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Application of extended self-similarity in turbulence
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From Navier-Stokes turbulence numerical simulations we show that for the extended self-sirtH&Sy
method it is essential to take the third order structure fundti@en with the moduluand calledD} (r), rather
than the standard third order structure functing(r) itself. If this is done, we find ESS towards scales larger
than order~107, where 7 is the Kolmogorov scale. ID5(r) is used, there is no ESS. We also analyze ESS
within the Batchelor parametrization of the second and third order longitudinal structure function and focus on
the scaling of the transversal structure function. The Re-asymptotic inertial range scaling develops only beyond
a Taylor-Reynolds number Re500.[S1063-651X97)05311-1

PACS numbdis): 47.27.Gs, 47.27.Eq, 47.27.Jv

[. INTRODUCTION Re effects. We will furthermore discuss the difference in
scaling of the longitudinal as compared to the transversal
Extended self-similaritfESS,[1-3]) has been most use- structure functions.
ful in determining scaling exponents in experimental and nu- We numerically solve the three dimensioriaD) incom-
merical turbulent flow. In ESS, thpth order longitudinal pressible Navier-Stokes equation onNkhgrid with periodic

velocity structure function boundary conditions. A pseudospectral code is used, the flow
is forced on the largest length scales. Kor 96 we achieve
Db(r): HTu(x+r)—u(x)]-e1P) (1)  aTaylor-Reynolds number Re 110; scales down to# are

resolved;p= 1% " is the Kolmogorov lengthy the kine-

. . . . matic viscosity,e the energy dissipation rate. Time integra-

is plotted against the third order structure fuTnctlon. Here, fions up to 150 large eddy turnovers are performed; the flow
is the unit vector irr direction; the unit vectog, used below ;o locally isotropic to a high degree. More details on the

is perpendicular ta&. The original motivation for picking numerical flow are given in Ref11].
the third order structure function was the Howard—von

Karman—Kolmogorov structure equatidd—6| Il BATCHELOR'S PARAMETRIZATION
4 d The longitudinal second order structure functlbb(r) is
D5(r)= gertovygy D5(r), (2)  shown in Fig. 1. As in the whole paper, lengths are given in
multiples of 7 and velocities in multiples ofgz)*. An ISR
) , o scaling range is hardly developed becausg=RELO is still
saying that in the inertial subrangHSR) D3(r) scales @S gmall. The data are very well fitted by a parametrization of
D3ocr and therefordDLocrﬁpoc[D3(r)]5p has the same scal- Batchelor's typd 12—16 with an additional large scale cut-
ing exponent as afunct|on ofor of D3 However, because off L [15,17,
of the poor statistical convergence, rather tm@(r), the
third order structure functiorngL(r), calculated with the 2
modulusof the velocity difference, is taken and it is argued
[1,3] thatD%"(r) would also scale linearly with in the ISR
[7]. The resulting exponents, which in general have to be 1
distinguished from the;’s [8], are denoted asp, defined

by DLoc(D*L)fp and they are found to be remarkably uni-

versal , independent of flow geometry and Reynolds I o

number[9,10]. AT |32L
Note that the degree of intermittency could be quantified

by pIottngp(r) vsanystructure functiorD q(r) [odd order

moments taken with the modulud;; ~(r)]. 0 1 5 3
In this paper we would like to demonstrate that—beyond log. r

the mere practical reason of better statistics—it seems really 10

essentlal for physical reasons to talé"(r) rather than FIG. 1. Batchelor parametrizatioi3) (solid line) of the N=96
(r) to have ESS. We do so by examining ESS both for ajata for the longitudinal second order structure funcidsr) (nu-
full numerical simulatiorf11] and for Batchelor’s parametri- merical data: circlés We chosea=12.45 andL =1087. Then we
zation of the structure functiofl2]. This parametrization used Eq.(6) to calculateD(r) (dashed ling which poorly com-
will give us the opportunity to study finite Reynolds number pares with the numerical dataquaresfor r beyond the VSR.
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Here, {=¢, is the asymptotic ISR scaling exponent which Onceb", ¢, and Re are fixed,. and Rg can easily be ob-
from our[11] and others[1-3,18,§ ESS analysis we take to tained from the above equations[21,22. With
be {=0.70. The only other free parameters are the vrscou@z(w) 2U1rmsW9 get

subrange—inertial subrang@®/SR-ISR crossover scalea

and, of course, the large scale cutbffFrom a fit of Eq.(3) E_ 3 SISR =7 %)
to the present numerical data we fing=12.4y7 and 7 \bt ;
L=1087.

