that in practice this number is much lower. This is important because
infeasibility is caused by a contradiction between constraints, and to be certain to
find the causes (i.e., the IISs) of the infeasibility, all subsets should be found.

Regarding the first step of the SCIS, where it states, “sample with the aim to cover
all subsets,” some remarks are in place. In the SCIS, however, a subset is determined
by whether it contains a (sampled) combination of selected items (i.e., the vector
of size I of ones and zeros). Some subsets created by the constraints may never
be detected if they do not contain any integer coordinates. On the other hand, an
item bank often has more items than constraints, and several distinct combinations
of selecting items may lie in a same subset of the solution space (and thus do not
give new information on the causes of infeasibility). Moreover, while sampling the
0–1 vectors representing the selected sets of items out of an item bank is relatively
cheap in computer time, the SC algorithm, i.e., calculating the solution to Model
(13), can take large amounts of computer time for larger matrices P. Therefore, not
all combinations of selecting items from an item bank need to be sampled, but a
“large number with the aim of covering all combinations.”
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The solutions of the SCIS algorithm, i.e., the IISs, should be seen as indications
of IISs. A rule of thumb is to start with 1,000 times the number of items in the item
bank as the number of replications. Then solve the Model (13) with the generated
matrix P, and then check whether the found IIS is a true IIS. If its components, i.e.,
the constraints, are feasible together, then start again (possibly with a higher number
of replications).

Combined

In combined methods, the causes of infeasibility are analyzed and solved. In the
first step, an analyzing method is applied. In the second step, a solution to the cause
is forces, based on an infeasibility measure.

IIS-Solver. A combined method focused on infeasibility caused by IISs is the IIS-
Solver (Huitzing, 2004a). This heuristic works as follows. If a model is infeasible,
an IIS is found by means of either IRDA or RODA, as explained in the previous
section. Remember that in order to make an IIS feasible again, at least one bound
must be relaxed. The IIS-Solver proceeds by calculating a so-called “measure of
infeasibility” for each constraint in the IIS, where the measure of infeasibility is
a comparing tool to make a choice between constraints. Huitzing (2004a, see the
section on “Possible Loss Functions”) shows that a good measure of infeasibility is
the following one:

mz
(
bF

jz

) =




w j

(∑
z∈Z

bF
jz

)/
|b j | if b j �= 0,

w j

(∑
z∈Z

bF
jz

)/
δ if b j = 0,

(14)

where wj ≥ 0 are the weights of the constraints; 0 < δ < miny∈{1, ... , J}{by : by �= 0};
z is the index of the IIS and bF

jz is the amount by which a constraint must be relaxed
(all constraints are actually rewritten as “<” or “≤” constraints). To find bF

jz , Models
(15)–(18) is solved for each constraint in the IIS:

Min bF
jz

(15)

s.t. ajx ≤ b j for all j ∈ IISz, j �= jz (16)

ajz x ≤ b jz + bF
jz

(17)

xi ∈ {0, 1}, i = 1, . . . ,I , x = (xi , . . . ,xI ). (18)

In the IIS-Solver, only one constraint is relaxed at a time. The choice for the con-
straint to relax can be done automatically (e.g., by using Equation (14)) or by hand.
Once the IIS under inspection has been repaired, the whole model is solved again. If
it is still infeasible, a next IIS is sought and repaired as before, until the whole model
is feasible again. Then the IIS-Solver will solve the modified model with the original
objective function. The IIS-Solver can also be set to respect hard constraints.
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Theoretical Evaluation of the Methods

It is interesting to compare the different methods and state our expectations be-
forehand. Because the goals of forcing methods and analyzing methods differ, they
will be dealt with separately.

Forcing Methods

Forcing methods patch up the infeasibility by relaxing the constraint bounds. Cri-
teria must be chosen to compare the methods. Obvious choices are the number of
violated constraints, the sum of constraint-bound violations, the value of the original
objective function (maximize the TIF), and the time needed to force a solution. Only
looking at one of these criteria is not sufficient as they are interdependent. Obviously,
by allowing all constraints to be violated with no penalty and maximizing the TIF,
all items in the item bank will be selected, scoring high on the criterion of “value of
the original objective function.” On the other hand, this would result in high costs
in terms of constraint-bound violations and in terms of the number of constraints
violated.

