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Application of extended self-similarity in turbulence
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~Received 10 April 1997; revised manuscript received 14 July 1997!

From Navier-Stokes turbulence numerical simulations we show that for the extended self-similarity~ESS!
method it is essential to take the third order structure functiontaken with the modulusand calledD3* (r ), rather
than the standard third order structure functionD3(r ) itself. If this is done, we find ESS towards scales larger
than order;10h, whereh is the Kolmogorov scale. IfD3(r ) is used, there is no ESS. We also analyze ESS
within the Batchelor parametrization of the second and third order longitudinal structure function and focus on
the scaling of the transversal structure function. The Re-asymptotic inertial range scaling develops only beyond
a Taylor-Reynolds number Rel*500. @S1063-651X~97!05311-7#

PACS number~s!: 47.27.Gs, 47.27.Eq, 47.27.Jv
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I. INTRODUCTION

Extended self-similarity~ESS,@1–3#! has been most use
ful in determining scaling exponents in experimental and
merical turbulent flow. In ESS, thepth order longitudinal
velocity structure function

Dp
L~r !5^$@u~x1r!2u~x!#•er

L%p& ~1!

is plotted against the third order structure function. Here,er
L

is the unit vector inr direction; the unit vectorer
T used below

is perpendicular toer
L . The original motivation for picking

the third order structure function was the Howard–v
Kármán–Kolmogorov structure equation@4–6#

D3
L~r !52

4

5
er 16n

d

dr
D2

L~r !, ~2!

saying that in the inertial subrange~ISR! D3
L(r ) scales as

D3
L}r and thereforeDp

L}r zp
L
}@D3

L(r )#zp
L

has the same sca
ing exponent as a function ofr or of D3

L . However, because
of the poor statistical convergence, rather thanD3

L(r ), the
third order structure functionD3*

L(r ), calculated with the
modulusof the velocity difference, is taken and it is argue
@1,3# thatD3*

L(r ) would also scale linearly withr in the ISR
@7#. The resulting exponents, which in general have to
distinguished from thezp

L’s @8#, are denoted asjp
L , defined

by Dp
L}(D3*

L)jp
L
, and they are found to be remarkably un

versal, i.e., independent of flow geometry and Reyno
number@9,10#.

Note that the degree of intermittency could be quantifi
by plottingDp

L(r ) vs anystructure functionDq
L(r ) @odd order

moments taken with the modulus,Dq*
L(r )].

In this paper we would like to demonstrate that—beyo
the mere practical reason of better statistics—it seems re
essential for physical reasons to takeD3*

L(r ) rather than
D3

L(r ) to have ESS. We do so by examining ESS both fo
full numerical simulation@11# and for Batchelor’s parametri
zation of the structure function@12#. This parametrization
will give us the opportunity to study finite Reynolds numb
561063-651X/97/56~5!/5473~6!/$10.00
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Re effects. We will furthermore discuss the difference
scaling of the longitudinal as compared to the transve
structure functions.

We numerically solve the three dimensional~3D! incom-
pressible Navier-Stokes equation on anN3 grid with periodic
boundary conditions. A pseudospectral code is used, the
is forced on the largest length scales. ForN596 we achieve
a Taylor-Reynolds number Rel5110; scales down to 3h are
resolved;h5n3/4/e1/4 is the Kolmogorov length,n the kine-
matic viscosity,e the energy dissipation rate. Time integr
tions up to 150 large eddy turnovers are performed; the fl
is locally isotropic to a high degree. More details on t
numerical flow are given in Ref.@11#.

II. BATCHELOR’S PARAMETRIZATION

The longitudinal second order structure functionD2
L(r ) is

shown in Fig. 1. As in the whole paper, lengths are given
multiples ofh and velocities in multiples of (eh)1/3. An ISR
scaling range is hardly developed because Rel5110 is still
small. The data are very well fitted by a parametrization
Batchelor’s type@12–16# with an additional large scale cut
off L @15,17#,

FIG. 1. Batchelor parametrization~3! ~solid line! of the N596
data for the longitudinal second order structure functionD2

L(r ) ~nu-
merical data: circles!. We chosea512.4h andL5108h. Then we
used Eq.~6! to calculateD2

T(r ) ~dashed line! which poorly com-
pares with the numerical data~squares! for r beyond the VSR.
5473 © 1997 The American Physical Society
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D2
L~r !5

e

15n

r 2

@11~r /a!2#12z/2

1

@11~r /L !2#z/2
. ~3!