Note that we do not want to imply that all flow fields \/—5u pL\ 34
show a large scale saturation of ty®. However, those 8= lrms— \/_5( ) JRe. (9)
data (both numerical and experimentalve analyzed(see

also [15,17)) were well described by Eq3). As Eq. (3)
guarantees amnalytic behavior of both the correction term Vice versa, onca andL are known, we obtain Re and Re
to r? on the small scale side and the correction term td-or the above values the result is-R820 and Rg=90 for
r=const on the large scale side we think that this is noour numerical flow, in reasonable agreement with the direct
accidental. numerical result Re= 110. As we will see, the reason for the

With the outer length scale we can define a Reynolds (modest underestimation is that in the numerical flow there
number Re-uy d/v. For very large Re the structure func- are correlations left at the largest length scales.
tion (3) develops an ISR scaling law

5, ll. DJ AND D5 RESULTING
Dlz_(r):bL(ér)ZIS(L) _ 4) FROM BATCHELOR'S PARAMETRIZATION

For Dg(r) we find poor agreement between the curve

Here,5¢,= {,— 2/3 is the scaling correction to classical scal- evaluated from Eq(6) and the numerically obtained values,
|ng and bL is often called the Ko|mog0r0v constant. From S€e Flg 1. The reason is thatrat L there still is consider-
our fit we haveb= 3 %232 {2/(150)=2.05. This value able correlation{u(x+rju(x))#0. More precisely, at the
agrees well with the dat"=1.6—2.5 known from the lit- Maximal meaningful distancery,, Wwhen employing
erature[4,13,5,6,13 Sreenivasail9] gives b-=2.0+0.4. periodic boundary conditions, namely, when equals
Note that the full structure function D,(r) half of the periodicity length (here I max~1467),
=3D5(r)+r dDs/dr (for isotropic flow asymptotically Wwe find  (uj(x+ elr'fmax) uj(X))/(uf(x))~0.25  and
scales with a law of type(4), too; the prefactor is (U; (X+errmax) u; () Y(u(x)) =~ Z0.15 for j=1, 2 or 3.
b~11b'/3=6-9. Alternatively, alsd,(r) can be fitted by ThereforeDz(rmaX) is smaller andD}(r ma) is larger than
a Batchelor parametrizatigd 3,15 with similar quality[15]. 2(u2> which is the value the structure functions would take
Our motivation to employ Batchelor's parametrizati@  for perfect decorrelation betweenand x+ r,a. Geometri-
is to be able tescale upthe second order structure function cally, the above correlations mean that there is an eddy with
D5(r) to much larger Réassuming thalv" and¢ are fixed at ~ diameterr ~r ..~ 7L in the numerical flow. The possibility
b-=2.0 and,=0.70) and thereby get consistent data for theof such large eddies is a consequence of the periodic bound-

transversalsecond order structure function ary conditions(in contrast to boundary conditions which put
the velocity to zero at the edge of the flow volunaad will
Do(r)={[u(x+r)—u(x)]-e}P), (5)  also survive for larger Re Such a large scale eddy implies

that the flow isnot isotropic and homogeneous at the large
p 2, and for the third order longitudinal structure function scales and therefore it should be no surprise that (Bg.
(r) which for isotropic, homogeneous incompressiblewhose derivation requires isotropy and homogeneity, does
turbulence both follow fronDz(r) namely, through the re- not lead to good agreement with the data at large scales.
lation Note that the same problem occurs in experimental flow, see,
e.g., Fig. 1a) of Ref.[24]. At the largest measured distance

r r~6507 (for Re,=300) it clearly isD1(r)>D5(r), reveal-
T/oy_ L AL 2 2
Da(r)=Da(r)+ 2 dr Da(r) ©) ing a large scale eddy.
Also for Dg(r) the agreement between the direct numeri-
and through Eq(2), respectively. cal values and those from the analytic equatig@n which

