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Fig. 3. Plot of the  ratio of expressions for  var(&II)  to  var(&)  versus 
the  population  correlation  for N equal to 4096. 
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Fig. 4. Plot of  the ratio of expressions  for  var(;III) to var(p^3 versus 
the  sample  number N for p = 0.98 (upper  curve)  and p = 0.0 (lower 
curve). 

tion of N at p = 0.98 and p = 0.0. In all cases, the variances 
tend  to zero  as p approaches  unity  or as N increases. More- 
over, for all the  estimators,  the variances are proportional to 
1 IN. 

In  addition, Fig. 3 plots  the  functional  ratio of var(BuI) to 
var(BI) versus the  true  population  correlation  (or equivalently, 
the  ratio of samples required  with  estimator 111 to the samples 
required with  estimator I for  equal variance). Note  that  the 
closer the  population  correlation is to unity,  the larger the 
ratio;  this  indicates  that  var(PI) converges to  zero faster  than 
var(p^IU). Fig. 4 plots  the  functional  ratio  of  var(PIn) to var 
(SI) versus N at p = 0.98 and 0.0. At  both  population correla- 
tions,  the  ratio  is  constant  indicating  equal convergence rates 
as N gets large. 

DISCUSSION 
The  number of samples required by the  two  indirect  methods 

are  within an  order of magnitude of the samples required by 
the direct estimator  for  population  correlations up to approxi- 
mately 0.95. This  is  particularly significant for  the  polarity 
coincidence estimator which requires  only  comparators, a 
counter,  and a table  lookup  scheme  to  estimate  correlation. 
The  other  two  methods  require analog-to-digital  conversion 
and  either  addition  alone or  both  multiplication  and  addition 
to  compute  correlation.  Furthermore, if the samples were to 
be stored,  the  polarity  coincidence  estimator need only  retain 

the sign of  the samples,  whereas the  other  two  methods re- 
quire  storage of all or half the samples, 

Thus, if one is willing to take twice or three  times  the  num- 
ber of samples, the  computations involved in estimating  corre- 
lation can  be  significantly  simplified.  However, it  should  be 
noted  that if the  polarity coincidence estimator is to be used 
for  estimation of the cross-correlation function R x y ( 7 ) ,  it can 
only  estimate  the shape of the  function  to within  a constant 
factor RXy(O). 
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Relative  Linear  Power  Contribution  with  Estimator  Statistics 

PETER LOHNBERG 

A&sract-The relative contribution by a noiselessly  observed input 
signal to the power  of a possibly disturbed observed stationary output 
signal from a linear  system  is  expressed into signal spectral densities. 
Approximations of estimator  statistics  and  derived  confidence  limits 
agree  fairly  well with simulation  results  for  white  signals. 

I. INTRODUCTION 
An observed stationary signal y may often be considered as 

the  output u of a  linear  system with  frequency response func- 
tion H ( f )  driven by  a noiselessly observed input signal u ,  with 
additive uncorrelated  disturbance.  Then  it  may be of interest 
to  know  the relative  contribution 

R = Pv/Py (1) 

by u to the   power  Py of y .  The  power of u 
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with power spectral density of v 

- GUy(f>  Gy,(f) 

G,,(f) 
- (3  ) 

Cross-spectral density G?,( f) with  complex conjugate G,, (f ), 
and  power  spectral density G,,(f) of u,  may be estimated  from 
recordings of u and y .  Expression of P,, into power spectral 
density G Y Y J f )  of y ,  similarly to ( 2 ) ,  allows a simple total 
procedure  with  identical filtering of u and y .  Substitution  into 
(1) of this P, and of P, according to (2)  with (3) yields 

It follows that R is real, 0 5 R 5 1, R = 0 for H(f) = 0, and 
R = 1  for  no  disturbance. 

Equation (4) carries  some  resemblance to  the squared  coher- 
ence function, defined  as 

= G,,(f)/G,,(f) in  this case. The  relation of R with C(f) is 
illustrated  by substituting  the result of (5) G2,(f) G,,(f)/ 
G,,(f) = C(f) G,,,(f) into (41, yielding R =lo C(f> Gy,( f> df/jr G Y Y ( f )  df. This  shows R to be a normalized average of 
C(f) weighted by G,,(f). Note  that  for C(f) = C, R = C and 
that  for H ( f )  = H ,  R is the squared correlation  coefficient. 

