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Summary. This paper analyses the carrying capacity of edge-cracked columns with different boundary

conditions and cross sections subjected to concentric vertical loads. The transfer matrix method, combined with

fundamental solutions of the intact columns (e.g. columns with no cracks) is used to obtain the capacity of

slender prismatic columns. The stiffness of the cracked section is modeled by a massless rotational spring whose

flexibility depends on the local flexibility induced by the crack. Eigenvalue equations are obtained explicitly for

columns with various end conditions, from second-order determinants. Numerical examples show that the

effects of a crack on the buckling load of a column depend strongly on the depth and the location of the crack. In

other words, the capacity of the column strongly depends on the flexibility due to the crack. As expected, the

buckling load decreases conspicuously as the flexibility of the column increases. However, the flexibility is a

very important factor for controlling the buckling load capacity of a cracked column. In this study an attempt

was made to calculate the column flexibility based on two different approaches, finite element and J-Integral

approaches. It was found that there was very good agreement between the flexibility results obtained by these

two different methods (maximum discrepancy less than 2%). It was found that for constant column flexibility a

crack located in the section of the maximum bending moment causes the largest decrease in the buckling load.

On the other hand, if the crack is located just in the inflexion point at the corresponding intact column, it has no

effect on the buckling load capacity. This study showed that the transfer matrix method could be a simple and

efficient method to analyze cracked columns components.

1 Introduction

A no follower force is usually referred as an axial force with its direction remaining constant during

the deformation of the structure and column buckling defined as the change of its equilibrium state

from one configuration to another at a critical compressive load. However, stability represents one of

the main problems in solid mechanics and must be controlled to ensure the safety of a structure

against collapse. It has a crucial importance, especially for structural, aerospace, mechanical,

nuclear, offshore and ocean engineering. Buckling is one of the fundamental forms of instability of

column structures. The mathematical solutions for the critical buckling loads for columns under

different boundary conditions subjected to no follower compression are well documented by
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Timoshenko and Gere [1]. Euler [2] introduced the concept of the critical load of an elastic column

in detail in 1744.

Columns and compression members may usually contain various imperfections like cracks.

Imperfections have been recognized for a long time and their effects on structural stability have been

well investigated. Columns and other structural elements may also have real damage such as cracks.

The cracks may develop from flaws due to applied cyclic loads, mechanical vibrations, aerodynamic

loads, etc. It is obvious that crack causes a lower structural integrity and should be certainly taken

into account in the stability, safety and vibration analysis of structures.

The rotational discontinuity of a cracked column at the crack location has been readily modeled in

Ref. [3]. This model has been used for the dynamic analysis of a damaged structure, where the

change in the flexibility of the beam due to a crack has been advocated. Liebowitz et al. [4] carried

out experimental studies on the axial load carrying capacity of notched and unnotched columns. For

notched columns, Liebowitz and Claus [5] proposed a theoretical failure criterion based on the stress

intensity factor and fracture toughness. Okamura et al. [6] proposed a method to identify the

compliance of a cracked column to a bending moment to study the load carrying capacity and

fracture load of a slender column with a single crack. Anifantis and Dimarogonas [7] studied the

buckling behavior of cracked columns subjected to follower and vertical loads. The buckling of

cracked composite columns was also investigated by Nikpour [8]. Li [9] investigated the buckling of

multi-step columns with an arbitrary number of cracks, taking into account the effect of shear

deformations. However, research performed research to date on the stability of cracked columns lags

far behind the performed research on uncracked ones. In this study, using the transfer matrix method

and fundamental solution of intact columns, suggested in [10], a buckling analysis of slender

prismatic columns of circular and rectangular cross section, with single and double nonpropagating

edge cracks, is performed. The cracked section is replaced with a massless rotational spring whose

flexibility is a function of the crack depth and the height of the cross section of the column. The

spring flexibility is calculated based on two different approaches, finite element and J-Integral. A

collapse failure criterion based on column flexibility is defined as an upper bound limit design

control factor. Eigenvalue equations (buckling conditions) are obtained explicitly for columns with

various common end conditions (namely: fixed–free, pinned–pinned, fixed–pinned, fixed–fixed),

from second-order determinants. Taking a few example columns, these equations are solved and

their smallest roots, which are the buckling loads of the columns, are determined. Moreover, the

effects of the crack configuration factors are investigated and the results are given in the form of

diagrams.

