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a b s t r a c t 

The incidence of impaired balance control and falls increases with age and disease and has a significant 

impact on daily life. Detection of early-stage balance impairments is difficult as many intertwined mecha- 

nisms contribute to balance control. Current clinical balance tests are unable to quantify these underlying 

mechanisms, and it is therefore difficult to provide targeted interventions to prevent falling. System iden- 

tification techniques in combination with external disturbances may provide a way to detect impairments 

of the underlying mechanisms. This is especially challenging when studying multi-joint coordination, i.e. 

the contribution of both the ankles and hips to balance control. 

With model simulations we compared various existing non-parametric and parametric system identi- 

fication techniques in combination with external disturbances and evaluated their performance. All meth- 

ods are considered multi-segmental (both the ankles and the hips contribute to maintaining balance) 

closed-loop balance control. Validation of the techniques was based on the prediction of time series 

and frequency domain data. Parametric system identification could not be applied in a straightforward 

manner in human balance control due to assumed model structure and biological noise in the system. 

Although the time series were estimated reliably, the dynamics in the frequency domain were not cor- 

rectly estimated. Non-parametric system identification techniques did estimate the underlying dynamics 

of balance control reliably in both time and frequency domain. The choice of the external disturbance sig- 

nal is a trade-off between frequency resolution and measurement time and thus depends on the specific 

research question and the studied population. 

With this overview of the applicability as well as the (dis)advantages of the various system identifi- 

cation techniques, we can work toward the application of system identification techniques in a clinical 

setting. 

© 2016 International Federation of Automatic Control. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

Maintaining a stable upright posture is a complex task. The

body is inherently unstable due to the gravitational pull, and it

would fall without stabilizing control. The central nervous system

(CNS) stabilizes the body by integrating sensory feedback signals

to determine the appropriate response, which is sent to the mus-

cles and results in corrective joint torques to keep the body up-

right ( Peterka, 2003 ). How the stabilizing mechanism of the CNS

regulates balance can be investigated by estimating the dynamics

of the so-called neuromuscular controller that outputs corrective

joint torques as a response to body sway ( Engelhart et al., 2014 ). 
∗ Corresponding author. 
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With aging or due to disease, sensory systems or the neuro-

uscular controller can deteriorate and as a result, balance con-

rol problems can arise ( Pasma et al., 2014 ). For example, the el-

erly often have difficulties maintaining balance during daily life

ctivities, and this impaired balance is a strong risk factor for falls

 Rubenstein, 2006; Muir, Berg, Chesworth, Klar, & Speechley, 2010 ).

bout 28–35% of people aged over 65, fall each year and this in-

idence increases with age (WHO, 2007). To determine who is at

isk of falling, clinicians use clinical balance tests (e.g. Berg Bal-

nce Scale ( Berg, Wood-Dauphinee, Williams, & Gayton, 1989 )) and

osturography measures (e.g., sensory organization test ( Cohen,

eaton, Congdon, & Jenkins, 1996 )). These tests assess the abil-

ty to maintain standing balance and the quality of balance by

easuring body sway. However, these tests do not determine the

ontribution and quality of the underlying mechanisms ( Engelhart

t al. 2014 ; Pasma et al., 2014 ). In addition, it is currently not
d. All rights reserved. 
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Fig. 1. Simple representation of the human balance control system. The hu- 

man body is represented by a double-inverted pendulum, with a leg and a hat- 

arms-trunk (hat) segment. The neuromuscular controller generates corrective joint 

torques (T ank ,T hip ) to regulate balance over time, by intrinsic dynamics (H p ) together 

with time-delayed (H TD ) reflexive activation (H r , H act ) of muscles. For system iden- 

tification purposes the body is disturbed by two external force disturbances at the 

hip and shoulder level, and body sway and ground reaction forces are measured. 
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ossible to determine who has an increased risk of falling in the

ext year ( Ganz, Bao, Shekelle, & Rubenstein, 2007; Laessoe, Hoeck,

imonsen, Sinkjaer, & Voigt, 2007; Visser, Carpenter, van der Kooij,

 Bloem, 2008 ). Therefore, it is difficult to provide targeted inter-

entions to decrease fall incidence. In other words, there is a clear

clinical) need to be able to (a) identify people with an increased

all risk, (b) evaluate targeted interventions, and (c) improve our

verall understanding of the pathophysiology of balance-control

mpairments ( Visser et al., 2008; Kingma et al., 2011; Sibley, Straus,

nness, Salbach, & Jaglal, 2013 ). 

Estimation of the neuromuscular controller dynamics is diffi-

ult, as in a closed-loop feedback system (such as balance control)

t is hard to disentangle cause and effect. That is, without exter-

ally applied disturbances, it is difficult to determine if, for exam-

le, changes in muscle activity result in changes in muscle force

hat will affect body sway, or that the opposite is true, i.e. changes

n body sway are detected by sensors and transmitted to the ner-

ous system that excites the muscle groups reflected in changes in

he muscles’ electromyography (EMG). Furthermore, standing bal-

nce is regulated around the ankles and hips, and multi-joint coor-

ination must be achieved. Movements of one segment influence

ovements of the other segment ( Horak & Nashner, 1986; Park,

orak, & Kuo, 2004 ), resulting in additional interactions. 

System identification techniques in combination with specifi-

ally designed external disturbances provide a way to disentangle

ause and effect in balance control and identify the dynamics of

he neuromuscular controller. Therefore, our group ( Van der Kooij,

an Asseldonk, & van der Helm, 2005, 2007; Van Asseldonk et al.,

006 ; Boonstra, van Vugt, van der Kooij, & Bloem, 2014b; Engelhart

t al., 2014; Pasma et al., 2014 ) and other groups ( Johansson, Mag-

usson, a, & Karlberg, 20 01; Peterka, 20 02; Kim, Horak, Carlson-

uhta, & Park, 2009, 2012; Jeka, Allison, & Kiemel, 2010; Mergner,

010; Goodworth & Peterka, 2012 ) have developed and evaluated

ovel quantitative balance-control assessment methods based on

ystem identification techniques to better understand the balance-

ontrol system, with the ultimate goal to improve clinical deci-

ion making. As the balance control system is dynamic (i.e., its re-

ponse is described as a function of time), system identification

echniques can be used to determine the underlying structures of

he system by unraveling cause-and-effect relations in multi-joint

oordination. The field of system identification is very broad, with

any approaches and various techniques and methods. It is far

rom trivial to compare the methods reported in literature, as there

re always differences in experimental design and the results are

resented in different ways. If meaningful interpretation and com-

arisons are to be derived from balance-control experiments in dif-

erent labs, there is a clear need for standardized protocols ( Visser

t al., 2008 ). 

In this paper we compare different multivariable system iden-

ification techniques to estimate the neuromuscular controller dy-

amics with model simulations (as applied in literature), to evalu-

te the effects of various disturbance types and analysis methods.

he advantage of model simulations is that all methods were vali-

ated based on one system from which all dynamics are known.

e focused on methods that approached the human balance-

ontrol system as a double-inverted pendulum, pivoting at the

nkles and hips in the anterior–posterior direction. This is con-

rary to many other methods that have approached the balance-

ontrol system as an inverted pendulum, with only an ankle joint.

ur approach was chosen because recent studies have shown

hat differences between e.g. Parkinson’s disease patients and the

lderly ( Boonstra, Schouten, van Vugt, Bloem, & van der Kooij,

014a ) and between the elderly and young ( Accornero, Capozza,

inalduzzi, & Manfredi, 1997; Hsu, Chou, & Woollacott, 2013 )

ere the most pronounced in multi-segmental balance-control

oordination. 
(
Here, we give an overview of the applicability and

dis)advantages of various system identification techniques, which

ill aid toward the use of standardized measurement protocols to

ssess balance control with system identification techniques in a

linical setting. 