Here, z5z2 is the asymptotic ISR scaling exponent whi
from our@11# and others’@1–3,18,6# ESS analysis we take t
be z50.70. The only other free parameters are the visc
subrange–inertial subrange~VSR-ISR! crossover scalea
and, of course, the large scale cutoffL. From a fit of Eq.~3!
to the present numerical data we finda512.4h and
L5108h.

Note that we do not want to imply that all flow field
show a large scale saturation of type~3!. However, those
data ~both numerical and experimental! we analyzed~see
also @15,17#! were well described by Eq.~3!. As Eq. ~3!
guarantees ananalytic behavior of both the correction term
to r 2 on the small scale side and the correction term
r 5const on the large scale side we think that this is
accidental.

With the outer length scaleL we can define a Reynold
number Re5u1,rmsL/n. For very large Re the structure func
tion ~3! develops an ISR scaling law

D2
L~r !5bL~er !2/3S r

L D dz2

. ~4!

Here,dz25z222/3 is the scaling correction to classical sc
ing andbL is often called the Kolmogorov constant. Fro
our fit we havebL5e1/3Ldz2a22z2/(15n)52.05. This value
agrees well with the databL51.6– 2.5 known from the lit-
erature@4,13,5,6,19#; Sreenivasan@19# gives bL52.060.4.
Note that the full structure function D2(r )
53D2

L(r )1r ]D2
L/dr ~for isotropic flow! asymptotically

scales with a law of type~4!, too; the prefactor is
b'11bL/356 –9. Alternatively, alsoD2(r ) can be fitted by
a Batchelor parametrization@13,15# with similar quality@15#.

Our motivation to employ Batchelor’s parametrization~3!
is to be able toscale upthe second order structure functio
D2

L(r ) to much larger Re~assuming thatbL andz are fixed at
bL52.0 andz50.70) and thereby get consistent data for t
transversalsecond order structure function

Dp
T~r !5^$@u~x1r!2u~x!#•er

T%p&, ~5!

p52, and for the third order longitudinal structure functio
D3

L(r ), which for isotropic, homogeneous, incompressib
turbulence both follow fromD2

L(r ), namely, through the re
lation

D2
T~r !5D2

L~r !1
r

2

d

dr
D2

L~r ! ~6!

and through Eq.~2!, respectively.
To scale upD2

L(r ) in Eq. ~3!, we must know how the
parametersa andL depend on the Reynolds number. If on
accepts Sreenivasan’s observations that neither
~asymptotic! dimensionless energy dissipation rate@20–22#
ce5eL/u1,rms

3 , nor the Kolmogorov constantbL @19# ~but
note also Ref.@23#! depend on the Reynolds number, o
gets a weak dependence of the VSR-ISR crossover on
Reynolds number@22#,
s

o
t

e

he

he

a

h
5~15bL!3/~423dz!S h

L D 3dz/~423dz!

. ~7!

OncebL, z, and Re are fixed,L and Rel can easily be ob-
tained from the above equations@21,22#. With
D2

L(`)52u1,rms
2 we get

L

h
5S 2

bLD 3/8

Re3/4, ~8!

Rel5
A15u1,rms

2

Ane
5A15S bL

2 D 3/4

ARe. ~9!

Vice versa, oncea andL are known, we obtain Re and Rel .
For the above values the result is Re5520 and Rel590 for
our numerical flow, in reasonable agreement with the dir
numerical result Rel5110. As we will see, the reason for th
~modest! underestimation is that in the numerical flow the
are correlations left at the largest length scales.

III. D2
T AND D3

L RESULTING
FROM BATCHELOR’S PARAMETRIZATION

For D2
T(r ) we find poor agreement between the cur

evaluated from Eq.~6! and the numerically obtained value
see Fig. 1. The reason is that atr;L there still is consider-
able correlation^u(x1r)u(x)&Þ0. More precisely, at the
maximal meaningful distancer max when employing
periodic boundary conditions, namely, whenr equals
half of the periodicity length ~here, r max'146h),
we find ^uj (x1er