2 Material and geometry conditions

The dimensions used to define the geometries are shown in Fig. 1. They are the height of the

rectangular cross section of the column, h, the width of the rectangular cross section of the column,

b, the length of the column, L, and the depth of the crack, a. The diameter of the circular cross

section of the column is h. The location of crack from the upper end of the column is measured with xc.

The depth of the crack is normalized with respect to the height of the rectangular cross section (or the

diameter of the circular cross section), f ¼ a
h
: The distance of the crack from the upper end of

the column is normalized with the column length, b ¼ xc

L
: The concentric vertical load is applied at

the upper end of the column as shown in Fig. 1. The mathematical model of the column is shown in

Fig. 2, in which, after the local flexibility caused by crack is considered, the cracked section is

represented by a massless rotational spring with local flexibility C. Let x denote, the coordinate

along the length of the column with its origin at the upper end of the column. The positive direction
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of the deflection y(x) of the column is defined leftward, as shown in Fig. 2. In this study, four

common ends conditions, namely fixed–free, pinned–pinned, fixed–pinned and fixed–fixed, are used

throughout the analysis, as shown in Fig. 3.
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Fig. 1. Slender column with a

non-propagating single and double edge
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Fig. 2. A mathematical model for the

rotational spring
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3 Local flexibility of cracked column structure

A slender prismatic column with a circular and rectangular cross section, having a non-propagating

single and double edge crack (or flaw like crack) are shown in Fig. 1. The cracked section is

presented by a mass less rotational spring with flexibility C, where

M ¼ kDh ð1Þ

and

C ¼ 1

k
¼ Dh

M
: ð2Þ

This quantity is a function of the crack depth height and the flexural rigidity (EI) of the rectangular

section of the column, and can be written as suggested in Ref. [11] as below:

C ¼ h

EI
f fð Þ: ð3Þ

and for the circular cross section it is [12], [13]

C ¼ D

EI
f fð Þ; ð4Þ

where D ¼ h is the diameter of the circular cross section and f (f) is called the local flexibility

function.

In this study an attempt is made to calculate the local flexibility function of the column, using two

different methods, finite element (FE) and J-Integral approach.

3.1 Prediction of the flexibility function using FEM

Finite element predictions have been obtained using the standard linear elastic fracture mechanics

facilities within the Ansys suite of programs [14]. A typical mesh, using six- and eight-noded, reduced

integration, plane stress, triangular and quadrilateral elements was used with the crack tip singularity

a b c d 

Fig. 3. The column end conditions.

a pinned-pinned b fixed-pinned

c fixed-fixed d fixed-free
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represented by moving nodes to the quarter point positions [14]. For a wide range of geometries

considered, the angular displacement (i.e. Dh) is obtained by elastic linear fracture mechanics finite

element analysis. The local flexibility, C, and local flexibility function, f (f), then are calculated using

Eqs. (2) and (3), respectively. It is worth nothing that the finite element analysis is carried out for

plane stress condition and for the unit value of the flexural rigidity, EI. The local flexibility functions

are then modified by a correction factor of 1/EI, as indicated in Eq. (3) (see Fig. 4).

The variation of the local flexibility function, f (f ), with the normalized crack depth, a/h, is shown

in Fig. 5 for a prismatic column of rectangular cross section with a single non-propagating edge

crack.

The variation of the local flexibility, C, with the normalized crack depth, f ¼ a/h, and different

height of the cross section of the column is shown in Fig. 6 for a rectangular cross section column

with a single edge crack.