Estimatz R^ of R acczrding  to  (4) is obtained  from  estimates 
G,,(f), G,,(f), and G,,(f) of the respective spectral densi- 
ties. These may  be obtained  from recordings of u and y during 
time of length T by successive sampling, Fourier  transforma- 
tion, complex conjugate multiplication,  and  convolution  by  a 
spectral  window S(f) with  properties 

A 

with W the window bandwidth [ 1,  (6.4.23)J.  Then  from (1)- 
(3) we find 

6,,(f) = euym eYu(f)/euu(f) 7 (8) 

for  frequencies of intezst  from F1 to F2 = F l  + F with signal 
bandwidth F ,  with 4 TP, similarly, and finally 

A 
R = % TP,/$ TP,. 

A A 
(1 0 )  

11. APPROXIMATE STATISTICS OF R^ 
A.  Variance 

By first-order Taylor  expansion of the  estimate R (1 0) about 
h 

its  actual value R ( l ) ,  we obtain  the relative variance 

A h  

V [ R , R l  V[P,,P,l + V[p,,?,,yl - 2V[?,,?,,I, (11) 

defining V[P,,~,]  = c,ov [?,,?,]/PUP,, as the relative covari- 
ance  between P, and PY. The  terms on the right-hand  side of 
(1 1) follow  from  (9) by 

A A  

A h  

PA 

with k = (f + g)/2  and defining 

1 
m 

D ( f -  g) = - S(f- h)  S(g - h)  dh, 
T I, 

which because of (6) has the  property 

m I- D ( f ) d f  = 1/T. 

Substitution of the reverse of (5) into  (14) and of  the  results 
into  (1 3) yields 

Substitution of (1 7) with ( 5 )  into (1 2) yields by use of (1 6) 

= cov [P,, P,]. 
A A  

The spectral  effects in ( 1  8) can be expressed by cocoloration 
factors, defined by 
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K,, = 4 F  68 G,,(f) Gyy(f)  dflPvPy (1 9) 

with properties: K,, = 1 for G,,(f)  = Gy,(f); K, ,  = 1 for u 
and/or y white from f= F1 to F 2 .  Similar formulas  define 
Kvu  and K,,. Substitution of (19)  into ( i 8 )  yields, defining 
the  Flative  power variance Q = 1 /FT, varil?,!, 2: QKyy Py and 
var[P,] = Q(2K,,PvP, - K,,P:)2: cov[P,, P,], so that 

r [ p y ,  Q K p ;  ~ [ P v ,  pvl N Q(2KVy/R - K,,); 

VP,, Pyl N Q(2Kuy - K,,R). (20) 

Finally, substitution of (20)  into  (1  1) yields V[Rh,Rh] N 

var[$l = QR(2KUy - RK,, + R K ,  - 4RK,, f 2R2K,,). 

> 

A h  

A h  

Q(2KvylR - K,, + K,, - 4K,, + 2K,,R), so that 

(21) 
If all K’szre 1,  R = C = the squared cozelation coefficient 
and var[R]  =2QR(1 - R)’. Then  var[R]is a factor F/W 
smaller than var[?( f ) ]  = 2C{1 - C}’/WT [ 1,  (9.2.19)l. 

B. Bias 

By second-order Taylor exynsion of R  ̂ (10)  about R (1)  the 
relative bias, defined as bias [R]   /R,  equals 

B[Rh] =B[$,] - B[$,] - B[$,] B[?,] - V[?,,p,] 

+ B2 [?,I + V[Py, $,I. (22) 

It follows from  (2)  that 

bias[P,] = 2 [” bias[Gh,,(f)l  df 
A 

JF1 
h 

and similarly, bias[Py] foll2ws from  bias[Gyy(f)].  Bysecond- 
order  Taylor  expansion of G,,(f) (8) about G,,(f) (3) follows 
for each frequency f 

A 

h 

B[G,,l =B[G,,I +BIGyUl -B[Gh,,I +B2[Gh,,l 
A A 

+ V[Gh,,, Gh,,] +h[Ghuyl BIGhyul 

+ Ue,,, Gnu,] - B[Gh,,I  B[Gh,,l, 

- rCr[Guy, e,,] - BIGhyyul  B[Gh,,l 
h 

- V G y u ,  G,,l. 
A h  (24) 

If the spectra do  not vary significantly over the window 
bandwidth W ,  it follows from  [2, eq. (3)]  that 

A 

B[G,,l = B[G,,I = BIGyyl = 0. 
h A 

(25) 

Substitution of the reverse of (5) into  (14)  and of the result 
and (25)  into  (24) yields 

defining the relative spectral variance L = D ( 0 )  = I/WT, the 
latter result  following from  substitution of (7)  into  (15)  for 
f =g.  