When a GP model is applied, the weighted sum of violations is minimized. Appli-
cation of this method entirely focuses on constraints. Violation of constraints has to
be minimized. In the MOGP model, the amount of information in the resulting test
is also taken into account.

The third method does not concentrate on how to model the problem, but on the
algorithm applied for solving the model. When using a GP model with a greedy
heuristic, all constraints are open to relaxation and a local search at each iteration
for a next best item to add to the test takes place. But what might have been a good
decision in earlier iteration may have negative influence on later choices. The advan-
tage of greedy heuristics lies in computer time needed to find a solution. However,
the question remains whether they reach an optimal solution.

Four different criteria were introduced that might be used to compare the methods.
The GP method is expected to result in smallest number of violations and smallest
sum of constraint violations. The MOGP is expected to result in highest value of the
TIF. The greedy heuristic is expected to result in smallest computation time.

Analyzing Methods

The RODA, the IRDA, and the SCIS all search for IISs. While the RODA and
the IRDA make use of a deletion algorithm in an infeasible model, the SCIS takes a
probabilistic approach.

We have already stated the drawback of the RODA, which applies the deletion
algorithm to the relaxed LPTA model only. An infeasibility caused by the fact that
variables are integers will not be selected. This can be a serious drawback in the case
of LPTA, where the variables are binary. The reason it is used is that a relaxed LPTA
model takes much less computer time than an integer LPTA model. IRDA does not
suffer from these problems. However, for both RODA and IRDA, it is a drawback
that at each iteration when a constraint is temporarily dropped, the remaining set of
constraints must be checked for feasibility, which is mathematically as difficult as
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solving an LP model. The necessary computer time when using RODA or IRDA can
therefore rise considerably.

When an SCIS is used, a set-covering (SC) model must be solved to find an IIS. SC
models can be very hard to solve (Papadimitriou & Steiglitz, 1982; Wolsey, 1998),
and take much computer time. Moreover, because of the probabilistic nature of the
SCIS, it is not guaranteed that an IIS will be found. However, sampling the items
should take a matter of seconds with the right software, and one can start with a
lower number of replications and gradually increase the number of replications if no
IIS is found.

We expect the SCIS to perform better in terms of computer time than the RODA
and the IRDA. Moreover, we have some objections as to whether the RODA will
perform well because of the integer nature of the variables in LPTA.

In the “Conclusion and Discussion” section, we will consider our expectations of
the methods and discuss their achievements.

Numerical Examples

The different methods were applied to two practical test assembly cases. Case 1
comes from PPON (Periodieke Peiling van het Onderwijsniveau; Periodical survey
of educational level, CITO). PPON is a periodical assessment of the level of edu-
cation in the Netherlands. It is comparable to the National Assessment of Education
Program (NAEP) in the United States. CITO (National Institute for Educational Mea-
surement) in the Netherlands oversees this test, which is carried out for the Dutch
Department of Education. PPON Biologie (PPON biology) measures whether stu-
dents of the last year of the primary education meet certain standards set previously
by a panel of experts, and is repeated every 5 years.

Case 2 also comes from CITO. WisCAT PABO (CITO) is an adaptive test for
measuring deficiencies in mathematical knowledge of PABO students. PABO is the
Dutch higher education test for teachers for primary education. The test serves to
assign students to the different levels of a course.

For both cases, the item bank and a test assembly model were available. In prac-
tice, these test assembly models are feasible, but for the purpose of this study the
models were slightly altered to make them infeasible.

Settings of Methods in Comparison Study

Three methods are available for forcing a solution. To apply these methods, the
test assembly problems PPON Biology and WISCat PABO were transcribed into
GP models. For every constraint, variables d+ j and d−j were introduced that de-
note the amounts by which the constraint is violated positively or negatively. The
forcing methods were implemented in NuzLight (Huitzing, 2002), open source soft-
ware developed at the University of Groningen.

When the GP method is applied, the model is solved with an LP solver but with-
out the original objective function, so as just to minimize the sum of violations. In
MOGP, the cases are solved using again an LP solver, but now the original objective
function is included and has the same relative weight as the objective function of
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minimizing the sum of violations. The Greedy heuristic minimizes at each iteration
the total additional unweighted sum of violations. In NuzLight, the Greedy Heuristic
is programmed in the following way. Starting with zero items, the best item (with
respect to the constraints) is found by means of an LP solver and is added to the test.
The decision variable representing this item is then set to one in a new constraint.
This is then repeated at each iteration until the desired number of items is attained.