Lr max) uj (x)&/^uj
2(x)&'0.25 and

^uj (x1er
Tr max) uj (x)&/^uj

2(x)&'20.15 for j 51, 2, or 3.
ThereforeD2

L(r max) is smaller andD2
T(r max) is larger than

2^uj
2&, which is the value the structure functions would ta

for perfect decorrelation betweenx and x1rmax. Geometri-
cally, the above correlations mean that there is an eddy w
diameterr;r max;pL in the numerical flow. The possibility
of such large eddies is a consequence of the periodic bo
ary conditions~in contrast to boundary conditions which p
the velocity to zero at the edge of the flow volume! and will
also survive for larger Rel. Such a large scale eddy implie
that the flow isnot isotropic and homogeneous at the lar
scales and therefore it should be no surprise that Eq.~6!,
whose derivation requires isotropy and homogeneity, d
not lead to good agreement with the data at large sca
Note that the same problem occurs in experimental flow, s
e.g., Fig. 1~a! of Ref. @24#. At the largest measured distanc
r'650h ~for Rel5300) it clearly isD2

T(r ).D2
L(r ), reveal-

ing a large scale eddy.
Also for D3

L(r ) the agreement between the direct nume
cal values and those from the analytic equation~2!, which
assumes isotropy and homogeneity, is poor, see Fig. 2.
numerical structure functionD3

L(r ) bends down for larger
as the velocity differences at large scales have Gaussian
statistics and consequently odd order moments almost
ish. This feature which is not described by Eq.~2! is due to
the boundary effects; more precisely, because there ar
larger eddies than on the scaler max which could provide
correlations. In principle, this deficiency can be cured
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adding a corresponding term to that equation as, e.g., don
Ref. @25#.

IV. HOW TO APPLY ESS?

We now plot the second vs the third order structure fu
tion in a compensated ESS type plot, i.e.,D2

L/(D3
L)2/3 vs D3

L ,
see Fig. 3. The scaling regime in the numerical simulatio
by far too short to identify any scaling exponent. However
we repeat this plot, but now withD3*

L rather thanD3
L , ESS

is seen, see Fig. 4. The reason is thatD2
L andD3*

L have the
same type of large scale saturation~i.e., becoming constant!,
whereasD3

L has a different type of large scale behav
~namely, dropping to zero!. We have to conclude that th
extension of the scaling regime by using ESS is mainly
extension towardslarge scales. This even holds if Rel is so
small that there is no ISR yet. Thesmall scale onsetof scal-
ing still is aroundr;10h, whether plottingD2 vs D3*

L or vs

FIG. 2. Third order structure function from our numerical sim
lation ~circles!, compared with the one following from the Batch
elor parametrization ofD2

L(r ) ~full line!. The Taylor-Reynolds
number is Rel5110.

FIG. 3. Compensated ESS type plotD2 /(D3
L)2/3 vs D3

L for the
structure functions from the numerical simulation~circles: longitu-
dinal; squares: transversal! and those following from the Batchelo
parametrization~3! of D2

L for Reynolds numbers Re55.23102 as
in the numerical simulation, for Re55.23104, and for
Re55.23106, corresponding to Taylor-Reynolds numbers
Rel590 ~dot-dashed!, Rel5900 ~dashed!, and Rel59000 ~solid!;
z50.7, bL52.0. The three lower curves are for the longitudin
structure functions, the three upper ones for the transversal o
The arrows indicate 10h. The external length scalesL are beyond
the regimes shown.
in

-

is
f

n

r , which is roughly the crossover scalea'12.4h found from
employing Eq.~3!. In their numerical simulation Briscolin
et al. @3# find an ESS extension down tor;7h ~see Fig. 4 of
their paper!, roughly the same as the 10h reported here, but
slightly smaller. As pointed out to us by Benzi, the origin
the slight difference may be that the small scale resolution
Briscolini et al. @3# is down to 1h, whereas here we only
have a 3h resolution and the deviations in the structure fun
tions due to the lower end of the resolution may influence
scaling exponents in a certain range of larger scales.

Our next point is to advocatecompensatedESS plots for
the visualization of intermittency effects. Already Meneve
@16#—see Fig. 1 of that paper—reveals how misleading
ESS plotDp

L vs D3*
L can be. Here, we demonstrate this

Fig. 5~a!, which shows the original ESS plotD2 vs D3* , only

l
es.

FIG. 4. Compensated ESS type plotsD2
L/(D3*

L)2/3 vs D3*
L ~three

different data sets for three different space directions which, h
ever, agree very well! andD2

T/(D3*
T)2/3 vs D3*

T ~two data sets, also
agreeing! for the numerical turbulence, Rel5110. The arrows again
indicate 10h; the data points are forr 53h, r 56h, r 59h, . . . ,
left to right.

