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In previous papers, [S, 111 H-polynomials or ‘“Homer-hke” po~y~lom~a~s 
were introduced and some theoretical aspects were considered, especially 
with regard to Chebyshev approximation by these functions. The subject 
of this paper is a numerical method for computing locally best approxi- 
mations which depends on an alternative representation of the classes of 
polynomials. In Section 2 we recall the definition and some of the main 
properties of&polynomials. In Section 3 we derive the announced alternative 
representation leading to the algorithm described in Section 4. Finally, in 
Section 5 we give some examples. 

2. H-POLYNOMIALS 

DEFINITION. An H-polynomial is a function Z,(X) of the real variable x 
and the real parameters a, ,...i a,, generated by the following rules. Let 
j = j(k) be a function with the properties: 

j, k are integers, 

z,(x) is recursively defined by q(x) = a, , 

if j(k) = 1 

if j(k) > 1 
(k = 1). . .) H). (2.2) 

In the casej(k) = 4, we get as z,(x> the polynomial 

p,(x) = aOxn + ... $ a,-,~ + a,n ) 
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generated by the Horner-algorithm. In [S] it was shown that the 
H-polynomials generated by different functions j(k) are essentially different. 
Thus, for n > 1 we have (n - l)! different H-polynomials. Given x, the 
evaluation of z,(x) requires exactly as many multiplications and additions 
as the evaluation of a polynomial of degree y1 by Hornet9 algorithm. Thus 
we have (n - 1) ! different classes of polynomials, with respect to computing 
time equivalent to the class of all polynomials of degree less or equal to n. 
This makes it likely that for a number of standard functions we can find 
computer approximations of a higher accuracy than yielded by ordinary 
polynomial approximations, requiring the same computing time and similar 
storage as the latter. In [l l] it was shown that a best approximation does not 
always exist. Thus we have a nonlinear approximation problem of a rather 
general type. Conditions for a given function to be a locally best approxi- 
mation are given in [7, 121. 

3. AN ALTERNATIVE REPRESENTATION OF H-POLYNOMIALS 

Let n 3 1 be a fixed natural number, j(ic) a given function satisfying (2.13, 
and zk(x) be given by (2.2). Then we can write 

s(k) / 

i&(x) = x fv”(a, ,..., ak) x’(“)-‘, k = O,..., n, (3.1) 
“=O 

where the f,” are polynomials in the variables a, ,..., a, . For the degree g(k) 
of zle(x) we get from (2.2) g(0) = 0, 

g(k) = g(k - 1) t- 1 if j(k) = 1 
(k = I,..., n). (3.2) 

= dk - 1) + djW if j(k) > 1 

We can regard zk(x) as a manifold Mk of dimension k + 1 in the (g(k) + l)- 
dimensional vectorspace of all polynomials of degree g(k) or less. (3.1) is a 
parameter representation of M, . We wonder if we can describe A&* in the 
following way: 

s(7c) 

zk(x) = c dvXg(7c1-” C&i, ,..., d,(k)) = 0,j = I,..., g(k) - k , 
L-0 i 

(3.3) 

with certain functions cj . We shall show that such a description is possible 
for the subset of functions in Mk of degree exactly g(k). To illustrate our 
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theory we consider an example: let yz = 4 and,j(l) = j(2) = I ,j(3) =j(4) = 2. 
Then 

z&x) = z&)x + a, = c&x + a, 

z,(x) = &(X)X + a2 = (aox + a1)x + a, 

z,(x) = a,z,(x)z,(x) + a3 

= CT~(U~~X* + 2a,a,x3 + (al2 + 2a,a,) x2 + 2a,a,x + ag2 + G&) 
Z*(X) = 04z3(x) q(x) + a, (3.4) 

= cr,[a03x6 + 3a,“a,x5 + (3U,2~2 + 3a12a,) x4 
+ (6fzOa,a, + al”) x3 f (3alza, + 3a,az2 i o.gaOa3) x2 
+ (3a,as3 + a,a,a,)x + a23 + u4a2a3 t ~qadl. 

Here g3 and CT~ are parameters with values in (-1, I}* We have g(O) = 0, 
g(f) = 1, g(2) = 2, g(3) = 4, g(4) = 6, and for example 

“fi3@, ,..*> 4 = ~3(ulZ + 2w2), fo4(a0 ,..., a4) = u4a03. 

Now we prove some properties of the functionshk in (3.1). 

