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Abstract. – A non-perturbative analysis of the Bhatnagar-Gross-Krook (BGK) model kinetic
equation for finite values of the Knudsen number is presented. This analysis indicates why
discrete kinetic versions of the BGK equation, and notably the lattice Boltzmann method,
can provide semi-quantitative results also in the non-hydrodynamic, finite-Knudsen regime,
up to Kn ∼ O(1). This challenges the pessimistic stance, according to which the lattice
Boltzmann method should only be used for strictly hydrodynamic purposes. It may also help
the interpretation of recent simulations of microflows, which show satisfactory agreement with
continuum kinetic theory in the moderate-Knudsen regime.

In the last decade, the lattice Boltzmann (LB) method has developed into a very flexible
and effective numerical method for the simulation of a large variety of complex flows, mostly in
the macroscopic domain [1–3]. Fueled by relentless progress in micro, nano and bio-sciences,
the recent years have witnessed a growing interest in exploring the possibility to enrich LB in
the direction of describing micro-structured flows [4, 5].

The LB method is based on a stylized stream-and-collide microscopic dynamics of fictitious
particles, located on the nodes of discrete lattices and interacting according to local collision
rules that drive the system towards a local equilibrium [2,3]. Mathematically:

fi(�x + �ci∆t, t + ∆t) − fi(�x, t) = −ω∆t
[
fi(�x, t) − f

(eq)
i (�x, t)

]
,

where fi(�x, t) is the probability to find a particle at position �x and time t, moving along the
lattice direction defined by the discrete speeds �ci (i = 1, ..., b). The second term at the r.h.s.
of the above equations denotes relaxation towards a local equilibrium, the lattice analogue of
a Maxwellian distribution in continuum kinetic theory:

feq
i (�x, t) = nwi

(
1 + β�ci · �u +

β2

2
[(�ci · �u)2 − u2]

)
.

In the above, n(�x, t) is the fluid density, �u the flow speed, β = 1/c2
s is the inverse square speed

of sound, and wi a discrete set of weights normalized to unity. Finally, ω indicates a typical
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time-scale relaxation (frequency relaxation) to local equilibrium, and governs the kinematic
viscosity of the LB macroscopic fluid [2,6,7]. More general versions account for multiple-time
relaxation [8–10], but the simpler single-time (BGK) relaxation form will be sufficient for our
present purposes.

By taking suitable averages over molecular speeds, it can be shown that the resulting
macroscopic quantities obey the Navier-Stokes equation of continuum mechanics. The fluid
and current density are given by a linear superposition of the discrete distributions fi:

n(�x, t) =
b∑

i=1

fi(�x, t), �J(�x, t) =
b∑

i=1

�cifi(�x, t). (1)

In order for those quantities to satisfy the exact hydrodynamic equations, it is required that
the macroscopic fields do not vary appreciably on the scale of the mean free path λ and the
lattice spacing ∆x. Based on the consolidated Chapman-Enskog background [11], one might
be led to conclude that the range of applicability of LB methods is bounded by the domain of
validity of the Chapman-Enskog method [12], the implication being that LB can only be used
for strictly hydrodynamic purposes. Yet, such a restrictive stance is challenged by a number of
recent numerical simulations [13–20] which clearly show that, by using appropriate boundary
conditions, LB can reproduce some salient features of flows beyond the hydrodynamic regime,
such as the onset of slip flow at finite-Knudsen numbers.

In this letter, we wish to propose a theoretical explanation for this rather unexpected valid-
ity of LB in the beyond-Chapman-Enskog region. Our analysis is based on a non-perturbative
solution of the lattice BGK (LBGK) equation, which overcomes the restrictions imposed to
the standard Chapman-Enskog multiple scale analysis and extensions thereof [21, 22]. This
non-perturbative character sets our work apart also from very recent and systematic work on
the finite-Knudsen behaviour of lattice-BGK models [23].

Our analysis is confined to the bulk region of the flow, giving for granted that the use of
proper boundary conditions is crucial to obtain correct results in actual LB simulations of
microflows [24].