FIG. 5. ~a! ESS plotsD2(r ) vs D3* (r ) for the longitudinal and
transversal structure functions; Rel5110. The data are the same a
in the previous figure, where we showed thecompensatedESS type
plots, in which the different behavior in the VSR and the ISR
clearly visible.~b! ESS plots for2D5

L(r ) vs 2D3
L(r ). In this figure

the Taylor-Reynolds number is only 70, but we checked that
lack of ESS does not decrease with increasing Rel .
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5476 56SIEGFRIED GROSSMANN, DETLEF LOHSE, AND ACHIM REEH
pretendingbetter scaling than in Fig. 4. The reason is that
the VSR the scaling exponent is 2/3 for trivial reasons
value which can hardly be distinguished by eye from the I
value 2/31dz2'0.70. To avoid this similarity of the VSR
and ISR exponents, we prefer to use compensated ESS
@26,11#.

If one plots local slopes@8# as done in Fig. 6~a! it of
course does not make any difference whether one takes
from compensated ESS plots or standard ESS plots. F
Fig. 6~a! one notices that the ESS scalingj2

L'0.69 and
j2

T'0.72 begins around 10h. From Fig. 6~b! one also notices
that without ESS one could not deduce any scaling expon
at all for the small Reynolds number of our numerical calc
lation. ESS is thus useful already for the simple reason th
transition from a local slope of 2/3 to roughly 0.70 isshorter
than from a local slope 2 to roughly 0.70.

As we will show now, there is no extended scaling regim
towards scales much smaller than order;10h, either, if one
does ESS type plots withD3

L instead ofD3*
L . We do so by

plotting D2
L/(D3

L)2/3 vs D3
L with D3

L following @via Eq. ~2!#
from the Batchelor parametrization Eq.~3! of D2

L for various
Re, see Fig. 3. We observe three regimes: The VSR with
any scaling corrections~i.e., a horizontal line in Fig. 3!, a
crossover regime, corresponding to the range fromr;1h to
r;10h, and only for large scales and large Re*500 the ISR
scaling correctionsdz250.033 can be identified.

To summarize this subsection: There seems to be
towards large scales, if the structure functions plotted aga
each other are both calculated with the moduli, i.e., have
same large scale saturation behavior. In particular, for
third order longitudinal structure function this means tha
is essential to takeD3*

L rather thanD3
L and to clearly distin-

guish between thezp and jp exponents. This was alread
stressed by Stolovitzky and Sreenivasan@8#, see in particular
their figures 2 and 4 where they compare local slopes ofD8

L

vs D3
L andD3*

L .
The natural question to ask is, is there also ESS for

FIG. 6. ~a! Local slopesd log10D2
L/d log10D3*

L ~solid! and
d log10D2

T/d log10D3*
T ~dashed! of the curves in Fig. 5~a!. The ar-

rows indicate 10h. ~b! Local slopesd log10D2
L/d log10r ~solid! and

d log10D2
T/d log10r ~dashed! of the numerical data curvesD2

L,T(r )
in Fig. 1.
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order structure functions~calculatedwithout the modulus!
plotted against each other? In Fig. 5~b! we plot 2D5

L vs
2D3

L . No ESS towards large scales is seen. It seems
odd and even order moments obey fundamentally differ
types of statistics. This finding may be connected to H
weijer and van de Water’s finding@27# that zp for odd p
@calculated fromDp

L(r )}r zp] aresmallerthan expected from
an extrapolation of the neighboringzp61 ~for which the
p61 are even!. A difference between thezp for odd and
evenp was also found by Stolovitzkyet al.@14,8#; however,
for the flow analyzed in those references thezp for oddp are
larger than expected from the extrapolation.

We do not understandwhynonuniversal forcing and large
scale boundary effects roughly cancel out in even or
structure functions but not in odd order ones~calculated
without the modulus!. With a more elaborate technique
may even be possible to extract nonuniversal properties
from ESS plots of even structure functions. On the oth
hand, we cannot exclude that there is more universality

FIG. 7. ~a! The ratioD2
T(r )/D2

L(r ) vs r for the numerical data of
a Rel5110 ~circles! and a Rel570 ~squares! simulation.Errone-
ously, one may deducedifferent scaling ofD2

L(r ) and D2
T(r ) be-

cause the ratio depends onr . We also included an apparent slope
20.14. ~b! D2

T(r )/D2
L(r ) as a function ofr for the Batchelor pa-

rametrization ~3! for Taylor-Reynolds numbers of Rel590,
Rel5900, and Rel59000. The plateau in the ISR~at roughly
log10(4/3)50.125) expected for isotropic homogeneous flow on
starts to develop for as large Rel as Rel;500. The VSR plateau is
at log10250.30. Ther -dependent intermediate range characteri
the transition between the VSR and the ISR. The slope is relate
its width and the different heights of the two plateaus. As a s
remark we mention that in this plot one can also notice the Rl

dependence of the VSR-ISR crossovera, cf. Eq. ~7!: the transition
range is shifted towards smallerr with increasing Rel .



rc

e

o
ns

g

t

tio

rg

he
e
i

or
ge
ng
re
n

n

-

ut a
ides

tter
c

e

lor

r
s,

e
r-

ical

lp-
by

ion

56 5477APPLICATION OF EXTENDED SELF-SIMILARITY IN . . .
decayingturbulence where less anisotropy through the fo
ing and the boundaries is felt.