. Materials and methods 

This section describes the general goal of system identifica-

ion in human balance control, i.e. estimating the dynamics of the

euromuscular controller. By simulating a two-segmental balance-

ontrol model that contains the dynamics of the underlying phys-

ology, various system identification techniques were presented,

alidated, and compared. 

.1. Modeling of human balance control 

Fig. 1 shows a model of human balance control, in which the

nderlying physiology is described by various underlying mecha-

isms. When only considering anterior–posterior movement, the

ody dynamics can be regarded as a double-inverted pendulum,

onsisting of two segments; the lumped legs and the head-arms-

runk (hat) segment pivot around the ankle and hip joint respec-

ively. Internal disturbances (biological noise in muscles, sensory

rgans, and the nervous system) and external disturbances (pushes

nd pulls on the human body and the pull of gravity) drive the sys-

em away from equilibrium. Maintaining standing balance is con-

rolled by a feedback, i.e. a closed-loop system. The sensory sys-

ems (visual, vestibular, and proprioceptive) give information about

he body position and velocity relative to the environment. These

ignals are processed and integrated by the CNS and fed back (with

 neural transport delay) to the muscles. Corrective joint torques

esult from the activation of muscles (reflexive dynamics), together

ith intrinsic properties of the muscle-skeletal system (intrinsic

ynamics). The entire neuromuscular controller describes how bal-

nce is regulated and is the system of interest in this study. This

euromuscular controller has separate feedback paths for the leg

nd hat segment and is therefore a multiple-input-multiple-output

MIMO) system. 
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Fig. 2. Various disturbance signals for MIMO system identification. In the top rows 

the time series and in the bottom rows the power spectral densities (PSD). The 

filtered noise has a length of 180 s, but for comparison with the other signals, only 

20 s are shown. The PSD of the filtered noise is smoothened by Welch averaging, 

with a 20 s Hanning window, with 50% overlap. 
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2.2. System identification approach 

2.2.1. External disturbances 

Describing the dynamics of a (MIMO) system requires knowl-

edge of the inputs and outputs of the system of interest. Here, the

inputs of the neuromuscular controller are the leg and hat seg-

ment angles and the outputs are the corrective ankle and hip joint

torques. In addition, an independent disturbance for each degree of

freedom in the system is required ( Pintelon & Schoukens, 2012 ). In

this study we are interested in the contribution of the ankles and

hip joints to balance control and therefore two disturbances must

be applied. Applying only one disturbance can give erroneous re-

sults ( Boonstra, Schouten, van der Helm, & van der Kooij, 2013 ), as

responses remain intertwined. There exist various choices where to

apply the two external disturbances ( Fujisawa et al., 2005; Kiemel,

Zhang, & Jeka, 2011; Boonstra et al., 2013 ), as long as they generate

sufficient responses around each degree of freedom in the system.

In this study, continuous push and pull disturbances were applied

at the level of the hip and between the shoulder blades ( Engelhart

et al., 2015 ), see Fig. 1. 

The external disturbances for system identification purposes

are specifically designed as humans respond differently to fast or

slow disturbances. The dynamic behavior of interest typically ex-

tents from 0.01 Hz to frequencies up until 4–5 Hz ( van der Kooij

& de Vlugt, 2007 ). Therefore, the external disturbances are broad-

band and excite the system in the region of interest. Furthermore,

humans typically adjust to predictable disturbances and their re-

sponses may habituate. Therefore, the disturbances are unpre-

dictable. Finally, the disturbances are submaximal. Therefore stance

behavior is identified without making people step or fall, i.e. dur-

ing feet-in-place responses. Various designs of such disturbance

signals are described in the next paragraph. 

2.2.2. Frequency response functions 

All system identification techniques presented here assume lin-

ear and time-invariant (LTI) human behavior. This implies that the

system does not change over the course of the experiment and that

participants do not change strategy (e.g. switch from responding

stiff to slack); i.e. the behavior does not change over time. Fur-

thermore, when the participant is disturbed with a periodic sig-

nal, he/she will show periodic responses and the responses scale

proportionally with the disturbances. 

In such a LTI system, the human responses contain the same

frequencies as the disturbances and the behavior of the system can

be described in the frequency domain by a Frequency Response

Function (FRF). The FRF consists of complex numbers, which can

be expressed in a magnitude and phase. The entire dynamic be-

havior is generally displayed with a magnitude and phase plot that

describes the differences in amplitude and timing respectively, be-

tween the inputs and outputs of a system as a function of fre-

quency ( f ). 

To be more specific, the FRF of the neuromuscular controller

( H c ( f )) describes the dynamic relation, in the frequency domain,

between the corrective joint torques ( T ank , T hip ) due to deviations

in the segment angles ( θ leg , θhat ) and consists of four terms: [
T ank ( f ) 

T hip ( f ) 

]
= −

[
H c, θleg 2 T ank 

( f ) H c, θhat 2 T ank 
( f ) 

H c, θleg 2 T hip 
( f ) H c, θhat 2 T hip 

( f ) 

][
θleg ( f ) 

θhat ( f ) 

]
(1)

There are two direct terms covering the FRFs from leg an-

gle to ankle torque ( H c, θleg 2 T ank 
) and from hat angle to hip torque

( H c, θhat 2 T hip 
). Furthermore, there are two indirect terms, which

cover the FRFs from leg angle to hip torque ( H c, θleg 2 T hip 
) and from

hat angle to ankle torque ( H c, θhat 2 T ank 
), which reflect the inter-

segmental coupling between the segments ( Boonstra et al., 2013 ). 
.3. Disturbance signals 

There are various design options for external disturbance sig-

als. For system identification purposes, the disturbance signal

hould be sufficiently rich (power at many frequencies) and un-

redictable to prevent a contribution of anticipation to the pos-

ural response. For proper application in the MIMO case, all the

isturbance signals must be independent. Previous model simula-

ions showed that disturbance signals with a flat power spectrum

ave the best results, i.e. the lowest signal to noise ratio over the

requency range of interest ( Boonstra et al., 2013 ). 

Here, we focus on two main categories of disturbance sig-

als, multisine and filtered noise. These two signals were com-

only used in balance-control experiments where mechanical dis-

urbances were applied ( Engelhart et al., 2015; De Vlugt, Schouten,

 van der Helm, 2006; Kiemel et al., 2011; Boonstra et al., 2014a ).

o make a fair comparison between the multisine and filtered

oise signals, the frequency content of both signals was compara-

le. Furthermore, the root mean square (RMS) of the disturbances

as the same to ensure equal energy was added to the system.

inally the amount of data was kept comparable between the sig-

als (aiming for a measurement time of three minutes). Various

esigns of multisine and filtered noise signals were used in the

imulations, as described below and shown in Fig. 2. 

.3.1. Multisine 

Multisine signals consist of a sum of sinusoids; hence, the sig-

als only contain power at specific frequencies. When each har-

onic fits exactly an integer number of times in the multisine sig-

al, leakage in the frequency domain analysis can be prevented.

his is assured by only including harmonics with frequencies equal

o an integer multiple of the frequency resolution. As the frequency

esolution is the inverse of the period of the multisine signal, the

owest frequency of interest is therefore directly related to the

easurement time. To apply multisine signals for MIMO applica-

ion, two multisine signals can have equal frequency content, but

n this case the signals are not independent. To create the inde-

endent signals for each input, the experiment is repeated with
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wo different combinations of the multisine ( Pintelon & Schoukens,

012 ). 

In this study, a random phase multisine signal with a period of

0 s was generated, in which a total of 27 frequencies were log-

rithmically spaced in a frequency band of 0.05 and 5 Hz. Here,

he multisine signals were repeated five times, resulting in a trial

ength of 100 s. In the first trial, both inputs were excited with the

ame multisine, while in the second trial the sign of the second

nput was changed. This resulted in a total measurement time of

00 s, approximately three minutes. 