For analyzing the causes of infeasibility, three methods have been introduced. The
Relaxed Ordered Deletion Algorithm (RODA) is implemented in CPLEX (ILOG,
2001), a commercial software package for solving mathematical programming prob-
lems. Both the IRDA and the SCIS method are implemented in NuzLight. For the
SCIS method, the following settings were used. The SCIS was run each time with
10,000 replications and the probability of selecting an item was set to the test length
divided by the total number of items. In this way, the average test length of the sam-
pled tests was equal to the total test length.

The IIS-Solver, the only method that analyzes infeasibility and forces a solution,
uses a combination of the IRDA (all variables are integers) to find an IIS, and then
the GP method to solve this IIS. If the model is not yet feasible, it repeats this process
until a solution has been forced. The IIS-Solver is also implemented in NuzLight.

Case 1

The PPON Biology 2001 for Grade 6 of primary education has an item bank of
417 items, of which 172 items are singletons, and 245 items are parts of groups of
2–15 items called set-based items. The items have five domains. All items are di-
chotomous (i.e., scoring is either wrong or true), and are calibrated according to the
one-parameter logistic model (OPLM), i.e., all items have an information function
that is characterized by two parameters, a, the item discrimination, and b, the diffi-
culty of the item.

A typical PPON biology test assembly model will have one constraint on the test
length, three constraints on the target information function, five constraints on the
domains of the items, four constraints balancing the number of set-based items, and
about 255 constraints defining the item sets. Moreover, there will be a number of
constraints on enemy sets, i.e., items that must not appear in a same test, e.g., because
they contain clues to each other, and some constraints on minimal choices of items
from the larger item sets.

Two IISs were added to a problem. For two-content constraints (Constraint Max11
and Constraint Max12) referring to a same set of items, the upper bound and the
lower bound were interchanged. As a result, the lower bound was larger than the
upper bound for that set of items. The second IIS resulted from a matrix specification
error. Three enemy constraints (Constraints Max11 1, Max11 2, and Max11 3) were
added to the model and the lower bound of content Constraint Max11 was increased.
These four constraints resulted in the second IIS.

The results of the comparison study are shown in Tables 1 and 2. For comparison
purposes, we give the value of the objective function (maximize TIF) of the original
feasible model, which is 40.0593. To compare the different forcing methods, the four
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TABLE 1
Forcing Methods in PPON Case

Violated Total
Method Constraints Violations TIF Value Time

GP 2 3 16.7743 1 second
MOGP 21 33 50.2756 3 seconds
Greedy Heuristic 21 33 50.2756 16 seconds
IIS-Solver 2 3 38.9149 150 seconds

Note. GP = Goal-Programming model without the original objective function, MOGP = Goal-
Programming model with the original objective function, Total violation = sum of constraint-bound
violations, TIF value = Sum of the values of test information function (measured at three points).

criteria introduced in the Theoretical Evaluation of Methods section are denoted in
Table 1.

For GP, the method only violated two constraints (one constraint per IIS). Al-
though this method provided some information about the causes of the infeasibility,
it did not enable the test assembler all information to restore the problem. Moreover,
the value of the TIF, namely the original objective function to be maximized, was
very low.

When MOGP was applied to the infeasible model, it resulted in a solution that
violated 21 constraints and found a maximal value for the TIF. The Greedy Heuristic
found the same results, so in Case 1 both the MOGP and the Greedy Heuristic did
equally well. The necessary time to solve the model with the Greedy Heuristic is
distorting, as in NuzLight, at each iteration of the heuristic, a new model is solved
with an LP solver.

The IIS-Solver correctly identified the causes of infeasibility and proposed to mod-
ify two constraints. The resulting value objective function is very close to the objec-
tive value of the original problem.