Let us refer for simplicity to the 1d-continuum Boltzmann equation, written in BGK [25]
form:

∂tf(x, v, t) + v∂xf(x, v, t) = −ω
[
f(x, v, t) − f (eq)(x, v, t)

]
,

where the local equilibrium f (eq)(x, v, t) depends on x and t via the local velocity and density
fields. Let us now consider the exact solution as provided, for each given velocity v (see
also [26]), by an integration along the particle trajectory, from t to t + ∆t:

f(x + v∆t, t + ∆t) = e−ω∆tf(x, t) + ωe−ω∆t

∫ ∆t

0

esωf (eq)(x + vs, t + s)ds, (2)

being ∆t a generic time increment corresponding to the lattice time step. The above expression
is exact, but purely formal, until one specifies a concrete procedure to compute the integral
at the right-hand side. Even though the quadratic dependence of f (eq) on f itself prevents an
exact analytical solution, one can formally expand the integrand as

f (eq)(x + vs, t + s) =
∞∑

n=0

snDn

n!
f (eq)(x, t), (3)

where D ≡ ∂t + v∂x denotes the streaming operator. By inserting this expansion into (2), we
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can formally solve the integral exactly, and obtain:

ft+∆t = e−ω∆tft +
eD∆t − e−ω∆t

1 + D/ω
f

(eq)
t , (4)

where we have used the short-hand notation ft+s = f(x + vs, t + s). This expression invites
a number of useful considerations. Let us first recast it in the symbolic propagator form:

ft+∆t = P (ω∆t)ft + Q(ω∆t,D∆t)f (eq)
t , (5)

where
P (ω∆t) = e−ω∆t (6)

is the propagator from time t to time t + ∆t, and

Q(ω∆t,D∆t) =
eD∆t − e−ω∆t

1 + D/ω
(7)

co-propagates the influence of the equilibrium at time t on the solution at time t + ∆t.
By neglecting the equilibrium variations on a scale ∆t, i.e.

f
(eq)
t+t′ � f

(eq)
t , 0 ≤ t′ ≤ ∆t (8)

the propagator eD∆t acting on f (eq) is such that

eD∆tf
(eq)
t = f

(eq)
t . (9)

This leads to a much simplified version of the integral equation in the limit Df (eq) → 0:

ft+∆t = e−ω∆tft + (1 − e−ω∆t)f (eq)
t (10)

or, equivalently,
ft+∆t = P (ω∆t)ft + QLB(ω∆t)f (eq)

t , (11)

where we have defined the LB co-propagator as

QLB(ω∆t) ≡ (1 − e−ω∆t). (12)

The stick-to-equilibrium approximation (9) is tantamount to retaining only the zeroth order
term in the Taylor expansion (3), and consequently it is expected to work only for small values
of ∆t in the integral of (2).

It is interesting to note that, already at this zeroth order level, and without any further
assumption on ω, it is possible to identify a fully explicit discrete Boltzmann equation in BGK
form. This reads:

ft+∆t − ft = −ωLB∆t(ft − f
(eq)
t ) (13)

with relaxation frequency ωLB∆t = (1 − e−ω∆t).
It is now instructive to analyze the two extreme limits ω∆t � 1 and ω∆t � 1, in the

exact solution (5) first, and then in the discrete lattice BGK solution (11). Let us begin with
the former. Provided that the kinetic operator D∆t remains bounded, we can identify the
enslaving limit (ω∆t � 1) characterized by

P (ω∆t) = e−ω∆t −→ 0,
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Q(ω∆t,D∆t) =
eD∆t − e−ω∆t

1 + D/ω
−→ eD∆t.

This is equivalent to enslave the solution to the local equilibrium, i.e. ft+∆t = f
(eq)
t+∆t. The

opposite situation (ω∆t � 1) represents the free-molecular limit, in which one has

P (ω∆t) = e−ω∆t −→ 1

Q(ω∆t,D∆t) =
eD∆t − e−ω∆t

1 + D/ω
−→ 0

corresponding to a free-flow (collisionless) solution ft+∆t = ft.
A natural question arises on the nature of the same limits in the Lattice BGK equation (11).

The effect on the streaming propagator is the same, since the streaming term is integrated
exactly in the lattice version. There remains to inspect the behaviour of QLB(ω∆t) in the
two aforementioned limits. The enslaving limit (ω∆t � 1) yields

QLB(ω∆t) = 1 − e−ω∆t −→ 1 (ωLB∆t ∼ O(1))

that is ft+∆t = f
(eq)
t . In view of the relation (8), this is equivalent to state ft+∆t = f

(eq)
t+∆t.

The opposite situation (ω∆t � 1) yields

QLB(ω∆t) = 1 − e−ω∆t −→ 0 (ωLB∆t → 0).

Thus, the two limits, full-enslaving and free-flow, are recovered by the LBGK, provided that
the relaxation frequency is turned from bare ω to ωLB . The question remains: what happens
in between? A restrictive tenet is that lattice BGK cannot work properly because the interme-
diate regime involves all-order tensors, through the powers Dn, which cannot be reproduced
correctly in the discrete lattice because of lack of symmetry. On a more optimistic vein, one
could counter-argue that since both extreme limits are correctly recovered, there might be
hope that even in between the LB method could continue to provide a reasonable agreement
with continuum kinetic theory.