.3.1.1. Zippered multisine. Another possibility is to design two

ultisine signals with one excited frequency only appearing in one

ignal. The input signals are chosen such that each disturbance

ontains a number of excited frequencies at an interleaved fre-

uency grid, termed a zippered multisine ( Pintelon & Schoukens,

012 ). The advantage compared to a multisine disturbance is that

 zippered multisine fully characterizes a MIMO system from a sin-

le experiment. To characterize a closed-loop system with zippered

ultisine requires interpolation to the full frequency grid, which is

escribed in the data analysis section. 

In this study, a zippered multisine disturbance was generated in

hich a total of 27 frequencies (equal to the multisine signal) were

ogarithmically spaced in a band between 0.05 and 5 Hz. From each

et of three odd harmonics, one was randomly assigned to the first

isturbance, one was randomly assigned to the second disturbance,

nd the third one was not excited. The zippered multisine had a

eriod of 20 s and was repeated nine times, leading to a measure-

ent time of 180 s. 

An additional advantage of using multisine is that the assump-

ion of linearity can be tested. As only random odd harmonics are

xcited, even nonlinearities become visible when there is power at

he even frequencies, while the odd non-excited frequencies can

e used to detect and quantify the power level of the odd non-

inearities. For model simulations, the outcomes are trivial (as the

quations of motion are linearized), but for experiments one can

btain additional information about the reliability of the FRF. 

.3.2. Filtered noise 

White noise consists of all frequencies with equal power and

s a representation of a purely stochastic process. As each value is

ncorrelated to the other values, two white noise disturbances are

aturally independent. 

In this study, two filtered noise signals of 180 s were gener-

ted comparable to ( Kiemel et al., 2011 ). Two white noise signals

ere passed through a first-order high-pass filter with a cut-off

requency of 0.05 Hz and an eight-order Butterworth low-pass fil-

er with a cut-off frequency of 5 Hz. The power spectral density

as computed using Welch’s method with a 20-s (comparable to

he length of the multisine signal) Hanning window and 50% over-

ap. This created a flat power spectrum comparable to the multi-

ine signals. The filtered noise signals had a length of 180 s. 

.3.2.1. Cyclic filtered noise. It is also possible to generate cyclic fil-

ered noise as input signals to allow for averaging in time over the

equences to reduce noise. Two filtered noises of 20 s were gen-

rated, similar as described above. The signals were repeated nine

imes, leading to a measurement time of 180 s. 

.4. Model simulations 

Model simulations were performed on the two-segment hu-

an balance control model, (Matlab Simulink (The MathWorks,

atick, MA)) with a leg and hat segment, and a neuromuscular

ontroller as shown in Fig. 1 . The model was based on a previous

tudy ( Boonstra et al., 2013 ) and is extensively described in the
ppendix. Two external force disturbances with a peak-to-peak

mplitude of 80 N were applied at the level of the hip and the

houlders in five simulated trials of 180 s, in which the disturbance

ignals varied: 

(1a) Two multisine disturbances with equal frequency content. 

(1b) Disturbance signals as in trial 1, in which the sign of one

perturbation is reversed 

(2) Zippered multisine disturbance 

(3) Filtered noise disturbance 

(4) Cyclic filtered noise disturbance 

These simulations rendered the time series of the segment an-

les and joint torques at a sample frequency of 1 kHz, which were

rocessed offline in Matlab (The MathWorks, Natick, MA). To make

he model simulations realistic and to compare them to exper-

mental measurements, additional noise was included. Biological

oise originates from inaccuracies in the sensory systems and the

otor system. This biological noise is believed to be of pink ori-

in, meaning the power spectral density (power per frequency ( f ))

s inversely proportional to the frequency ( 1 
f a 

). In our simulations,

ink noise with a = 1.2, was added to the system, such that dur-

ng quiet stance, the sway angle (remnant sway) was compara-

le to data of standing balance ( van der Kooij & Peterka, 2011 ).

urthermore, measuring human responses includes measurement

oise due to the equipment. This was modeled as a zero mean

hite noise source (variance of 1 ∗ 10 −6 ) added to the states (seg-

ent angles and angular velocities), and to the ankle and hip joint

orques. 

.5. Data analysis 

Based on the applied disturbances and the rendered segment

ngles and joint torques (with model simulations), various system

dentification techniques were used to analyze the simulated data.

he aim was to estimate the dynamic behavior of the neuromus-

ular controller, which ideally compares exactly to the theoreti-

al model as described in the Appendix. The system identification

ethods can be divided in two main categories: non-parametric

ystem identification techniques and parametric system identifi-

ation techniques ( Table 1 ). Please note that the use of methods

nd disturbance signals is intertwined. Table 1 shows if the system

dentification method performs well in combination with a specific

isturbance signal. Also note that although the model is simulated

n continuous time, the system identification techniques are based

n sampled data and therefore the analysis is time discrete. The

erformance of the methods was evaluated based on validation cri-

eria in the time and frequency domain, as described at the end of

his section. 

.5.1. Non-parametric system identification techniques 

Non-parametric system identification techniques express the 

ystem behavior in the frequency domain by means of an FRF,

ithout a priori knowledge of the system. To extract the neuro-

uscular controller properties from the closed loop system, the

oint-Input-Output-Method is applied ( Van der Kooij et al., 2005 ).

he closed-loop is opened by relating the signals in the loop to

he external disturbances. The FRF of the neuromuscular controller

 H c ( f )) is described by: 

 c ( f ) = −S dT ( f ) ( S dθ ( f ) ) 
−1 (2) 

In which S dT and S d θ are the cross-spectral density (CSD) ma-

rices between the external disturbances ( d ( f )) to the segment an-

les ( θ ( f )) and joint torques ( T ( f )). The methods as described be-

ow, differ in the applied external disturbance signal and thereby

he method of calculating the CSD matrices. 
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Table 1 

Various system identification techniques with corresponding disturbance signals. Some methods perform well 

with a specific disturbance signal (indicated by a �), as some methods cannot be applied with a specific 

disturbance signal (indicated by a x). 

Multisine Filtered noise 

Non-parametric system identification techniques 

(1) Two experiments (2EXP) � X 

(2) Interpolation (INT) � X 

(3) Partial coherence (PC) X �

Parametric system identification techniques 

(4) Multiple least square (MLSQ) � �

(5) Optimization (OPTIM) � �

(6) Autoregressive–moving-average model with exogenous inputs (ARMAX) � �

(7) Predictor-based subspace identification (PBSID) X �
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2.5.1.1. Method 1: two experiments (2EXP). This method is based

on previous studies ( Pintelon & Schoukens, 2012; Boonstra et al.,

2013, 2014b ), where the external disturbance signals are multisine

disturbances. The disturbance signals were applied in two experi-

ments, in which the sign of the second disturbance is reversed in

the second experiment, compared to the first experiment. 

The time series of the disturbance signals, segment angles, and

joint torques ( d ( t ), θ ( t ), T ( t )) were segmented in 10 repetitive cy-

cles of the disturbance signal (two experiments with five cycles).

The segmented time series were averaged to reduce noise, prior to

analysis. 

Subsequently, data was transformed to the frequency domain

by a fast Fourier transformation ( d ( f ), θ ( f ), T ( f )) and the CSD matri-

ces from the external disturbances to the segment angles ( S d θ ( f ))

and joint torques ( S dT ( f )) were calculated. The FRF of the neuro-

muscular controller ( H c ( f )) resulted from Eq. (2) . 

2.5.1.2. Method 2: interpolation (INT). This method is based on a

previous studies ( Pintelon & Schoukens, 2012; Engelhart et al.,

2014 ), where the external disturbance signals are zippered mul-

tisines. The time series of the disturbance signals, segment an-

gles, and joint torques ( d ( t ), θ ( t ), T ( t )) were segmented in nine

repetitive cycles of the disturbance signal. Subsequently, data was

transformed to the frequency domain by a fast Fourier transfor-

mation. The Fourier coefficients of the disturbances, angles, and

torques ( d ( f ), θ ( f ), T ( f )) were averaged in the frequency domain

to reduce noise, prior to analysis. Calculating the CSD matrices

( S d θ ( f )), S dT ( f )), requires that the matrix components are known at

all excited frequencies, which is untrue for the zippered multisine,

as both input signals contain different frequencies. Therefore, the

complex numbers of the cross spectral densities were interpolated

in terms of magnitude and phase. 