For the analyzing methods, the results are shown in Table 2.
The IIS consisting of Constraints Max113 and Max114 was found by all three

infeasibility detection methods. Once the infeasibility has been pinpointed to two

TABLE 2
Analyzing Methods in PPON Case

Detection

Error in
Method Lower Bound > Upper Bound Specifications Time

RODA Detected Not Detected –
IRDA Detected Detected 50 seconds
SCIS Detected Detected 4.5 minutes
IIS-Solver Detected Detected 150 seconds

Note. RODA = Relaxed Ordered Deletion Algorithm as programmed in CPLEX, IRDA = Integer
Randomized Deletion Algorithm as programmed in NuzLight, SCIS = set covering with item sampling
method.
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TABLE 3
Forcing Methods in WisCAT PABO Case

Violated Total
Method Constraints Violations TIF Value Time

GP 4 6 1.41982 × 102 6 seconds
MOGP 93 153 3.58534 × 102 3 seconds
Greedy Heuristic 91 114 2.36484 × 102 70 seconds
IIS-Solver 1 1 3.10525 × 102 10 minutes

Note. GP = Goal-Programming model without the original objective function, MOGP = Goal-
Programming model with the original objective function, Total violation = sum of constraint-bound
violations, TIF value = Sum over both tests of the values of the test information function (measured at
five points).

inconsistent constraints, it is easy for the test assembler to rectify the error. RODA
proposed changing the value of the bound of Constraint Max11, after which the
relaxed model did become feasible. However, according to the model expert, this
suggestion was not acceptable to test assemblers.

Only the IRDA and the SCIS detected the IIS of Constraints Max11, Max11 1,
Max11 2, and Max11 3. The RODA was unable to detect this second IIS, even after
following up its proposal of changing the bound of Constraint Max11 and eliminating
the first IIS. While the relaxed model had now become feasible, the binary model was
still infeasible, but RODA offered no information about its causes.

Because of the random nature of the SCIS and the IRDA, it is remarkable that
they needed only two runs to detect both IISs. However, the time needed by SCIS
is very high. This is due to the software, which is not professionally and efficiently
programmed. Most of the computer time was spent on the sampling, exactly the part
that should be fast to implement.

Note also that the IIS-Solver needed 150 seconds to find both IISs, but these 150
seconds include fixing the IISs.

Case 2

The WisCAT PABO item bank contained 557 items. The items are scored dichoto-
mously, and calibrated with the OPLM. Four content domains have been specified
that are divided in several sub-domains. The test length is 40 items. Instead of as-
sembling an adaptive test, two parallel linear versions were assembled. The resulting
test assembly model consisted of 823 constraints. To make the model infeasible, it
was changed in the same way as the previous model. The lower- and upper-bound
of a content constraint were interchanged. Besides, a matrix specification error was
introduced. Therefore, three enemy constraints were added to the model. Together
with the constraint on the lower bound in the first IIS, these four constraints result in
the second IIS.

The results for the comparison study are shown in Tables 3 and 4. The value of the
objective function (maximize TIF) of the original feasible model is 3.10525 × 102.

The Greedy Heuristic resulted in a solution that violated 91 constraints. For the
GP, the method violated four constraints. When the objective function was taken into
account, MOGP violated 93 constraints, comparable to the Greedy Heuristic, but
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TABLE 4
Analyzing Methods in WisCAT PABO Case

Detection

Error in
Method Lower Bound > Upper Bound Specifications Time

RODA Detected Not Detected –
IRDA Detected Detected 9.5 minutes
SCIS Detected Detected 30 minutes
IIS-Solver Detected Detected 10 minutes

Note. RODA = Relaxed Ordered Deletion Algorithm as programmed in CPLEX, IRDA = Integer
Randomized Deletion Algorithm as programmed in NuzLight, SCIS = set covering with item sampling
method.

with a much higher objective function and also a much higher total sum of constraint
violations.

The IIS-Solver identified the IIS and proposed how to solve it, resulting in just
one constraint violated. The IIS-solver resulted in a TIF of 3.10525 × 102, again
outperforming all other methods.

The RODA just identified the first error. Again the fact that it only used the re-
laxed model of Case 2 to search for an IIS was the reason it did not detect the second
error. Moreover, after readjusting the first error it detected, it remained infeasible
without giving any clues for the test assembler. For the IRDA, a remarkable result
was obtained. It also found only one IIS. When the feasible model was altered, ap-
parently one constraint became part of both errors. Although we did not realize it in
advance, the combination of this writing error and error in the specifications matrix
resulted into one IIS only. Thus, in retrospect, the RODA was even unable to detect
the whole IIS. While the SCIS detected the IIS, it took a fair amount of computer
time.

Note that the IIS-Solver found the only IIS and solved it. The IIS-solver needed
10 minutes to fix a solution, and most of this time was actually necessary to detect
the IISs with the IRDA (9.5 minutes).