LEMMA. (i) For k = Cl,..., n we hate 

f,%, ,..., ak,> = cr,az (3,s) 

with o’k = +I and prc given by pO = I, 

IlIe = /-h-l iJ’ j(k) = I 
(3.6) 

= kc-1 + iwk) if j(k) > 1. 

(ii) By g E Fi we denote that g is a filnction of at most the t’ariables 
a, 3 . . . . ai . Then, for 1 < i < k < N, 

fici, = iN(k, i) aFeuiai + g,,i , (3.7) 

with natural numbers N(k, i) and polynomials g,,{ E F,-, . Moreoz;er, f,” E Fi-, 
for v < g(i). 

PuooJ: The validity of(i) is obvious from (2.2). We prove (ii) by induction 
on k. For k = i we have f&, = fi$, = ai + g,,i , gi,i EIT-~ , and obviously 
jfpk = f,” EFiel for v < g(i). 

Suppose 8 > i and (ii) is valid for i < k < G - 1. We distinguish the 
cases (LX) j(l) = 1 or j(6) < i and (/3)j(8) > I and j(L) > i. 
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(CX) By induction hypothesis we have 

with 

O&l) 

ze(x) = z. fya, )..., aeel> xQ(f-l)-" 

> 
P(x) -I ae , 

fv”-’ E Fi-l for v < g(i), 

f;;; = j$(S - 1, i) a;e--l-uiui + ge&l,i , g-l,i E Fi-, > 

and 
P(x) = x if j(L) = 1 

= zk%dx> if j(k)>l. 

From j(e) = 1 or j(e) < i we conclude that P(X) is a polynomial whose 
coefficients are in Fivl . From this and (i) the assertion follows. 

@) By induction hypothesis we have 

f 

Sk-l) 

Ii 

s(j(t)) 

Z!(X) = & c f;-lxQ(e-l)-V z. fyxL7m-u + ae ) 

LJ=O > 

with 
f f-l, f f?) E Fipl for v < g(i) 

and 

fL:i = +N(j(t), i) u~fcel-wiai + gjtcj,i , gj(e),i E 4-l . 

Again the assertion follows from this and (i), and the lemma is proved. 
For example (3.4) we compute p. = pFL1 = ,u2 = 1, p.3 = 2, and p4 = 3. 

Corresponding to (3.5) the coefficients of x2 resp. x6 in zz(x) resp. z&(x) are 
a, = a2 and 04a03 = &a?. Further we see that the coefficient of the term 
of highest order in z.+(x) which depends on as, is the coefficient of x2, thus 
J 94w = fa4 = u4[3a12a, + 3aoa,2 + g4aoa,] in accordance with (ii). 

Next, we define M,* = {z, E ikIn 1 z, is of degree exactly g(rz)j. Let 
z,(x) = 0 CsI”,’ G!J~(“)-~ E M,* be a given function, with D E (- 1, l} such 
that do > 0. Then, by defmition there exist a, ,..., a, such that 

cd, = fv”(ao ,..., a,), v = 0, l)...) g(n). (3.8) 

The lemma shows that we can express the ai uniquely as functions of the 
coefficients d,: by (3.5) we have od, = onaEn . Setting aa = u we obtain 

a, = di’un. (3.9) 
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ecause of do > 0, (3.9) is always defined. From (3.7) we compute 

i = I:..., il, (3.10) 

Now we substitute ai = a,(cE, i . . . . d,(,)), i = 0 ,..., n, into the g(f?) - n 
equations odi -fi”(a, ,..., a,) = 0, i E I, with 

I = (0, 1, 2 )...) g(n)> - (0, g(l), L4%.., &,I. 

This leads us to a system of equations 

(3.11) 

hitdo ,...> d,(n)) = 0, i E I, (3.12) 

which must be satisfied by the coefficients di of z,(x) E M,“. On the other 
hand, if L& > 0 and the di solve (3.12) then from (3.9), (3.10) we can find 
a, ,...> a, such that (3.8) holds. Thus, Z,(X) E Mn*. Thus, we have proved the 
following theorem. 

THEOREM 1. M%* = {zn(x) = Czy dvxgfn)-d / &(d, !..., dgtn)j = 0, ~EI], 
where I is defined by (3,ll) and hi(do ,..., dg(,)) = odi - h?“(a, :~.., a,), with ai 
giwn by (3.9), (3.10). 