Consequently, all matrix components for the full range of ex-

cited frequencies in the zippered multisine were obtained, and it

was possible to identify the neuromuscular controller ( H c ( f )) using

Eq. (2) . 

2.5.1.3. Method 3: partial coherence (PC). This method is based

on previous studies ( Perreault, Kirsch, & Acosta, 1999; De Vlugt,

Schouten, & van der Helm, 20 03, 20 06; Kiemel et al., 2011 ), where

the external disturbance signals are filtered noise. The time se-

ries of the disturbance signals, segment angles, and joint torques

( d ( t ), θ ( t ), T ( t )) were transformed to the frequency domain by a fast

Fourier transformation ( d ( f ), θ ( f ), T ( f )). Because both filtered noise

disturbances contain equal frequency content (matrix division is

possible) and they are naturally uncorrelated, elicited responses

can be related to either disturbance. The CSD matrices ( S d θ ( f )),

S dT ( f )) were computed using Welch’s method with 20 s Hanning

windows and 50% overlap. Consequently, the FRF of the neuromus-

cular controller ( H c ( f )) was calculated with Eq. (2) . 
.5.2. Parametric system identification techniques 

Parametric system identification techniques express the be-

avior of a system in a model with a limited number of pa-

ameters. The behavior of a system is described by a math-

matical function, relating signals with respect to time. Often

 priori assumptions about the order of the system and the

odel structure are required. Methods 4 and 5 as described be-

ow only estimate the dynamic behavior of the system, while

ethods 6 and 7 also give an estimation of the noise in the

ystem. 

.5.2.1. Method 4: multiple least squares (MLSQ). Early studies

 Barin, 1989; Winter, Patla, Rietdyk, & Ishac, 2001 ) used a multi-

le least squares algorithm to compute a feedback gain matrix ( K ),

hich describes the relation between the states ( x ( t )) of the hu-

an balance control system and the corrective joint torques ( T ( t ))

n the time domain. 

 ( t ) = −Kx ( t ) 

T ank ( t ) 

T hip ( t ) 

]
= −

[
k 11 k 12 d 11 d 12 

k 21 k 22 d 21 d 22 

]⎡ ⎢ ⎢ ⎢ ⎣ 

θleg ( t ) 

θhat ( t ) 

˙ θleg ( t ) 

˙ θhat ( t ) 

⎤ ⎥ ⎥ ⎥ ⎦ 

(3)

The feedback gain matrix K was found by a least square esti-

ation: 

 = −T X 

T 
(
X X 

T 
)−1 

(4)

here X and T are matrices in which each row corresponds to a

tate or a corrective joint torque, respectively, and each column

orresponds to a time sample. The feedback gain matrix K was

sed to determine the FRF of the neuromuscular controller; H c ( f )

s quantified as a combination of stiffness ( k ) and damping ( d ) val-

es 

T ank ( f ) 

T hip ( f ) 

]
= −H c 

[
θleg ( f ) 

θhat ( f ) 

]
H c = 

[
k 11 + d 11 ∗ j2 π f k 12 + d 12 ∗ j2 π f 

k 21 + d 21 ∗ j2 π f k 22 + d 22 ∗ j2 π f 

]
(5)

In which j 2 π f expresses the Laplace transform, i.e. the deriva-

ive in the frequency domain. 

In this study, we applied both multisine as well as filtered noise

isturbances to excite the system. The time series of the states,

.e. segment angles and angular velocities ( θ (t) , ˙ θ (t) ) and the joint

orques ( T ( t )) were segmented in nine repetitive cycles of the dis-

urbance signal. The segmented time series were averaged to re-

uce noise, prior to analysis. 
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.5.2.2. Method 5: optimization (OPTIM). In a more recent study

 Park et al., 2004 ), an optimization algorithm was used for esti-

ating the feedback gain matrix K . Eq. (6) shows that different

rom the multiple least squares method, the states ( x ( t ), segment

ngles, and angular velocities) were simulated (in continuous time)

ased on knowledge of the biomechanics of the human (assumed

o be a double-inverted pendulum (2IP) and captured in an A 2 IP 

nd B 2 IP matrix), the estimated K matrix, and the applied external

isturbance signals (matrix W ). Consequently, the corrective joint

orques were derived from the states and the estimated K matrix.

he objective (cost function) of the optimization process was to

nd the optimal feedback gain matrix K , based on the lowest sum-

quared error between the estimated and true states and estimated

nd true torques. 

˙ 
 ( t ) = A 2 IP x ( t ) + B 2 IP u ( t ) + W 

ith u ( t ) = T ( t ) = −Kx ( t ) 

˙ 
 ( t ) = ( A 2 IP − B 2 IP K ) x ( t ) + W (6) 

In this study, we applied both multisine as well as filtered noise

isturbances to excite the system. The time series of the states, i.e.

egment angles and angular velocities ( θ (t) , ˙ θ (t) ) and joint torques

 T (t)) were segmented in nine repetitive cycles of the disturbance

ignal. The segmented time series were averaged to reduce noise,

rior to analysis. The optimization algorithm was repeated 10

imes using initial guesses (random values within bounds) for K ,

o check for local minima in the optimization. If a minimum was

ound repeatedly, a global minimum was assumed and the cor-

esponding K matrix was implemented in Eq. (5) to estimate the

euromuscular controller H c ( f ). 

.5.2.3. Method 6: autoregressive-moving-average model with exoge-

ous inputs (ARMAX). Another commonly used group of paramet-

ic system identification techniques are prediction error methods

PEM). In PEM methods, the output of the system as obtained

rom measurements is compared to the output as predicted by the

odel. The difference between the two is termed the prediction

rror and indicates how well the model represents the data. The

odel includes parameters that describe the system behavior, and

dditionally includes parameters that describe the noise in the sys-

em. Various model structures have a different parameterization

f the system and noise model ( Ljung, 1999 ). In a previous study

 Fujisawa et al., 2005 ), an ARMAX model was used to model bal-

nce control, in which output y ( t ) is related to the input u ( t ) and

oise e ( t ): 

 

(
z −1 

)
y ( t ) = B 

(
z −1 

)
u ( t ) + C 

(
z −1 

)
e ( t ) (7)

In which z −1 is the shift operator to describe past discrete time

amples. The A and B polynomial matrices describe the estimation

f the system, how u (the segment angles) are related to y (the

oint torques), depending on a number of parameters (order of the

ystem). Increasing the number of parameters will improve estima-

ion, as the estimated structure better compares to the data. How-

ver, a large number of parameters increases the computational

urden and possibly does not further reduce the prediction error. A

rade-off between the lowest number of parameters and a low pre-

iction error must be made, which is often expressed in Akaike’s

nformation Criterion ( Ljung, 1999 ). 

The validity of the estimation (consistency) can be determined

y residuals analysis. The residuals are the remaining errors

etween the real model and the identified model. When the

utocorrelation of the residuals represents white noise, this is an

ndication that the noise dynamics are fully captured. The cross-

orrelation between the inputs and residuals indicates whether or

ot the system model is captured. An advantage of these residual

ests is that the accuracy of a model is determined by only using
he available data. Residual outcomes directly explain whether

he identified model can represent the system dynamics within

pecified confidence levels. 

In this study, we applied both multisine and filtered noise dis-

urbances. To improve consistent outcomes of an ARMAX model

which favors high frequencies in the optimization process), data

as resampled to 10 Hz. As we are dealing with a MIMO and

losed-loop system, first a consistent ARMAX model was estimated

or the relation between the disturbances and torques, resulting

n H dT ( f ). Subsequently a consistent ARMAX model was estimated

or the relation between the disturbances and angles, resulting in

 d θ ( f ). The obtained models are divided resulting in an estimation

f the neuromuscular controller properties, comparable to Eq. (2) . 