To see what would happen if another specification error was introduced, two more
constraints were added, interacting with a third constraint in the model. In Tables
5 and 6, the results are displayed, where we now speak of IIS1, the IIS of the two
errors introduced previously, and IIS2, the new error (which we took care not to
interact with IIS1). The results are shown in Tables 5 and 6.

Again the IIS-Solver did best in terms of TIF value versus the number of violated
constraints.

Also for this problem, the RODA was unable to find the second IIS because of its
binary nature.

Implications of Settings

Hard and soft constraints. One of the drawbacks of many presently used ATA mod-
els is the difficulty of controlling which constraints can be relaxed, and which should
never be violated. In the GP models such as the WDM, the weights in Model (8)–

237



TABLE 5
Forcing Methods in WisCAT PABO Extended Case

Violated Total
Method Constraints Violations TIF Value

GP 5 7 1.43397 × 102

MOGP 94 155 3.58534 × 102

Greedy Heuristic 92 115 2.36484 × 102

ISS Solver 2 3 3.12911 × 102

Note. GP = Goal-Programming model without the original objective function, MOGP = Goal-
Programming model with the original objective function, Total violation = sum of constraint-bound
violations, TIF value = Sum over both tests of the values of the test information function (measured at
five points).

(11) can guide this process, and large weights for d+ j and d−j for constraint j will
make it highly unlikely that it will be violated. However, this is not guaranteed.
Hard constraints (Chinneck, 1997; Huitzing, 2004a; Timminga, 1998) are defined as
constraints that must be met, while so-called soft constraints are constraints that if
necessary can be relaxed.

If the original model, such as in Models (1)–(3), is feasible, then there is no need
to set any constraint as “soft.” If the model is infeasible, then a priori all constraints
should be considered for relaxation, such as in Models (8)–(11). By trial and error,
the weights for d+ j and d−j can be set so that an acceptable test is found. In a situation
where there is no time for repair, the test assembler can decide that some constraints
should never run the risk of being violated, and set them as “hard.” An example of a
hard constraint is the test length, and an example of a soft constraint is a constraint
referring to the IRT difficulty parameter values representing item difficulty, which
are only estimates anyway.

Additional Comparison GP and MOGP

The main difference between GP and MOGP lies in the objective function. In
GP, the original objective function is not taken into account, while in MOGP it is
included in the model. The weight of the objective function in both methods is 0 for

TABLE 6
Analyzing Methods in WisCAT PABO Extended Case

Detection

Method Lower Bound > Upper Bound Error in Specifications

RODA Not Detected Not Detected
IRDA Detected Detected
SCIS Detected Detected
IIS-Solver Detected Detected

Note. RODA = Relaxed Ordered Deletion Algorithm as programmed in CPLEX, IRDA = Integer
Randomized Deletion Algorithm as programmed in NuzLight, SCIS = set covering with item sampling
method.
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the GP method and 1 for the MOGP. It is interesting to see what would happen if
we gradually increase the importance of the objective function, that is, if we gradu-
ally set the weight of the original objective function higher. In Figure 1, a graph is
depicted with: on the x-axis, the relative importance (0–100%) of the goal function
“Minimize Violations,” where its complement is the relative importance (100–0%)
of the original objective function “Maximize TIF;” and on the y-axis, the value of
the TIF. Note that if the weight of the original objective function is zero, we have the
situation as in GP.

In Figure 2, the two conflicting objectives are shown again. On the x-axis the
sum of the constraint-bound violations and on the other axis the value of the TIF
are shown. An arrow below the axis shows the direction of its objective func-
tion. A lower total sum of violations entails a lower TIF, and it is up to the test
assembler to make a choice here, when using a MOGP method along the line shown
in Figure 2.

Two things are noteworthy. First note that the MOGP line does not go all the way
to the origin of the quadrant. The MOGP line never reaches the zero of the value
of violations because the model is infeasible: if we want to force a solution, we
must violate a number of constraints. Moreover, the constraint concerning the test
length is set as hard, thus, once we force a solution, there will always be a number
of selected items, also ensuring that the value of the TIF will never be zero. Second,
note that the MOGP line goes straight up in value of the TIF for the same number
of constraint violations. Indeed, at the right end of the MOGP line, we have the
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FIGURE 1. Setting weights on conflicting objective functions.

239



FIGURE 2. Results of conflicting objective functions.

situation as in GP. The original objective value plays no role here. But adding the
original objective function while giving a very large relative weight to not violating
the constraint bounds induces the solver to search for a best solution within the set of
feasible solution defined by first meeting the goal function. This solution is actually
the solution found by the IIS-Solver, and by again changing the relative weights of
the original objective function can also be found by the Greedy Heuristic.