To scale upD'z'(r) in Eq. (3), we must know how the assumes isotropy and homogeneity, is poor, see Fig. 2. The
parameters andL depend on the Reynolds number. If one numerical structure functio'g(r) bends down for large
accepts Sreenivasan’s observations that neither thas the velocity differences at large scales have Gaussian-like
(asymptoti¢ dimensionless energy dissipation rggH—22 statistics and consequently odd order moments almost van-
C.= eL/uirmS, nor the Kolmogorov constartt® [19] (but  ish. This feature which is not described by EB) is due to
note also Ref[23]) depend on the Reynolds number, onethe boundary effects; more precisely, because there are no
gets a weak dependence of the VSR-ISR crossover on tHarger eddies than on the scalg,, which could provide
Reynolds numbef22], correlations. In principle, this deficiency can be cured by
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FIG. 2. Third order structure function from our numerical simu-  FIG. 4. Compensated ESS type plox§/(D3")??vs D" (three
lation (circles, compared with the one following from the Batch- different data sets for three different space directions which, how-
elor parametrization oiDE(r) (full line). The Taylor-Reynolds ever, agree very welland D;/(DQ‘T)Z’3 Vs D§T (two data sets, also
number is Re=110. agreeing for the numerical turbulence, Re 110. The arrows again

indicate 1@; the data points are for=37, r=6%, r=97, ...,
adding a corresponding term to that equation as, e.g., done [fft to right.
Ref.[25].
r, which is roughly the crossover scale-12.4» found from
employing Eq.(3). In their numerical simulation Briscolini
et al.[3] find an ESS extension down te-7 7 (see Fig. 4 of

We now plot the second vs the third order structure funciheir papey, roughly the same as the 40eported here, but
tion in a compensated ESS type plot, i@;,/(Dlé)ZB VS Dg, slightly smaller. As pointed out to us by Benzi, the origin of
see Fig. 3. The scaling regime in the numerical simulation ighe slight difference may be that the small scale resolution in
by far too short to identify any scaling exponent. However, ifBriscolini et al. [3] is down to 1;, whereas here we only
we repeat this plot, but now witB}" rather tharD}, ESS have a 3 resolution and the deviations in the structure func-
is seen, see Fig. 4. The reason is tDétandDgL have the tions due to the Iow_er end of .the resolution may influence the

scaling exponents in a certain range of larger scales.

Our next point is to advocateompensatedSS plots for
the visualization of intermittency effects. Already Meneveau

extension of the scaling regime by using ESS is mainly a 186]S_Sief[ﬁ'g' 1D2thhat pbapelz—revealsd how m;slttea(:rl]r)g an
extension toward#arge scales. This even holds if Rés so == Plotb, VS D3 - can be. Here, we demons r*a € thisin
small that there is no ISR yet. Thsall scale onsetf scal-  F19- 9@, which shows the original ESS plBX; vs D3 , only

ing still is aroundr ~ 107, whether plottingD, vs D} L orvs

IV. HOW TO APPLY ESS?

same type of large scale saturati@®e., becoming constant
WhereasD'g has a different type of large scale behavior
(namely, dropping to zejo We have to conclude that the

100 ¢
0.65
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0.55 (=)
o
4 045 1}
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= 0.35
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log,, [-D5 (r)] d’10”
FIG. 3. Compensated ESS type pp/(D5)% vs D} for the
structure functions from the numerical simulati@ircles: longitu- 1072 - -
dinal; squares: transvergand those following from the Batchelor (b) 10 10 _DSL
parametrizatior(3) of D5 for Reynolds numbers Re5.2x 107 as
in the numerical simulation, for Re5.2<10%, and for FIG. 5. (a) ESS plotsD,(r) vs D3 (r) for the longitudinal and