Concerning the functions A5 we have the folIowing theorem. 

with natural numbers mi , rational numbers K7,Liz and 

where L(k) E (g(O), g(l) ,..., g(s,), i>, Xi=1 L(k) = i. 

We omit the extensive but elementary proof. 
To demonstrate the above technique, we derive the h, for example (3.4). 

System (3.8) becomes: 

crd, = o,ao3, 

adz = o,(3a02a, + 3a,“a,), 

ad, = a,(3ai2a, f 3aoaz2) + aoa, , 

od6 = c4az3 + a2a3 + a, . 
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By (3.9), (3.10) we get (G = u*): 

a, = d;‘“- = d;‘3, al = 4lW,3, az = (4 - 3~,2~,)1(3~,2), 

a3 = cr(d4 - 3a12a2 - 3a,a,2)/a, , a4 = a(d, - aZ3) - a2a8 . 

Substituting these expressions into the equations od, = a,(6a,a,a, + a13) and 
od, = o,3a,az2 + a,a, we did not use yet (we have I = (3, 51) results in the 
following equations which have the form prescribed by Theorem 2: 

h&d,, 4, d2, d3) = (27d,2d, - 18d,-,d,d, + 5d,3)/(27d02) = 0 
h,(d, , dI , d2, d4, dJ = (81d04dj + 3dodI”d2 - 27d03dId4 - d15)/(Sld,4) = 0. 

We close this section by a representation theorem for the closure g,* of M,* 
(in the topology of pointwise convergence). Clearly M,* C M, C MS* = Ii?,. 
While in M, a best Chebyshev approximation does not exist for every 
function in C[a, b], in &In there is always a best approximation (cf. [9]). Let 

A = {d = (do ,..., dgc,# E Ro@z)+l 1 h,(d,, ,..., d,(,,) = 0, i E 1, do # 01 

and ;7 the closure of A. The following theorem holds: 

THEOREM 3. The closure &f;i, of M, is given by 

Proof. The assertion follows immediately from the fact that a sequence 
of polynomials converges pointwise if and only if all the sequences of the 
coefficients converge. 

4. A NUMERICAL METHOD 

The following method for computing locally best approximations is also 
applicable to more general linear approximation problems with nonlinear 
constraints. 

Let [a, b] be a compact real interval, f a function, continuous on [a, b]. 
If we use the representation of M,* given by Theorem 1, the determination 
of a best approximation from M, * to f is equivalent to the following 
optimization problem: 

Maximize x(d,, ,..., d,(,) , 6) = --E (4.1) 
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subject to the constraints 

s(n) 
2 d”xg(- -f(x) - E < 0, 

x E [a, b] (4.21 
8(n) 

- 2 dvx”(n)-v +f(x) - E < 0, 

First, we consider the discrete problem where [a, b] in (4.2) is replaced by 
a finite subset B C fa, b]. Thus the number of constraints (4.2) is finite. The 
method we have used is a combination of two other optimization methods 
(cf. ES, 131): 

(a) The sequential unconstrained minimization technique (SUMT) 
G-43). 

(b) A method for solving problems of the type: maximize g(x) subject 
to the linear constraints 8$(x) < 0, i = I,..., p. Examples of suitable methods 
are the gradient-projection method [lo] or the conjugate-gradient-projection 
method [S]. 

SUMT is suitable for problems of the fcllowing type: maximizeg(x) subject 
to I.+(X) < 0, i = I,..., p, wj(x) = 0, j = l,..., q. To solve this problem a 
sequence of unconstrained problems is solved: let (pv> be a sequence, p,, > 
Jim yAm py = 0. For each Y a maximum point xy of 

g,(x) = g(x) + (67” fl; (~iw-’ - P;1’2 .i %“(XJ 
i=l i=l 

(4.4) 

is determined and the sequence (Y> is expected to converge to the solution 
of the given problem. Convergence can only be proved under rather strong 
conditions (cf. [2]) which do not hold in our case. 

A disadvantage of SUMT is that Iinear constraints give rise to nonlinear 
terms in g, . This suggests to handle only the nonlinear constraints (4.3) as 
does SUMT and to solve linearly constrained problems instead of uncon- 
strained: 

Assume (p,} as above. For each v the following problem is solved by a 
method of type (b): 

Maximize xv(do ,..., d,(,) , 6) = --E - p;l ziGI lzi”(do ,~.., d& subject to 
the constraints (4.2) ([a, b] was replaced by B!). 