Conclusion and Discussion

In the case of infeasibility of test assembly models, two choices are at hand: ei-
ther directly “force” a solution, without knowing the causes of the infeasibility, or
first, find and analyze the causes of infeasibility, and then repair these. However, in
both choices some constraints must be violated. This article describes how different
methods that are developed to analyze and or deal with infeasibility in test assembly
models work in practice.

Three forcing methods were applied. Goal Programming (GP) focuses only on
violations of constraints. MOGP, including the original objective function, and the
Greedy Heuristic for solving the GP model are examples of methods where not only
the violations must be kept to a minimum, but also where the value of the TIF is
taken into account.

About differences in performance some expectations were formulated in the The-
oretical Evaluation section. As expected, Goal Programming (GP) minimized the
number of violations and the total sum of violations. The method was able to find
causes of infeasibility for both the cases, and forced a solution by a minimal violation
of the constraints. MOGP was expected to result in the highest value for the TIF. For
the PPON example, the Greedy Heuristic performed as well as the MOGP. For the
WisCAT example, the MOGP performed best w.r.t. this criterion. Our expectations

240



Infeasibility in ATA Models

about necessary computer time were not met. For the larger Case of WisCAT PABO,
the MOGP surpassed the Greedy Heuristic by a large extent. The Greedy Heuristic
performed worst instead of best. Probably, this is due to the inefficient programming
of the algorithm.

Analyzing methods include the deletion algorithm (Chinneck & Dravnieks, 1991)
and the SCIS method (Huitzing, 2004b), which search for one or more IIS of con-
straints. The deletion algorithm can be implemented in a deterministic way, the
RODA implemented in CPLEX (ILOG, 2001), or a stochastic way, the Integer and
Random Deletion Algorithm (IRDA) implemented in NuzLight (Huitzing, 2002).

As expected, IRDA outperformed RODA, because the latter only looked at the
relaxed model (i.e., the binary variables are relaxed into taking values between zero
and one). This greatly frustrated the search for IISs. The SCIS is a completely differ-
ent method, based on entirely different solving techniques. For the two cases at hand,
the SCIS detected the IISs in both the cases. To our disappointment, the computer
time needed to sample the tests was far too high to be practical. Again, this is mostly
due to the software, which is not efficiently programmed.

One combined method was evaluated. The IIS-Solver first analyzes the problem,
and then forces a solution. The results of the IIS-Solver can be compared with both
forcing and analyzing methods. The IIS-Solver performed as well as or even better
than the GP method when it comes to minimum number of violated constraints and
minimum total violation. The resulting TIF value comes very close to the TIF value
of the original models without infeasibility. However, the IIS-Solver needs much
more time than the other forcing methods. When the IIS-Solver is compared with the
analyzing methods, it should be mentioned that the IIS-Solver builds on the results
of IRDA. Since the IRDA was very successful in identifying IISs, this method also
performed well. Because of this, the IIS-Solver is recommended. It is applicable both
for analyzing the model and for forcing a solution. Besides, it performed very well
in the comparison study.

However, these conclusions are drawn for two specific cases, and generalizations
of these conclusions have to be made carefully. Also, all methods “able to deal” with
infeasibility do violate more or less the original bounds set by the test assembler,
even if this is done in an automatic way embedded in the model, as is the case for
GP methods. However, not all methods are clear about how they violate constraints,
other than that a weighted sum of the violations must be minimized. The problem
then becomes how to set the weights of the constraints, which is a matter of trial and
error.

The original objective of the test assembler, such as maximizing the TIF on a cer-
tain scale, can influence the number of violated constraint. Moreover, using an over-
all approach instead of a heuristic can have advantages in terms of a smaller num-
ber of violations. If, instead of forcing methods, an analyzing method was chosen,
the source of one of the infeasibilities, namely an upper bound larger than a lower
bound for a same set of items caused by a typing error, could be easily identified and
adjusted.

All methods have drawbacks as well as advantages. Being faster, an important
issue when a solution must be found in a real-time online examination, usually en-
tails more unnecessary violations, and the more specifically a method analyzes the
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infeasibility, the more computer time and interaction with the test assembler are
needed. Which method is used depends thus on the goals of the test assembler or
settings in which a test must be assembled.
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