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Interpretation of the complex viscosity of dense hard-sphere dispersions
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The complex viscosity of dense hard-sphere dispersions has been determined recently over a large
frequency range. If conceived as a homogeneous system with continuously distributed elasticity and
viscosity, the complex viscosity can be described theoretically with a constant relaxation strength
and relaxation times 7,=7,/p 2, with p the relaxation number. This is consistent with the empirical
analysis of the data. The distributed elasticity can be interpreted microscopically as due to statisti-
cal springs acting between the spheres. The springs are modeled as Fraenkel springs to take into ac-
count the excluded-volume effect. The relaxation strength has been calculated quantitatively. The
resulting deduced relaxation strengths are in fair agreement with the experimentally observed ones.
The given interpretation is compared with literature theory.

The macroscopic stress tensor for a dispersion of hard
spheres, of which the complex viscosity has been deter-
mined recently,1 contains contributions of the continuous
phase, of the stresslet which is calculated as an integral
over the sphere’s surfaces and a direct force contribution
of type (x,F;) which is the volume average of the dyad
of F; and x; where F; is the force acting on a sphere at
position x;. The forces to be considered for hard spheres
are the fluctuating force leading to Brownian motion and
the hard spheres interactions.

Batchelor? considered a dilute dispersion in which
pairs of spheres can be discerned. For this system he cal-
culated two limiting viscosities: for pure hydrodynamic
interactions only and for hydrodynamic interactions plus
Brownian motion. In a harmonically oscillating shear
flow these limits are found in the real part of the complex
viscosity at high (7’ ) and at low (7)) frequencies, respec-
tively. Such a change in 7' is pertaining to the oc-
currence of a shear modulus G'=w%" which is zero at
low frequencies and G, at high frequencies. Implicitly
this elasticity is also given in Batchelor’s theory and
turned out to be proportional to @ ~* with a the radius of
the spheres. Thus one can calculate an average relaxa-
tion time defined as 7, =(1(—7',)/G’, which is propor-
tional to a’. Batchelor’s formalism has been used by
Russel and Gast® to include the interactions between the
spheres. Their average relaxation time is on the same or-
der as derivable from Batchelor’s theory. It decreases
with increasing volume fraction. So far a few theoretical
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aspects.

On the experimental side an excellent hard-sphere
model system came available* while sensitive apparatus
for the determination of the complex viscosity> ¢ has been
developed. In a preparatory study’ it has been demon-
strated that the predicted linear viscoelastic effects exist
indeed. Recently the results of an extensive study of
hard-sphere dispersions with radii of 28, 46, and 76 nm
and volume fractions ¢ between 0.42 and 0.60 have been
reported.! Compared to theory,”® the experimental
viscoelastic effects are larger in magnitude, the experi-
mental longest relaxation time is longer than the men-
tioned average relaxation time (by a factor of 5 or more),
and it increases with volume fraction while theoretically
it decreases. In addition, there is no prediction of the fre-
quency dependence of n*. These discrepancies are unsa-
tisfactory and in this paper an attempt is made to under-
stand them.

Careful study' of the experimental data led to a con-
sistent description of all complex viscosity n* data with

M
"I*_77'w=Gx712‘21—. (1)
p=1P tioT
In (1) the relaxation times Tp=7-1/p2 with p an integer.
The number of relaxation times involved is M. If M and
 are large,

n* =7, =1.11G, 1% X (1—i) .
This frequency decay is, apart from the mere existence of
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elasticity for a hard-sphere dispersion, one of the most
striking characteristics of the experimental viscoelastic
behavior of this system to understand. The parameters of
each sample are 7, G|, and 7,, the first depending on ¢
only and the latter two on a and ¢ (see Table I). The tem-
perature was the same for all samples: 25°C. In this
manner all data could be plotted on to one master curve.

The understanding of theory which calculates 7' (¢)
(only hydrodynamic interactions) is growing®~'° but not
specific for linear viscoelasticity and will not be pursued
in this paper. It turned out that G, and 7, are at a cer-
tain volume fraction proportional to a ~3 and a?, respec-
tively, as predicted in Refs. 2 and 3 by G/, and 7,,
though one may wonder how they are related. A few ex-
perimental trends have to be explained since they differ
from available theory: the ¢ dependence of 7, and G,
and a possible sequence of 7, in accordance with
T, =7,/p% To deal with these questions a shift in point
of view can be advantageous.

The linear viscoelastic behavior of a system which can
be considered as continuous at a certain length scale and
which possesses continuously distributed parameters of
elastic and viscous nature has been treated by Gross and
Fuoss.!! In a previous paper we have already applied this
concept on single molecules in dilute polymer solutions.'?
Here we consider the whole system since no discrete ele-
ments with viscoelastic properties exist in hard-sphere
dispersions.