Re=5.2x10°, corresponding to Taylor-Reynolds numbers of transversal structure functions; Re110. The data are the same as
Re, =90 (dot-dashej] Rg, =900 (dashed, and Rg=9000 (solid); in the previous figure, where we showed tmnpensate&SS type
£=0.7, b-=2.0. The three lower curves are for the longitudinal plots, in which the different behavior in the VSR and the ISR is
structure functions, the three upper ones for the transversal oneslearly visible.(b) ESS plots for—Dg(r) S —Dg(r). In this figure
The arrows indicate 1#. The external length scalésare beyond the Taylor-Reynolds number is only 70, but we checked that the
the regimes shown. lack of ESS does not decrease with increasing.Re
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) ‘ [ - order structure functiongcalculatedwithout the modulug
o 072 L / a plotted against each other? In Fig(bbwe plot —Df vs
= 070 | - ] —D5. No ESS towards large scales is seen. It seems that
s 0.68 | ﬁ | odd and even order moments obey fundamentally different
§ ‘ — 10m log,, D, types of statistics. This finding may be connected to Her-
0.66 — ‘ weijer and van de Water’s findingR7] that £, for odd p
(@) 0 1 2 3 [calculated fronD;(r)ocrfp] aresmallerthan expected from
20 — ‘ an extrapolation of the neighboring,., (for which the
c 15 p=1 are even A difference between thé, for odd and
210+ evenp was also found by Stolovitzkgt al[14,8]; however,
e for the flow analyzed in those references thedor odd p are
= larger than expected from the extrapolation.
0.0 We do not understangthy nonuniversal forcing and large

scale boundary effects roughly cancel out in even order
() log, r structure functions but not in odd order onéslculated
without the modulus With a more elaborate technique it
may even be possible to extract nonuniversal properties also
from ESS plots of even structure functions. On the other
hand, we cannot exclude that there is more universality in

FIG. 6. (@ Local slopesd log;D5/d log;oD%" (solid) and
d log;oDJ/d log,oD3 T (dashedl of the curves in Fig. &). The ar-
rows indicate 16. (b) Local slopesd log;oD5/d log, o (solid) and
d log,oD3/d log,y (dashedl of the numerical data curves '(r)

in Fig. 1. 0.30 |

pretendingbetter scaling than in Fig. 4. The reason is that in
the VSR the scaling exponent is 2/3 for trivial reasons, a
value which can hardly be distinguished by eye from the ISR
value 2/3t+ 6{,~0.70. To avoid this similarity of the VSR
and ISR exponents, we prefer to use compensated ESS plots
[26,11].

If one plotslocal slopes[8] as done in Fig. @) it of
course does not make any difference whether one takes them 0.15 ‘ ‘
from compensated ESS plots or standard ESS plots. From 0.5 1.0 1.5 2.0
Fig. 6@ one notices that the ESS scaliig~0.69 and (a) log,, r
§5w0.72 begins around ) From Fig. b) one also notices
that without ESS one could not deduce any scaling exponent
at all for the small Reynolds number of our numerical calcu-
lation. ESS is thus useful already for the simple reason that a
transition from a local slope of 2/3 to roughly 0.7Csisorter
than from a local slope 2 to roughly 0.70.

As we will show now, there is no extended scaling regime
towards scales much smaller than oreet07, either, if one

does ESS type plots with} instead ofD3"-. We do so by Re,=90 900 9000

plotting D5/(D5)?° vs D} with D} following [via Eq. (2)] -

from the Batchelor parametrization E@) of D5 for various -2 0 2 4

Re, see Fig. 3. We observe three regimes: The VSR without (b) log,, 1

any scaling correction§i.e., a horizontal line in Fig. 3 a

crossover regime, corresponding to the range freni 7 to FIG. 7. (a) The ratioD3(r)/D5(r) vsr for the numerical data of
r~ 10, and only for large scales and large=R&00 the ISR & Rg=110(circles and a Rg=70 (squares simulation.Errone-
scaling correction$¢,=0.033 can be identified. ously one may deducelifferentscaling of D5(r) and D3(r) be-

To summarize this subsection: There seems to be ESSuse the ratio depends onWe also included an apparent slope of
towards large scales, if the structure functions plotted against 0-14- () D3(r)/D5(r) as a function off for the Batchelor pa-
each other are both calculated with the moduli, i.e., have thgametrization S fgr Taylor-Reynolds numbers of Re 90,
same large scale saturation behavior. In particular, for th&& =900, and Re=9000. The plateau in the ISKat roughly

third order longitudinal structure function this means that it\°%i0(4/3)=0.125) expected for isotropic homogeneous flow only
is essential to tak®3%" rather tharD} and to clearly distin- starts to develop for as large Ras Rg~500. The VSR plateau is

. . at log;(2=0.30. Ther-dependent intermediate range characterizes
guish between thg, and £, exponents. This was already e yransition between the VSR and the ISR. The slope is related to

stressed by Stolovitzky and Sreeniva@h see in particular s yigth and the different heights of the two plateaus. As a side

their figures 2 and 4 where they compare local slope®®f  remark we mention that in this plot one can also notice the Re