Substitution of (25),(26) into  (23) yields with  (5) bias [p,] 
LP, - LP, and  bias[Py] = 0; therefore 

Finally, substitution of (20)  and  (27)  into  (22) yields 

bias[R] 2: L( l  - R )  - QR(2KV, - RK,, - K,,). (28) 

For a; K’s = 1,  this is ( L  - QE)  (1 - R). This  shows, then,  that 
bias[R] > L(l  - R)’ = bias[C(f)l  for C(f) = R f 0 or 1 [ 2 ,  
eq.  (6)] because Q = 1/FT < I/WT = L .  

B[R] 2: L(l/R - 1) - Q(2KUy - RK,, - K,,,); therefore 
A 

C. Confidence Intervals  for White Signals 

Fsr simplicity, white signals were studied Lurther. For  these, 
var[R] according to  (21) was similar to  var[C(f)l,  and  accord- 
ing to [ 1,  sect. 9.2.31, v a r [ e ) ]  is similar to the variance of a 
sample correlation coefficient [ 3,  sect. 19.121. H e y e ,  similarly, 
confidence  interxals foL R may be foundpom R easily viaha 
transformation Z =Z(R)  such  that  var[Z] = 1 for  any  R. 
From  this  requirement, if Z ( . )  Fould  be approximately linear 
first-ord2  Taylor  expansion gf Z about R that  for white signals 
1 = var[Z] 2: (dZ/dR)2 var’[R].  It  follows  by  use of  (21)  that 

Integration of (29) over R  yields the  required  transformation 

= E a r c t a n h  (JK) 

which is the Fisher z-transfoLmatip of fi [3,  (19.12.4)]. 
Because of the similarity of R to C(f)  and  approximate  nor- 
mality of Z{?( f)} [ 1, sect. 9.2.31, near  normality of 2 is ex- 
pected.  Further, according to  [3,  (5.8.5)]  under  the assump- 
tion  made,  the mean of ẑ  is 2 = Z(& with k the  mean of Rh. 
Hence, the lower and  upper  95  percent  confidence  limits  for 
Z are 

- A - A 

ZL = Z  - 1.96; Zu-2 + 1.96.  (31) 

From  these  limits  follow lower and  upper  95  percent  confi- 
dence  limits for R as the inverse of (30) 

& { tanh (fi.?~)} ’ 
and  similarly R U  from zu. Lower and  upper  95 perce_nt con- 
fidence limits  for R can be derived finally  as RL = R(RL)  and 
R U  = R(&) with  the inverse off? = R + bias[Rh] with bias[;] 
according to  (28) 

111. SIMULATION EXAMPLE FOR WHITE SIGNALS 

In  order  to  test  the  effect  of  the  approximations, y was 
formed  from  two  uncorrelated  random  generators u and w ,  
uniformly  distributed  between 0 and 1,  as 

y = f i u + m w .  (34) 

This  implies H( f )  = fi and P, = P, . Substitution of (34)  into 
(4) shows that  this  simulation indeed  yields the  correct R .  
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Fig. 1. Estimates k with  confidence  intervals  for  relative  linear  power 
contribution R from  100  simulations  each  of 100 values of R .  

Equation  (34) was simulated for  R = 0 ,  0.01, . * . , 1.  For 
each value of R ,  100 independent realizations of u and w of 64 
samples during T = 10 s each wzre  used. From  each resulting 
pair of realizations of u and y ,  R was estimated using a Papoulis 
correlation window [4] with maximal  window lag-of  15 sam- 
ples, yielding a window bandwidth [ 1 1 ,  [ 41 W = 1.896 X 54/ 
15T=  0.80 Hz  forAF1 = 0.1 and F2 = 3.2;thereforeF= 3.1 Hz. 

Fig. 1 shows R ( R )  with 95 percent  confidence interval 
approximations caiculated according to (30)-(33). For  the 
10 000 values of R obtained,  34 of the  actual R were over 
and  152  under  the calculated 95  percent  confidence limit 
approximations. 