There are two ways to treat the continuous problem: 
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Starting with a finite subset B C [a, b] further constraints are added 
until (4.2) holds within a given precision. 

By solving a discrete problem once an estimate is obtained for a locally 
best approximation as well as the positions of the extrema of the error- 
function. To improve this estimate, the method of Newton (cf. 1131) or 
another iterative method may be applied. 

The solution of the unconstrained problem (corresponding to p. = co) is 
expected to be a suitable initial point for the iteration. By means of the 
conditions given in [7] it can be tested whether a locally best approximation 
is found or not. In general it will be impossible to decide if the approximation 
is also globally best. Taking other initial points one can attempt to find further 
locally best approximations. 

5. EXAMPLES AND NUMERICAL RESULTS 

Now, for n = 3 and n = 4 we will give a list of all H-polynomials and the 
respective constraints. Let P = 51 and zz(x) = aox + a,x + u2 . An upper 
index denotes the degree of the H-polynomial, a second upper index numbers 
different polynomials of same degree. 

yz = 3. Besides the class z~‘(x) = p3(x) of all polynomials of third degree, 
we have just one H-polynomial of fourth degree 

(4) = u(z,(x))” + a3 = i d”x4-y Z3 
v=o 

where the di satisfy 

h,(d, , dI , d?, d3) = (8d,2d, - 4d,d,d, + d13)/(8d02) = 0. 

IZ = 4. Besides z:~‘(x) = p4(x) we have five H-polynomials: 

(a) zi5.1) (x) = z;*‘(x)x + a4 = Cf=, d J-” with the same constraint as 
q(x). 

(b) z:.“‘(x) = ozh3’(x) z2(x) + a4 = Ego dvx5-v with 

h&o > 4 2 4 ,A , 4) 
= (64d03d, - 32d,2dId3 + 24dod12d2 - 16do”d22 - 5d14)/(64d,3) = 0. 

(c) zf.1’ (x) = cr(~p’)~ + a4 = &, dvPv with 

Udo ,4 34 > 4 s&J = 0, h, as for z:.“, 
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and 

= (64d04d, - 32d03d,d, $ 16d,2dldzd,2 

- 8dod13d2 + 8dopd12d, f d,“)/(64d09 = 0. 

and 

= (27do”d3 - 18d,d,d, + 5d13)j(27d,,2) = 0 

= (8 1 d:d, + 3dod13d, - 27d;dld, - dltl”)/(S Ido*) = 0. 

= (32d,“d, - 24d,d,d, + 7d13)/(32d02) = 0, 

= (2.S6d04d, + 20dod13d, - 128d03dlds - 7d16,j)j(256doe) = 0, 

and 

= (4096dosde - 2048d04dzd4 + 512d,,03dz3 + 512d03d12d, 

- 192d02dlzd,~ - 16dod14d2 + 7d16)/(4096d05) = 0, 

= (2048d06d, - 256d04d,dzd4 + 64d03d,dz3 t 96d03d13ds 

- 24d02d13dz2 - Sdod,sd, + 3d~7j~~2048d~6) = 0. 

It is essential to retain the powers of d,, in the denominator: if C& = Ca, = 0, 
all numerators become zero for each choice of the other di 1 This may result 
in numerical instability of the method if the denominators in the equations 
are omitted. 

To test the method a FORTRAN IV program has been written and a. 
number of examples have been treated. Though no correction of rounding 
errors took place, except for .z& w the results were satisfactory in all cases, 
Some of the results are given in Table I below. The results indicate that 
systematic computation of approximations to standard functions by H- 
polynomials (as is done in [6] for ordinary polynomials and rationals) could 
be advantageous. Note that for the Gamma function F(X) the deviation for 
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TABLE I 

Function Interval Error $4’ p q.2’ q.1, q.2, $5, 

10” LO, 11 rel. 2.99 2.60 2.13 3.52 3.57 4.01 
tan (B n: x1’“) 

xl/a 

r(x) 

P, 11 rel. 5.50 4.67 5.66 5.58 5.18 6.64 

t2,31 abs. 4.24 3.33 4.93 4.60 5.42 5.27 

‘4 -w) is even smaller than for zf’, the full class of polynomials of degree five 
or less. The numbers in the table are the values -log,,(err) with err the 
corresponding (relative or absolute) maximum errors. 
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