Consider a fluid with a thickness L along the z axis.
Boundary effects in the x and y directions are neglected.
The fluid is assumed to be continuous but can be thought
to be built up as an elastic medium with shear modulus
G, [o(z,t)=G,0£/0z, with o(z,t) and &(z,t) the local
stress and displacement, respectively, in the y direction]
which “feels” in each point a friction force proportional
to the local velocity of the elastic medium. The local
equation of motion is given by (inertia neglected)
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(where f is a friction coefficient per unit length with the
dimension of viscosity per unit surface) and can be writ-
ten as a diffusion equation

iziszQQ 3 2=_._-’L
Py ar with k Gy (3)

At rest, gravity neglected, the situation with no external
surface forces at z=0 and Z =L gives for the boundary
conditions

gé——(O,t)=§§—(L,t)=0 . (4)
oz oz

The solution of (3) is
§(z,t)=3 [ 4,(t)cosb,z + B,(t)sinc,z] (5)
p

because the sine and the cosine functions constitute a
complete set of orthogonal functions. In (5) 4,(¢) and
B, (1) are time-dependent functions and b, and c, are
constants. Substitution of boundary conditions (4) leads
to

PL—ﬂ-z (6)

§(z,t)=73 A,(t)cos
P

In a thought experiment each pth deformation can be ap-
plied at £ =t and then be released. The time dependence
of A,(1) is then given by a differential equation with as
solution a decay with a relaxation time given by

;= 2fL? 1
p G1

iyt ™

In a harmonic shear experiment, the external applied
flow field can excite all these normal modes of motions as
follows from 7* of such a system. In order to find the
complex viscosity of the fluid, a harmonic shear experi-

G 62§ =f§§ @) ment with gap loading is considered. Then £(0,¢)=0 and
03z2 at o(L,t)=o0expiwt, while the gap loading implies that the
TABLE 1. Experimental parameters 7, G, and 7', [Eq. (1)] of the complex viscosity of hard-sphere
dispersions.
, W’ w6 e | a6
Ns ng nkBT ¢m 6( 7](’)_77’@ )
a =28 nm 0.46 12.9 5.12 2.3 1.04
0.58 162 10.0 1.9 1.17
0.60 467126 16.8 1.5 1.46+0.10
a =46 nm 0.42 9.2 4.26 1.9 0.80
0.44 12.3 4.98 2.5 0.98
0.48 18.5 6.34 3.2 0.89
0.52 35 7.45 2.5 0.91
0.54 54 9.9 3.1 0.95
0.57 142 11.4 1.7 0.98
a=76 nm 0.46 14.1 5.75 1.5 0.93
0.47 17.6 6.77 1.6 0.99
0.51 28.4 7.43 2.8 1.04

*n,=0.9 mPas, error 2-3 %.

*n =¢/(4ma’), ¢,, =0.63 (random closest packing).
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wavelength of the shear wave is much larger than L and
o(L,t)=n*&(L,t)/L. Gross and Fuoss'! have solved this
problem and find as a solution for * expression (1), with
G,=2G, and 7, given by (7).

It can easily be demonstrated that (1) implies that
7' —mn'. and 7" decay with » /2 at high frequencies.
Thus a medium with continuous distributed elasticity and
viscosity shows the experimentally observed o~ !/2 behav-
ior. The next step is an attempt to interpret G, and f in
terms of microscopic parameters of the hard-sphere
dispersion.

If hard spheres are dispersed in a Newtonian fluid, no
microstructural source of elasticity exists. The spheres
“feel” each other with an infinite potential when they col-
lide and a zero potential when they are separated. In all
situations there is also hydrodynamical interaction. If
the hard spheres are contained in a vessel at temperature
T =0 they can be piled up to closest packing. At finite
temperature, however, expansion takes place by Browni-
an motion until the spheres are dispersed (gravity
neglected) in the vessel and have some average distance
to each other as if some interaction potential keeps them
at those positions. This obviously is a superficial view,
since at a larger time scale each individual particle moves
over large distances. The occurrence of elasticity can
only be of entropic nature. It pertains to the positions of
all spheres, but apparently, relevant relative positions are
the distances between centers of mass minus the excluded
volume distance at closest packing: the excess excluded
volume distance. The source of elasticity can be imag-
ined as a network of entropical springs connecting the
“surfaces” of the spheres.

The source of friction is clear: the spheres move with
friction under influence of the external flow field through
the suspending fluid continuously feeling the influence of
the presence of other spheres through fluid dynamical in-
teractions. Their friction coefficient can be considered as
constant in the frequency range of the experiments in
Ref. 1, since inertia effects and the influence of nonsteadi-
ness of the viscous fluid occur at much higher frequencies
(see, e.g., Ref. 13).