.5.2.4. Method 7: predictor-based subspace identification (PBSID). In

he predictor-based subspace identification method ( Ljung, 1999 )

 van Wingerden, 2008 ), the LTI system is considered in state

pace: 

( t + t s ) = A ss x ( t ) + B ss u ( t ) + K ss e ( t ) 

y ( t ) = C ss x ( t ) + D ss u ( t ) + e ( t ) (8) 

ith a sample time t s and where x ( t ), u ( t ), y ( t ) are the state, input

nd output vectors as functions of time, respectively. The vector

 ( t ) denotes the zero mean white noise sources. The state space

atrices A ss , B ss , C ss , D ss , K ss are the system, input, output, direct

eed-through, and observer matrices. The goal of the PBSID method

s: Given the input sequence u ( t ) (the two disturbances) and out-

ut sequence y ( t ) (ankle and hip angles and corrective torques),

nd all the state space matrices of the system up to a global sim-

larity transformation. If the states x ( t ) were known, the solution

ould be straightforward: compute C and D with linear regression,

econstruct the noise e ( t ), and compute A ss , B ss , K ss with linear re-

ression. However, the problem is to find the states. 

An essential step in subspace identification is to reconstruct the

extended) observability matrix ( �) from input and output data

 Verhaegen, 2007 ). 

n = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

C ss 

C ss A ss 

. . . 

C ss A ss 
n −1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

(9) 

A system is said to be observable if the states of the system

an be inferred through linear combinations of the system outputs.

his means that from knowledge of the system’s outputs, it is pos-

ible to determine the behavior of the entire system. The system

s observable when the rank of this matrix equals the amount of

tates ( n ), which gives the order of the system. A singular value

ecomposition can be used for order determination. Once the rank

nd the observability matrix are known, the A ss and C ss matrix can

e determined as matrix C ss equals the first rows (dependent on

he number of outputs) of the observability matrix and A ss can

e determined from the rest. Additionally, the states and the noise

ontributions can be estimated, together with the B ss and D ss ma-

rices with linear regression. 

Due to the state-space description of the system, the method

an implicitly handle MIMO systems, and common structures

etween disturbances, segment angles, and corrective torques are

ncorporated. Also as an advantage compared to PEM methods,

etermination of the system order was incorporated in the algo-

ithm and no a priori assumptions about the model structure were

eeded. The estimates for both H dT ( f ) and H d θ ( f ) were therefore

ound in just one identification step, converting the state space

odel to a frequency response, with the disturbances expressed

s two inputs and the segment angles and corrective joint torques
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Fig. 3. Parametric system identification of the neuromuscular controller in time do- 

main (left) and frequency domain (right) based on simulated data. For the MLSQ 

and OPTIM, multisine signals were used, and for the ARMAX and PBSID method, fil- 

tered noise signals were used. For the time domain estimation, the simulated time 

series are shown in black, and the estimated time series are shown in grey. For 

the frequency domain estimation, the theoretical FRF of the model is shown by the 

black solid line and the estimated FRF on the excited frequencies is shown by the 

grey circles. 
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as four outputs. The frequency response was only calculated for

the excited frequencies in the disturbance signals. ⎡ ⎢ ⎢ ⎢ ⎣ 

θleg ( f ) 

θhat ( f ) 

T ank ( f ) 

T hip ( f ) 

⎤ ⎥ ⎥ ⎥ ⎦ 

= 

[
H dθ ( f ) 

H dT ( f ) 

][
d pelv is ( f ) 

d shoulder ( f ) 

]
(10)

Based on the transfer function matrices for both H dT and H d θ ,

the neuromuscular controller can be obtained using Eq. (2) . In this

study, we applied both multisine as well as cyclic filtered noise

disturbances. 

2.6. Validation criteria 

To quantify how well the obtained neuromuscular controller

descriptions represent the true system, we have used validation

criteria for both the time and frequency domain. 

2.6.1. Goodness of fit (GOF) 

Based on simulated data, the theoretical FRF of the neuromus-

cular controller can be compared with the identified FRF of the

system identification method. This goodness of fit (GOF) is calcu-

lated as the logarithmic absolute and squared difference between

the estimated neuromuscular controller FRF ( ̂  H c (f) ) and the theo-

retical FRF (H c (f)), averaged over the amount of frequencies in the

disturbance signal. 

GOF = 

1 

n f 

5 ∑ 

f=0 . 05 

∣∣ln ( H c ( f ) ) − ln 

(
ˆ H c ( f ) 

)∣∣2 
(11)

The number of excited frequencies differs for each disturbance

signal (i.e., multisine n f = 27 , zippered multisine n f = 18 , filtered

noise n f = 100 ). A low GOF indicates a good fit. 

2.6.2. Variance accounted for (VAF) 

Once a parametric estimate of the system is available, the be-

havior of the neuromuscular controller can be used to predict the

outputs of the system by simulating the model using the corre-

sponding inputs. The percentage of Variance Accounted For (VAF)

represents the quality of the identified model by comparing the

measured output ( y ( t )) with the simulated output ( ̂  y (t) ) in the

time domain. The VAF of two equal signals will be 100%. If they

differ, the VAF will be lower ( Verhaegen, 2007 ). 

AF 
(
y ( t ) , ̂  y ( t ) 

)
= 

( 

1 −
v ar 

(
y ( t ) − ˆ y ( t ) 

)
v ar ( y ( t ) ) 

) 

∗ 100% (12)

In case of a non-parametric estimate, the Fourier components

of the open loop transfer functions S dT ( f ) and S d θ ( f ) were multi-

plied with the Fourier components of the disturbances. The inverse

Fourier transform of this product results in the outputs of the sys-

tem, the angles or torques respectively. Comparing these “simu-

lated” outputs to the measured outputs gives the VAF. In case of

cyclic disturbances (multisine and zippered multisine signals), this

measure describes how each cycle deviates from the mean over

cycles, which is comparable to a noise-to-signal ratio. 

2.6.3. Measurement time 

In balance-control experiments, it is advantageous to have short

experimental measurement times. Especially in impaired stand-

ing balance, subjects become easily fatigued, which induces time

variant behavior. Therefore the amount of measurement time, i.e.

amount of data needed for identification, is also a validation factor

and was studied by using various simulation times. 
. Results 

.1. Non-parametric system identification techniques 

Non-parametric spectral-system identification techniques were

specially designed for the estimation of system dynamics in the

requency domain. Fig. 3 shows that with non-parametric system-

dentification techniques, the neuromuscular controller dynamics

ere estimated well. Hence, for all methods and various external

isturbance signals, the estimated dynamics were close to the the-

retical FRF. 

Table 2 gives an overview of the validation criteria for the var-

ous methods. In the frequency domain, the fits were all good, as

an be seen from the relatively low GOF values. The GOF value for

he 2EXP method was lowest, followed by the INT method, and the
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Table 2 

Validation of the system identification techniques, based on model simulations. 