In order to analyze this point, we introduce the fine-scale Knudsen number Kn, defined as

Kn = λ/δ, (14)

where λ = v/ω is the kinetic mean-free path and δ is the smallest macroscopic length.
Let us consider the most critical situation δ = ∆x = v∆t, i.e. the macroscopic fields

show appreciable variation on the scale of a single lattice unit/length. Under these specific
conditions, we obtain

ω∆t = 1/Kn (15)

from which it follows that
P (ω∆t) = P (Kn) = e−1/Kn, (16)

Q(ω∆t,D∆t) = Q(Kn,D∆t) =
eD∆t − e−1/Kn

1 + KnD∆t
, (17)

QLB(ω∆t,D∆t) = QLB(Kn,D∆t) = 1 − e−1/Kn. (18)

Our Knudsen-number–dependent approach is consistent with the fact that the full enslav-
ing limit is recovered at Kn → 0, which is equivalent to use a LBGK approach (13) with
ωLB∆t = (1−e−ω∆t) ∼ O(1). Starting from this Chapman-Enskog limit (Kn → 0), it is then
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Fig. 1 – Plot of the percentage error E, as defined in (20), as a function of the Knudsen number up
to the transition regime. Note that the error between the exact Boltzmann solution and the discrete
form reaches a maximum of about ten percent at the top of the slip-flow regime (Kn ∼ 0.1).

interesting to see whether the LB approach can be extended to the slip flow and transition
regimes (up to Kn ∼ O(1)). In these regimes, the macroscopic fields fluctuate, in the most
pessimistic case, on the same scale of the kinetic fields. Therefore, we may consistently assume
that Df/f ∼ v/δ, and make the identification

D∆t ∼ Kn. (19)

This is the zeroth order approximation relating D∆t to Kn. More rigorously, one should
consider a full series in Kn. However, to any practical purpose, this series can be truncated
at the O(Kn) without hampering the results up to Kn ∼ O(1). In this approximation, the
propagators become

Q(Kn) =
eKn − e−1/Kn

1 + Kn2
,

QLB(Kn) = 1 − e−1/Kn,

where Q(Kn) and QLB(Kn) represent the exact physical co-propagator effects and the lattice
ones, in the range Kn < 1, respectively. The relative departure:

E(Kn) =
Q(Kn) − QLB(Kn)

Q(Kn)
(20)

is a quantitative measure of the spurious lattice-induced effects on the co-propagator. From
fig. 1, where we report E(Kn) as a function of Kn, it is recognized that, up to Kn ∼ 0.1, i.e.
in the slip-flow regime, the lattice Boltzmann approach does not differ from the exact solution
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for more than to within a ten percent. Only as Kn exceeds 0.1, and the transition regime is
entered, significant error build-up is observed.

It is important to emphasize that the above figures apply to the worst-case scenario, in
which macroscopic fields vary on the scale of a single lattice spacing (an extreme beyond-
Chapman-Enskog situation). One may soften this assumption and assume that macroscopic
fields exhibit significant variations on scales larger that a single grid spacing ∆x, say

δ = h∆x, h ≥ 1, (21)

h = 1 reproducing the previous worst-case scenario. This means that the Knudsen number is
reduced by a factor h, Kn → Kn/h, leading to a corresponding reduction in the error E(Kn).
In addition, we observe that E(Kn) measures the error of the propagator, whereas physical
observables result from the summation of discrete populations fi over the discrete speeds
(see eqs. (1)) and, consequently, E(kn) as defined in (20) may well represent a pessimistic
bound. In any event, the point of the present analysis is not to state the case for the accuracy
of LB in the non-hydrodynamic regime, but only to point out that, even at finite-Knudsen
numbers, discreteness effects remain within fairly tolerable limits, at least for semi-quantitative
purposes. Whether or not LB should be used instead of more accurate, and much more
expensive, methods, such as Direct Simulation Monte Carlo, remains to be decided on a
case-by-case basis.

Summarizing, a non-perturbative analysis of the Boltzmann equation in BGK form, indi-
cates that the LB method may continue to provide semi-quantitative agreement beyond the
limits of the Chapman-Enskog theoretical framework. This could be of interest for the in-
terpretation of lattice Boltzmann simulations in the finite-Knudsen regime, including kinetic
modeling of fluid turbulence [27]. Clearly, in order to realize the bulk properties highlighted
by the present analysis, proper kinetic boundary conditions [18,20] must be used in actual LB
simulations of finite-Knudsen flows.

∗ ∗ ∗
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