Assuming N spheres in a vessel the average free energy
available for the entropic springs is (N —1)3kpT. Each
particle is entropically connected with all other spheres,
thus LN (N —1) springs are present. In polymer rheolo-
gy entropic springs are often approximated as linear
springs!® and we follow this line to estimate the shear
modulus G, due to the entropic springs. Let the force F
between two spheres whose centers of mass are separated
by Rey be proportional to the excess excluded volume
distance (the Fraenkel spring'*),

F=H(R —Rj)eg , (8)
with H the spring constant. The distance R, represents
the influence of the excluded volume.!*

On the average the free energy available for a spring is
3(N —1)kpT/[LN (N —1)]. Thus the energy stored per
spring is, on the average,

LH(R —Ry)*=3kzT/N . 9)
For the calculation of G, (see also Ref. 12) a spring is
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thought to be elongated with a strain €. The deformation
energy in a harmonically oscillating strain, where the
linear term in € averages out to zero, is

2

R

LHR?¢=1H(R —R,) R—R, e
_ 3kgT R |, 0
TN |R-R, | - 10

The factor [R /(R —R,)]? can be estimated as follows.
Consider n spheres with volume fraction ¢ per unit
volume. If at this given volume fraction ¢<¢,, the
spheres are not distributed over the unit volume but
packed to the volume fraction ¢,, at closest packing, the
volume taken in by the n spheres plus the space in be-
tween is ¢ /¢,,. Thus the available free space between the
dispersed spheres is 1—(¢/¢,,). Then
2

R7Ro | _|,_ 8

R bm

If the strain is part of an elongation field given by

2/3

€
-——= 0 0
2
€
O —— 0},
) (11)
0 0 €

and the direction of the spring is arbitrary in this defor-
mation field, then 62=%€2. The energy stored per unit
volume is %G0€2. The number of entropic springs at-
tached to the »n spheres in an unit volume is
+N(N —1)—LX(N —n)(N —n —1). Dividing the contri-
bution of springs pointing outwards by 2 and taking the
limit N — o, it follows that

-2/3

G,=2G,=nk,T |1—-2- (12)
bm

Neglecting excluded volume effects (¢=0) gives

G,=nkpT, which is consistent with the entropic shear
elasticity for point particles at infinite frequency calculat-
ed by Zwanzig and Mountain.'> The proper choice of ¢,
is related to the sampling of the position configuration
space of the centers of mass of the spheres. Long-range
order in the fluid below ¢ =0.60 (as studied experimental-
ly in Ref. 1) is highly improbable, as confirmed by our ex-
periments.' Neglecting short-range order, as expressed in
the pair correlation function, the first ansatz for é,, is the
value 0.63 corresponding to random closest packing. Us-
ing this value, G, in (12) can be compared with the exper-
imental values (see Table I). There is fair agreement be-
tween these values but the excluded volume effects seem
to be underestimated. This is easy to understand since
the difference can be attributed to the fact that the pair
correlation function of hard spheres deviates from 1 for
spheres close to each other, which implies that less free
space is available than assumed in the foregoing and in-
clusion of this effect would make G, larger.
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The next logical step would be to calculate the relaxa-
tion time 7,= fL?/Gym*. From (1) it follows that

7T2

T—1.=Gim 3 5 =Gr = 1fL%.
p=1p
This demonstrates that the calculation of fL? is
equivalent to the calculation of ny5—%',, a well-known
problem but not solved exactly for dense hard-sphere
dispersions at the present state of art, and it is of no use
to add another simple model.

In Table I the consistency of the experimentally de-
duced 7, G,, and 7y—7’, values within the given
analysis is shown by the column 7,G,7*/[6(n—7')],
which should be unity.

The interpretation of the feasibility of (1) for the
description of the experimental complex viscosity as
given in this paper implies that the relaxation properties

are due to collective modes of motion. The entropic
source of elasticity approached as a network of linear
springs predicts the relaxation strength, considering the
simple approach, quite well, provided that the excluded
volume effects are taken into account. The sophisticated
theories of Batchelor? and Russel and Gast® are difficult
to interpret from the given point of view. The collective
modes of motion of spheres have not been included. The
pair approach in Ref. 3 takes into account the excluded
volume effect to some extent by means of the proper radi-
al distribution function but thus mixes up the two sphere
motions in the several modes while averaging out the
influence of the positions of all other spheres. One feels
that the average relaxation time from Ref. 3 will be closer
to the shorter relaxation times where the relative motion
of two spheres is more important. Their average
T,=(no—"')/G’, is a factor of 5 or more shorter than
the experimental 7, indeed.
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