Multisine 

GOF VAF (%) 

Method θ leg 2 T ank θ hat 2 T ank θ leg 2 T hip θ hat 2 T hip θ leg θ hat T ank T hip 

2EXP 0 .01 0 .03 0 .01 0 .00 97 97 98 99 

INT 0 .01 0 .08 0 .01 0 .01 98 99 99 99 

PC – – – – – – – –

MLSQ 0 .35 0 .58 1 .75 0 .13 – - 98 92 

OPTIM 18 .39 8 .36 43 .45 21 .32 94 90 96 88 

ARMAX 0 .75 2 .53 1 .78 0 .88 94 98 93 85 

PBSID 0 .33 0 .30 1 .35 0 .08 0 0 0 0 

Filtered noise 

GOF VAF (%) 

Method θ leg 2 T ank θ hat 2 T ank θ leg 2 T hip θ hat 2 T hip θ leg θ hat T ank T hip 

2EXP – – – – – – – –

INT – – – – – – – –

PC 0 .02 0 .49 0 .22 0 .01 83 90 89 93 

MLSQ 0 .54 0 .70 1 .57 0 .18 – – 98 93 

OPTIM 29 .28 16 .52 56 .60 34 .47 89 83 71 60 

ARMAX 0 .56 0 .40 0 .52 0 .38 91 96 93 91 

PBSID 0 .55 0 .39 0 .52 0 .38 67 63 66 71 
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Fig. 4. Non-parametric system identification of the neuromuscular controller in 

time domain (left) and frequency domain (right) based on simulated data. For the 

time domain estimation, the model simulated time series (ankle and hip angles 

and torques) are shown in black, and the estimated time series based on the sys- 

tem identification methods are shown in grey. Comparing these gives an indication 

of the goodness of fit. For the frequency domain estimation, the FRF of the simu- 

lated model is shown by the black solid line and the estimated FRF (with system 

identification methods) on the excited frequencies is shown by the grey circles. 
C method had the highest GOF value. In the time domain, the VAF

alues were high for all methods. The 2EXP and INT method had a

lightly higher VAF than the PC method. Please note however, that

n case of T hip , the RMS of the error in case of a VAF of 93% (PC

ethod) more than doubles compared to a VAF of 99% (2EXP and

NT method). 

The amount of measurement time was kept similar between

he non-parametric system identification techniques. Exciting the

ystem with multisine signals had the advantage that in case this

eriodic signal was repeated during the experiment (which we

id), averaging over the successive repetitions decreased the noise.

his potentially reduced the amount of data that was needed to

btain a reliable non-parametric estimate of the neuromuscular

ontroller. Increasing the amount of repetitive cycles of a multi-

ine signal decreased the GOF, i.e. the FRF resembled the theoreti-

al one better. Averaging over more cyclic filtered noise repetitions

ecreased noise in the system and estimated the FRF better; how-

ver the effect was less than for the multisine. Segmenting a fil-

ered noise signal in more segments and applying smoothing using

 Hanning window to compute the CSD also reduced noise and

ave a better estimation. However, the drawback was that it also

nfluenced the lowest frequency, which you could identify. 

.2. Parametric system identification techniques 

Parametric-system identification techniques were especially de-

igned for the estimation of system dynamics in the time domain.

ig. 4 shows the simulated and identified time series for all the

arametric methods. The identified time series were comparable

o the simulated time series, indicating a good fit. Table 2 shows

hat in general, the VAF values for the multisine disturbances were

lightly higher compared to the application of the filtered noise

isturbances. The VAF values were above 85% in case of multisine

isturbances, indicating a good estimation of the system dynam-

cs in the time domain. Except for the PBSID method, which had

 very poor fit using multisines as external disturbance signals. A

etter fit was obtained with filtered noise, however the VAF was

elow 75%, indicating the RMS value of the error is half the RMS

alue of the disturbance signal. 

However, when the estimated model was evaluated in the

requency domain, the methods performed less, as can be seen

rom the relatively high GOF values. The estimated dynamics de-

iated from the theoretical FRF of the neuromuscular controller.



66 D. Engelhart et al. / Annual Reviews in Control 41 (2016) 58–70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g  

n  

(  

m

4  

M  

t  

1  

r  

(  

2  

o  

t  

i  

s  

i  

t  

m  

w  

t  

g  

t  

d  

s  

n  

a  

m  

b  

c

4  

m  

s  

a  

m  

(  

a  

o  

l  

o  

t  

v  

g  

e  

t  

d  

s  

t  

t  

s  

t  

o

 

e  

m  

0  

o  

t

4  

t  

e  

m  

v  

m  
Fig. 4 clearly shows the mismatch between the theoretical and es-

timated FRF, which was largest for the OPTIM method. 

Comparable to the non-parametric system identification tech-

niques, the amount of measurement time was kept similar

between the parametric system identification techniques. Again,

applying a periodic signal (such as a multisine) improved the

estimation of the mean responses as noise was averaged out. 

The feedback gains or estimated model were therefore a more

reliable representation of the system. However, in parametric mod-

els, the estimated model depended much more on the model

structure and the order than on the amount of available data. 

4. Discussion 

Based on model simulations, we evaluated various MIMO

closed-loop system identification techniques in combination with

external disturbance signals. Results indicated that non-parametric

techniques with (zippered) multisine disturbances gave the most

accurate estimation in the time (highest variance accounted for)

and frequency (lowest goodness of fit) domain of the neuromus-

cular controller mechanisms. The use of zippered multisines had

the advantage that only one experiment had to be performed, in

contrast with the full multisine disturbance, which required two

experiments. Parametric system identification techniques did not

estimate all the underlying neuromuscular controller dynamics. Al-

though the time series were estimated reliably, the dynamics in

the frequency domain were not fully captured. 

4.1. Evaluation of system identification techniques 

We evaluated seven methods to estimate the dynamics of the

MIMO neuromuscular controller. The methods were divided in two

main approaches: (1) non-parametric system identification tech-

niques, and (2) parametric system identification techniques. We

evaluated all methods with simulated data using three quantita-

tive evaluation criteria: variance accounted for (VAF), goodness of

fit (GOF), and measurement time. 

4.1.1. Non-parametric system identification techniques estimated the 

dynamics of the neuromuscular controller well for various 

disturbance signals 

Non-parametric spectral techniques can be applied in combi-

nation with various disturbance signals, as long as they contained

multiple frequencies in the range of interest and the signals were

sufficiently exciting the system. A drawback of the 2EXP method

is that two experiments are required to estimate the neuromus-

cular controller dynamics. This inherently assumes that the sys-

tem dynamics remain equal over the two experiments, which is

not always the case (e.g. humans get fatigued, which can change

their behavior or strategy). A drawback of the INT method is the

interpolation of the frequency grid, which possibly induces an er-

ror in the FRF, in case the excited frequencies are further apart.

The choice of disturbance signal depends on the application, and

all signals have advantages and disadvantages. We elaborated on

this further in the section about disturbance signal choice. 

4.1.2. Parametric system identification techniques were difficult to 

apply in human balance control due to the assumed model structure 

and biological noise in the system 

Parametric system identification techniques estimate a structure

through excited frequencies; our results showed that this worked

best when all frequencies in the range of interest were excited, i.e.

filtered noise signals. Nevertheless, the methods performed well

while using multisine signals with many excited frequencies. Four

parametric system identification techniques were used to analyze

the data, of which two were based on estimation of a feedback
ain matrix using multiple least squares and optimization tech-

iques. Furthermore, we have evaluated a Prediction Error Method

ARMAX) and a Predictor-Based Subspace Identification (PBSID)

ethod. 

.1.2.1. Multiple least squares and optimization techniques. The

LSQ and OPTIM techniques have been applied previously to es-

imate the general control mechanisms in balance control ( Barin,

989; Winter et al., 2001 ). These studies showed that the postu-

al feedback gains scaled with the disturbance magnitude and type

 Park et al., 2004 ), and changed with age ( Speers, Kuo, & Horak,

002 ). One should note that the system identification algorithm

f the MSLQ and OPTIM method does not only include informa-

ion about the segment angles, but also uses the angular veloc-

ties. Therefore these methods have more information about the

ystem than the other methods, which may explain the good fit

n the time domain. In our study, model simulations showed that

he MLSQ and OPTIM methods yielded erroneous results in esti-

ating the dynamics of the neuromuscular controller. This effect

as expressed the most in the frequency response functions at

he higher frequencies, whereas the time domain fits were quite

ood. This misfitting in the frequency domain was probably due

o the fact that the feedback gain matrix assumed that the un-

erlying mechanisms of the neuromuscular controller consisted of

prings and dampers. This is, however a simplification; the model

euromuscular controller also included time delays and muscle-

ctivation dynamics, which were not captured in these estimation

ethods. Furthermore, the least square estimation might result in

iased outcomes, as the closed loop system is not taken into ac-

ount; i.e. the signals might be correlated due to feedback. 