IV. CONCLUSIONS 
Equation  (21) shows khat the variance of relativelinear power 

contribution  estimate  RAis lower than  that of squared coher- 
ence function  estim9e C ( f ) .  This iszccomplished  at  the cost 
of a larger bias in R compared  to C ( f ) ,  according to (28). 
Such bias might  be corrected  for. 

Fig. 1 shows that  for  white signals, confidence intervals 
derived according to  (30)-(33)  are reazonable bounds on 
the simulated R  for resulting estimate R.  The  number of 
occurrences of R under  the lower and over the  upper 95 per- 
cent confidence limit  did not  reach  the  mathematical  expecta- 
tion  250  each, however.  These deviatiop  may be due to  
approximation  errors lik2 no linearity of 2 required  for  (29) 
%ver the wide range of R for  64 samples or  nonnormality of 
2 .  Similar analysis  could be carried out  for  arbitrary spectra 
by using cocoloration  factors according to (1 9). 

ACKNOWLEDGMENT 

The  author is indebted to Dr. L.L.W. Hoogstraten  for  carry- 
ing out  the simulations, to Prof. H. Kwakernaak for critically 
reading, and  to G.G.M. Steijlen for  typing  the  manuscript. 

REFERENCES 

[ 11 G. M. Jenkins  and D. G. Watts, Spectral Analysis and i t s  Applica- 
tions. San  Francisco, CA:  Holden-Day, 1968. 

[2]  P. Lohnberg,  “Improved  approximation of  bias in squared  co- 
herence  estimates  for  weakly  smooth  spectra,” IEEE Trans. 
Acoust., Speech, Signal Processing, vol.  ASSP-26,  pp.  172-174, 
Apr. 1978. 

131  A. Hald, Statistical Theory  with Engineering Applications. New _ _  
York:  Wiley, 1952. 

[4]  A. Papoulis,  “Minimum-bias  windows  for  high-resolution  spectral 
estimates,” ZEEE  Trans.  Znform. Theory, vol. IT-19;  pp.  9-12, 
Jan.  1973. 

Noise Sensitivity of Band-Limited Signal Derivative 
Interpolation 

ROBERT J. MARKS I1 

Abstract-The  sensitivity of interpolation  of the pth derivative  of  a 
band-limited  signal  directly  from  the signal’s samples in  the presence of 
additive  stationary noise is considered.  Oversampling and  filtering 
generally  decrease the  interpolation  noise level  when the  data noise is 
not band-limited. A lower  bound on the  interpolation  noise level  can 
be approached  arbitrarily closely by  increasing  the sampling rate.  The 
lower bound is equivalent to the  noise level obtained  by  low-pass  filter- 
ing and  pth-order  differentiation  of the unsampled  additive  input noise. 

INTRODUCTION 
Given the sufficiently closely spaced samples of a  band- 

limited signal, we can directly  generate  the  pth derivative of 
the signal through  appropriate  interpolation  functions [ 11 .’ 
Digital filters can generate  good  approximations of the samples 
of the  pth derivative, given the signal samples as inputs [ 21 4 4 1 .  
The  effects of filter design have been considered.  under  the 
assumption of noiseless data  [SI. Similarly, digital filters  for 
sample interpolation (p  = 0) have also been considered [ 6 1 -[ 71 . 

In this  paper, an ideal pth-order  differentiator is assumed 
and  its  operation in the presence of additive input  data is ipves- 
tigated. We demonstate  that  the noise level, in general, can be 
reduced  by increasing the sampling rate.  The  reduction, how- 
ever, is sometimes insignificant. A lower bound  for  the noise 
level is shown  to be that resulting from passing the unsampled 
input noise through  a cascaded low-pass filter and  pth-order 
differentiator. 

In the  next  section, preliminary concepts  are  introduced. 
General formulas  for  the  interpolation noise level are then 
derived,  followed  by  establishment of a corresponding  lower 
bound. In the  final  two sections, the specific cases of Laplace 
and  triangular autocorrelations  are  considered, When appro- 
priately parameterized,  both  degenerate  to  the special case of 
white noise samples. 

PRELIMINARIES 
Let $ denote  the class of L 2  band-limited signals with 

bandwidth 2W. That is, if x ( t )  E $w, then 

where 

and 3 denotes  the  Fourier  transform  operator.  Then  the  pth 
derivative of x ( t )  is 

where the sampling rate 2 8  exceeds 2W, 
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