V. LONGITUDINAL VS TRANSVERSAL
STRUCTURE FUNCTIONS

Next, we focus on the difference in the scaling betwe

longitudinal and transversal structure functions,Dp
L(r )}r zp

L

and Dp
T(r )}r zp

T
, respectively. Recently, different degrees

intermittency for longitudinal and transversal fluctuatio
were reported in some experiments@24,28,29# and numerical
simulations on decaying turbulence@30#. We confirmed
these findings for statistically stationary turbulence@11# ~see
also Ref.@31#!. More precisely, it was the ESS type scalin

exponentsjp
L and jp

T , defined by Dp
L}(D3*

L)jp
L

and Dp
T

}(D3*
T)jp

T
, which are clearly different; we found

dj6
L50.2160.01 and dj6

T50.4360.01 for the deviations
from the mean field valuej652 @11#.

One would be tempted to conclude that the best way
see a deviation in scaling betweenDp

L and Dp
T would be to

plot the ratio Dp
T/Dp

L vs r ~or vs D3
L). According to Eq.~6!,

D2
T(r ) and D2

L(r ) scale the same in the ISR, i.e., the ra
should be constant. However, Fig. 7~a! seems to imply dif-
ferent scaling ofD2

L(r ) andD2
T(r ).

The reason for this apparent discrepancy is that the a
ment of equal scaling ofD2

L(r ) and D2
T(r ) is only valid if

both structure functions scale individually. This is not t
case in the transition ranges or if there is not any ISR y
Here, the Reynolds number achieved in the full simulation
by far too small to give the asymptotic~ISR! scaling. In Fig.
7~b! we redo this type of plot, but now within the Batchel
parametrization for which we can achieve arbitrarily lar
Rel . Only if Rel*500 a plateau starts to develop, showi
the onset of the asymptotically correct ISR behavior. To
liably determine scaling exponents from the plateau, o
would need at least Taylor-Reynolds numbers;1000 and
beyond. For Rel;100 there is a fake scaling law with a
apparent exponent of20.14, which has nothing to do with
inertial range scaling.

Going back to Eqs.~3! and ~6!, this behavior can be un
ic

ys
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is
e
,

-

n

f

o

u-

t.
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-
e

derstood. In the VSR we must haveD2
T/D2

L52 @because of
Eq. ~6! and D2

L}r 2] and in the ISR we haveD2
T/D2

L'4/3
@because of Eq.~6! and roughlyD2

L}r 2/3], just as seen in Fig.
7~b!. The crossover between these two regimes is abo
decade. The same can be seen from Fig. 3 where bes
D2

L/(D3
L)2/3 we also plottedD2

T/(D3
L)2/3 vs D3

L . In the cross-
over regime where the former curve bends up, the la
bends down. Again, only for Rel*500 does the asymptoti
scaling exponentsdz2

L5dz2
T50.033 start to be observable.

The same finite Rel effects which we discussed for th
second order structure functions, whereD2

L and D2
T are

knownto have the same scaling, willhinderdetermination of
scaling exponents vsr ~or vs D3

L) in higher order structure
functions for too low Rel&500.

VI. SUMMARY

To conclude, we confirmed the finding of Briscoliniet al.
@3# that ESS does not extend to scales below order;10h.
We furthermore showed from calculations with the Batche
parametrization that scaling exponentszp calculated from
structure functions plotted vsr ~or vsD3

L) can only securely
be measured for Rel sufficiently larger than 500. For smalle
Rel , in particular for all present-day numerical simulation
one is restricted torelative, ESS type scaling exponentsjp

calculated from ESS type plotsDp*
L(r ) vs Dq*

L(r ) and
Dp*

T(r ) vs Dq*
T(r ), whereby it is essential to calculate th

structure functions from the moduli of the velocity diffe
ences. For odd order moments, calculatedwithout taking the
modulus, ESS does not hold in the presented numer
simulation.
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