.1.2.2. Prediction error methods. A disadvantage of parametric

ethods in general is that a model structure was assumed and a

pecific order was estimated and both the estimation of the order

nd the model structure can be wrong. For example, an ARMAX

odel has a dependent structure for the noise and system model

 Ljung, 1999 ). If the estimation of the noise model is incorrect, this

ffects the estimation of the system model. For example, the bi-

logical pink noise in our system does not match the assumed

inear noise model. Future research might elaborate on the use of

ther PEM models structures, such as Box–Jenkins models, where

he noise and system model are independent. Furthermore, the di-

ision of two parametric estimates (which both contain errors) can

ive inaccurate results, as the errors are present in the closed-loop

stimation. These errors might be due to inaccurate estimation of

ime delays in the system. An ARMAX structure assumes a time

elay in its model structure. The neuromuscular controller as pre-

ented in our study, consists of feedback paths with a mixture of

ime delays (reflexive feedback) and no delays (intrinsic feedback);

his cannot be fully captured (only approximated) by the model

tructure of the parametric estimation. Therefore, it is important

o check the residuals of the estimation to verify the correctness

f the system and noise model. 

ARMAX models have been applied in a previous study ( Fujisawa

t al., 2005 ), identifying the MIMO neuromuscular postural control

echanisms. However, the excited frequencies only extended until

.83 Hz. From our model simulations it was seen that the dynamics

f balance control extended to approximately 4 Hz and therefore in

his study, we used a broadband disturbance signal. 

.1.2.3. Predictor based subspace identification . The advantage of

he PBSID method is that the MIMO neuromuscular controller was

stimated in one identification step, without dividing two para-

etric estimates, reducing the errors in the estimation. A disad-

antage of subspace methods is that they were designed to esti-

ate the model structure for the case that all noise sources acting
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n the system are white. However, biological noise (internal dis-

urbances from the sensory and the motor system) is thought to

e of pink noise origin ( van der Kooij & Peterka, 2011 ), which has

he highest power in the low frequencies. As we are dealing with

his biological noise in the feedback mechanism, obtaining a cor-

ect estimation can be a challenge. Nevertheless, subspace identifi-

ation might be a field of further research, as it allows for studying

he variation over time (see the section about time invariance). 

.1.3. Multisine signals are the optimal choice of disturbance signals 

Non-parametric system identification techniques do not have

he drawbacks that were mentioned in the previous paragraph.

he advantage of non-parametric system identification techniques

s that the system dynamics can be estimated without a priori

nowledge of the system; i.e. these methods do not suffer from

naccurate model structures. Furthermore, the noise in the system

s not identified and therefore the FRFs are not influenced by the

ssumption of pink biological noise. We used four different dis-

urbance signals (multisine, zippered multisine, filtered noise, and

yclic filtered noise) and evaluated their effectiveness. Below we

iscuss why multisines are the optimal choice of disturbance sig-

al. 

First, compared to filtered noise signals, multisine disturbances

ave no leakage errors as each harmonic fits exactly an integer

umber of times in the multisine signal ( Pintelon & Schoukens,

012 ). In case of leakage, power has leaked out to other frequency

ins, which affects the FRF estimate. Secondly, averaging over the

epetitive cycles of the disturbance signal reduces noise. Therefore

he noise-to-signal ratio (NSR) of the multisine signal is lower than

he NSR of the filtered noise disturbances. Finally, exciting fewer

requencies improves NSR further, as there is only (and therefore

ncreased) power at the frequencies of interest. Hence, multisine

isturbances have higher NSR compared to filtered noise, and this

ffect is even stronger when using a zippered multisine. 

Furthermore, there is a difference in frequency resolution be-

ween the signals. If you are dividing the frequencies over multiple

isturbances, thereby creating a zippered multisine, the frequency

esolution drops. Therefore, a drawback of multisine disturbances,

nd even more in zippered multisine disturbances, is that only

pecific frequencies are excited, making it insensitive to what

appens between those frequencies; e.g., very narrow resonance

eaks can be missed. 

An advantage of the zippered multisine is that only one ex-

erimental trial was needed, which reduced the time to overcome

ransients by two at the beginning of the measurement trial, com-

ared to the multisine method. 

In sum, the choice of the “optimal” multisine signal is a trade-

ff between frequency resolution (design choices in the amount of

xited frequencies) and measurement time and thus depends on

he specific research question or assessment goal. 

.2. Application of system identification techniques 

This paragraph describes various challenges, limitations, and fu-

ure perspectives to implement system- identification techniques

n a clinical setting. 

.2.1. Assuming time invariance and linear behavior 

The system identification techniques assume that human bal-

nce control is linear and time invariant (LTI), but in real life, hu-

an balance control is highly non-linear and changes over time.

ith the right experiment and using small disturbance amplitudes,

uman stance behavior can be assumed linear around the point of

quilibrium (upright stance). However, the parts that compose the

euromuscular controller show time-varying behavior, as changing

uscle activation is required for various tasks ( De Vlugt, Schouten,
 van der Helm, 2002; Ludvig, Visser, Giesbrecht, & Kearney, 2011 )

nd postural responses typically adapt or habituate when pertur-

ations have various directions and sizes ( Keshner, Allum, & Pfaltz,

987; Bloem, van Vugt, Beckley, Remler, & Roos, 1998; Klomp et al. ,

014 ). For example, subjects effectively adapt their sway response

n a changing environment by down-weighting the unreliable sen-

ory information and up-weighting the other information sources

 Goodworth & Peterka, 2012 ). Other studies ( Van Asseldonk et al.,

006 ) ( Boonstra et al., 2014a, 2014b ) showed that in stroke and

arkinson’s disease patients, the contribution to balance control of

he two legs can be asymmetrical. Putting more weight on the af-

ected leg can alter the controller properties between the legs to

emain in an upright stance ( Pasma, Boonstra, Campfens, Schouten,

 van der Kooij, 2012 ). Finally, there exist changes over time due

o performance limitations, like fatigue. 

In model simulations, the LTI behavior is guaranteed, but in-

erpretation of the outcomes in human experiments must be done

arefully. In an experiment, the LTI assumption applies to normal

ubjects using small perturbations applied in the sagittal plane,

hich somewhat limits the applicability of the model and meth-

ds. When a subject changes its balance control response during

he course of the experiment, e.g., from responding stiff to slack,

his will lead to an inaccuracy in the estimated FRFs (the estima-

ion will be an average of the stiff and slack dynamic behavior).

t is therefore important to instruct participants in a standardized

ay and check linearity and time invariance of the responses. 

.2.2. Challenges 

With age and disease (e.g., Parkinson’s disease) specific prob-

ems present in multi-segmental balance control. However, a draw-

ack of analyzing a system with two segments is that two pertur-

ations are needed to be able to determine balance control param-

ters. In this paper we have focused solely on mechanical distur-

ances, which are often aimed to identify deteriorations in the ner-

ous system part of the control and in the strategies used (ankle

r hip strategy). In addition, sensory disturbances can be used to

uantify the visual, proprioceptive, and vestibular contributions to

aintain standing balance ( Peterka, 2002; Jeka et al., 2006; Pasma

t al., 2012 ). 

Another aspect that is not captured so far is the influence of de-

eriorated cognitive control on the balance control behavior, which

s especially an issue in stroke survivors, the elderly, and PD pa-

ients ( Teasdale & Simoneau, 2001; Doumas, a, & Krampe, 2009;

mbrose, Paul, & Hausdorff, 2013; Stijntjes et al., 2015 ). This effect

ould be assessed by having participants perform a dual task while

aintaining their balance. 

.2.3. Future perspectives to get the methods to the clinic 

In our opinion, system identification techniques could add to

he currently used repertoire of balance tests in the clinic by pro-

iding a quantitative estimate of the balance control system. How-

ver, the methods need to be developed further before they can

e used. That is, to bring the system- identification method into

linics, it is first necessary to prove clinical usefulness. Hence, the

eliability, sensitivity, and specificity of system identification tech-

iques must be determined and compared to existing clinical bal-

nce tests. Subsequently, the ultimate proof is to select a random

ubject from a healthy young population, a healthy elderly popu-

ation, and a population with a known deterioration of a specific

nderlying system and apply system identification techniques to

etermine from which group this subject was selected. 