'S D'§ and D§ L dependence of the VSR-ISR crossoweerct. Eq. (7): the transition
The natural question to ask is, is there also ESS for oddange is shifted towards smallemwith increasing Re.
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decayingturbulence where less anisotropy through the forc-derstood. In the VSR we must haﬂlézr/D5=2 [because of

ing and the boundaries is felt. Eq. (6) and D;cr?] and in the ISR we hav®;/D;~4/3
[because of Eq6) and roughlyD5r?7], just as seen in Fig.
V. LONGITUDINAL VS TRANSVERSAL 7(b). The crossover between these two regimes is about a
STRUCTURE FUNCTIONS decade. The same can be seen from Fig. 3 where besides

D5/(D5)?® we also plottedd;/(D3)?* vs D5 . In the cross-
over regime where the former curve bends up, the latter
T bends down. Again, only for Re=500 does the asymptotic
andD(r)ecr’e, respectively. Recently, different degrees of scaling exponentsZs= 5¢3=0.033 start to be observable.
intermittency for longitudinal and transversal fluctuations The same finite Reeffects which we discussed for the
were reported in some experimenel, 28,29 and numerical  second order structure functions, whelbs and D) are
simulations on decaying turbulend80]. We confirmed  knownto have the same scaling, willnder determination of
these findings for statistically stationary turbuleft&] (see  scaling exponents vs (or vs DS) in higher order structure
also Ref[31]). More precisely, it was the ESSLtype scaling functions for too low Re<500.
exponentsé;, and &), defined by Dye(D3%)% and D
oc(D’3‘T)§;, which are clearly different; we found
6¢6=0.21+0.01 and 6£5=0.43+0.01 for the deviations
from the mean field valugg=2 [11]. To conclude, we confirmed the finding of Briscoliti al.
One would be tempted to conclude that the best way t¢3] that ESS does not extend to scales below ordé0x.
see a deviation in scaling betweat and D; would be to  We furthermore showed from calculations with the Batchelor
plot theratio DZ/DFI; vsr (or vs D'§). According to Eq.(6), parametrizatiop that scaling exponeizt§ calculated from
DI(r) and D5(r) scale the same in the ISR, i.e., the ratio Structure functions plotted vs(or vs D3) can only securely
should be constant. However, Figay seems to imply dif- Pe measured for Resufficiently larger than 500. For smaller
ferent scaling oDE(r) and D;(r). Re, ,in part_lcular for aI.I present-day numgncal simulations,
The reason for this apparent discrepancy is that the argN€ iS restricted toelative, ESS type scaling exponengs
*L *L
ment of equal scaling ob5(r) andD;(r) is only valid if calgulated frop ESS type plot®;~(r) vs Dg~(r) and
both structure functions scale individually. This is not theDp (r) vs Dg'(r), whereby it is essential to calculate the
case in the transition ranges or if there is not any ISR yetStructure functions from the moduli of the velocity differ-
Here, the Reynolds number achieved in the full simulation is2nces. For odd order moments, calculatéthouttaking the -
by far too small to give the asymptotitSR) scaling. In Fig. modulus, ESS does not hold in the presented numerical
7(b) we redo this type of plot, but now within the Batchelor Simulation.
parametrization for which we can achieve arbitrarily large
Re, . Only if Rg, =500 a plateau starts to develop, showing
the onset of the asymptotically correct ISR behavior. To re-
liably determine scaling exponents from the plateau, one We thank Roberto Benzi and Luca Biferale for very help-
would need at least Taylor-Reynolds numberd000 and ful comments on the manuscript. Support for this work by
beyond. For Re~100 there is a fake scaling law with an the Deutsche Forschungsgemeinsch&FG) under Grant
apparent exponent of 0.14, which has nothing to do with No. D3 of SBF185 and by the German-Israeli Foundation
inertial range scaling. (GIF) is gratefully acknowledged. The HLRZ lith supplied
Going back to Eqs(3) and (6), this behavior can be un- us with computer time.

Next, we focus on the difference in the scaling betwee
. . . L
longitudinal and transversal structure funct|oﬁ$(r)ocr5p

VI. SUMMARY
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