Acceptance of these system identification techniques in the

linical field will be challenging as the frequency response func-

ions (FRF) are not directly related to the mechanisms involved in

alance control. The FRF shows the behavior of the system, but

oes not reveal which physiological mechanisms are underlying
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the neuromuscular controller. Hence, by fitting a model to the es-

timated FRF, the outcome measures are now specific parameters

with a physiological meaning and the changes in FRF can be re-

lated to changes in e.g. stiffness or time delays. A prerequisite for

reliable physiological parameters is a reliable FRF, which is not self-

evident as we have shown in this study. 

Finally, it needs to be determined whether the proposed meth-

ods are more effective than the current clinical practice: Evalua-

tion of cost-effectiveness and long-term benefits for the patient in

terms of quality of life should be an inherent part of the evaluation

process. 

5. Conclusion 

System identification is the art and science of building math-

ematical models of dynamical systems ( Ljung, 2010 ). In this pa-

per we showed the ‘’science,’’ e.g. the basic principles of vari-

ous system identification techniques and the ‘’art,’’ e.g. system

identification techniques aimed at application of multi-segmental

and closed-loop balance control. Model simulations showed that

non-parametric system identification techniques are favorable over

parametric estimates in identification of the neuromuscular con-

troller in standing balance. Both multisine signals and filtered

noise signals can be used to estimate these dynamics reliably,

in which multisine signals have the advantage to excite specific

frequencies of interest and therefore have a better NSR. By this

overview of the applicability, advantages and disadvantages of the

various currently available system identification techniques, a step

is made toward applying system identification techniques to detect

age and disease-related changes in balance control. 
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Appendix 

To validate the MIMO and closed-loop system identification

techniques, the underlying mechanisms of standing balance control

were described in a model structure. Fig. 1 presents a simplified

model of standing balance control, expressed in a plant (i.e. the

biomechanics of the human body) and a neuromuscular controller.

Each system was described by a mathematical formula (transfer

function) with parameters describing the physiology. 

Plant: biomechanics of the human body 

The rigid body dynamics are represented by a double-inverted

pendulum with the sum of corrective joint torques ( T ank and T hip )

and external force disturbances ( Force 1 and Force 2 ) as input, and

the segment angles ( θ leg and θhat ) as output. The equations of mo-

tion of this double-inverted pendulum were derived with the TMT

method ( Koopman, Grootenboer, & Jongh de, 1995 ). The equations

of motion were linearized with a Taylor approximation and rewrit-

ten in state space ( Boonstra et al., 2013 ). 

Neuromuscular controller: intrinsic feedback 

The controller is partly based on intrinsic feedback, describ-

ing the muscle and tendon dynamics together with the soft tis-

sue properties. These viscous-elastic properties are modeled by a

spring (stiffness K) in series with a damper (D), acting on the

states, i.e. the segment angles and angular velocities. Intrinsic
roperties are sometimes called passive properties. Although the

ame “passive” suggests otherwise, this feedback mechanism can

e modulated by co-activation of antagonistic muscle groups and

herefore the parameters of stiffness and damping can vary. The

ransfer function is described by: 

 p = K p + D p s (A.1)

In which s is the Laplace operator. The ankles and hips were as-

umed to have different passive properties ( H 

ank 
p , H 

hip 
p ). 

euromuscular controller: reflexive feedback 

Intrinsic feedback alone is not sufficient to maintain balance.

herefore, the central nervous system (CNS) continuously gener-

tes motor commands to compensate for the unstable body dy-

amics, which is called reflexive feedback control and results in

hasic muscle activation. Information to the CNS originates from

oisy data (modeled by pink biological noise) from the proprio-

eptive, visual, and vestibular system. 

Reflexive feedback ( H r ) was represented by a matrix with stiff-

ess and damping terms, relating the joint torques to the segment

ngles and angular velocities. This resulted in four transfer func-

ions. 

H 

θleg 2 T ank 

r = K θleg 2 T ank 
+ D θleg 2 T ank 

s 

 

θhat 2 T ank 
r = K θhat 2 T ank 

+ D θhat 2 T ank 
s 

H 

θleg 2 T hip 

r = K θleg 2 T hip 
+ D θleg 2 T hip 

s 

H 

θhat 2 T hip 

r = K θhat 2 T hip 
+ D θhat 2 T hip 

s (A.2)

Reflexive control is delayed due to sensory transduction, trans-

ission, and processing, resulting in a lumped time delay (sum of

eural conduction time (transport delay), an electromechanical de-

ay (to activate the muscles), and the processing time of sensory

nformation). Furthermore, the conversion from motor control sig-

als to muscle force is represented by the muscle-activation dy-

amics. The time delay ( τ d ) and activation dynamics ( H act ) can be

epresented by the following transfer functions: 

 T D = e −τd s (A.3)

 act = 

ω 

2 

s 2 + 2 βωs + ω 

2 
(A.4)

ith ω and β the natural frequency and relative damping of the

uscle activation dynamics. For both the ankle and hip joint, dif-

erent values were chosen ( H 

ank 
T D 

, H 

hip 
T D 

, H 

ank 
act H 

hip 
act ). 

The entire neuromuscular controller ( H c ) can be expressed in

our transfer functions: 

H c, θleg 2 T ank 
= 

T ank 

θleg 

= H 

ank 
p + H 

θleg 2 T ank 

r H 

ank 
T D H 

ank 
act 

 c, θhat 2 T ank 
= 

T ank 

θhat 

= H 

θhat 2 T ank 
r H 

ank 
T D H 

ank 
act 

H c, θleg 2 T hip 
= 

T hip 

θleg 

= H 

θleg 2 T hip 

r H 

hip 
T D 

H 

hip 
act 

H c, θhat 2 T hip 
= 

T hip 

θhat 

= H 

hip 
p + H 

θhat 2 T hip 

r H 

hip 
T D 

H 

hip 
act (A.5)

ith 

 c = 

[
H c, θleg 2 T ank 

( f ) H c, θhat 2 T ank 
( f ) 

]
(A.6)
c, θleg 2 T hip c, θhat 2 T hip 
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Table 3 

Parameter settings for the model simulations. 

Body parameter value Lower segment (legs) Upper segment (hat) 

Mass [kg] 20.7 48.0 

Length [m] 0.826 –

Height of the CoM above lower end [m] 0.521 0.301 

Moment of inertia [kg m 

2 ] 6.57 7.07 

Disturbance height relative to CoM [m] 0.4 0.44 

Passive feedback 

Intrinsic stiffness [Nm/rad] 286 149 

Intrinsic damping [Nms/rad] 65.6 24.8 

Active feedback 

Transport delay [s] 0.06 0.04 

Angular eigen frequency [rad/s] 9.9 12.1 

Damping fraction [-] 1.50 1.65 

Neural controller K [Nm/rad] D [Nms/rad] 

θ leg 2 T ank 567.16 236.80 

θ hat 2 T ank 291.82 108.91 

θ leg 2 T hip 153.38 107.08 

θ hat 2 T hip 159.94 105.88 
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arameter settings 

Parameters for the plant and controller need to be set in order

or the model to work ( Table 3 ). Parameters for body segments are

ass, length, height of the CoM above the lower end of the seg-

ents, and the moment of inertia about the lower end of the seg-

ent. When simulating at a multi-segmented model, the equations

f motion in the plant are separated for a lower segment (legs)

ith a torque around the ankle and an upper segment (hat) with

 torque around the hip. The two joints have different controller

roperties; intrinsic properties and also the time delays and acti-

ation dynamics were different between the segments. These pa-

ameters are described by Kiemel et al. (2011 ). In all simulations,

he data were collected with a sample frequency of 1 kHz. 
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