The extensive range of the flexibility function, f (f), resulted from finite element analysis is used to

obtain predictive equations using a statistical multiple nonlinear regression model. The accuracy of

the model is measured using a multiple coefficient of determination, R
2, where 0 B R

2 B 1. This

coefficient is found to be greater than or equal to 0.995 for all cases considered in this study,

demonstrating the quality of the model fit to the data.

Fig. 4. A typical FE mesh
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The predictive equation f (f) for slender prismatic columns of rectangular cross section, with a

single non-propagating edge crack, is predicted as

f fð Þ ¼ � 0:0038þ 1:0459f� 24:7331f2 þ 450:54f3 � 2; 800:2f4

þ 8918:17f5 � 13907:2f6 þ 8481:12f7:
ð5Þ

Similar analyses are carried out for the prismatic column of rectangular cross section, with a double non-

propagating edge crack. The variation of the flexibility function with normalized crack depth is shown in

Fig. 7 for a column of rectangular cross section with a double edge crack. The finite element prediction of

the flexibility function based on the statistical multiple non-linear regression model is as below:

f fð Þ ¼ � 0:0017þ 0:5506f� 20:8194f2 þ 334:396f3 � 1833:32f4 þ 5993:55f5

� 9600:42f6 þ 6030:7f7:
ð6Þ

The variation of the flexibility function with respect to the normalized crack depth is shown in

Fig. 8 for the prismatic column of rectangular cross section, with a single and a double non-

propagating edge crack. As it is expected, it can be seen that the double edge cracked column has a

higher local flexibility than a single cracked column. These discrepancies become larger as the crack

depth increases, or in other words, the predicted local flexibility for a double edge cracked column is

more dominant when the crack depth increases.

In a similar way, the flexibility functions obtained from the finite element analysis, for the

prismatic column of circular cross section with a single and a double edge crack, have been used to

obtain useful equivalent prediction equations, using the statistical multiple non-linear regression

method. These predictive equations for the local flexibility functions of the prismatic column of

circular cross section, with a single and double non-propagating edge crack are presented in Eqs. (7)

and (8), respectively, as follows:

Local flexibility function
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f fð Þ ¼ 0:0007þ 0:3255f� 8:4253f2 þ 167:486f3 � 831:418f4

þ 2266:89f5 � 3154:06f6 þ 1852:87f7
ð7Þ

and

f fð Þ ¼ � 0:0445þ 11:77f� 393:721f2 þ 4813:5f3 � 27314:8f4

þ 79935f5 � 115803f6 þ 66031:8f7:
ð8Þ

The variation of local flexibility with respect to the crack depth is shown in Fig. 9 for the prismatic

column of rectangular and circular cross sections, with a single and a double edge crack.

3.2 Prediction of the local flexibility function using the strain energy density function

approach

The localized flexibility of the column can be calculated using the strain energy density function

approach, suggested by Tada et al. in Ref. [15].

As an example, a section of a circular column containing a crack of depth a is shown in Fig. 10a.

Figure 10b shows the cross section of the column section at the location of the transverse crack. The

generalized displacement Ui in the i direction is obtained by utilizing Castigliano’s theorem [16] as

local flexibility function
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Ui ¼
o

oPi

Za

0

J yð Þdy; ð9Þ

where Pi is the generalized force associated with Ui, and J(y) is the strain energy density function

given by Tada et al. [14] as

J yð Þ ¼ 1� t2

E

Xm
i¼1

KIi

 !2

þ
Xm
i¼1

KIIi

 !2

þ 1þ tð Þ
Xm
i¼1

KIIIi

 !2
2
4

3
5; ð10Þ

where t is Poisson’s ratio, E is Young’s modulus, and Kni (where n ¼ I, II, III ) is the crack stress

intensity factor for mode n due to Pi. m indicates the number of individual loads applied to the

component. In this study m ¼ 1, due to the only one concentric vertical load to the prismatic column.

The stress intensity factors for a unit width strip containing a crack of depth a are evaluated according to

Kni ¼ ri

ffiffiffiffiffiffi
pa
p

Fn

a

h

� �
; ð11Þ

where ri are the stresses due to the load Pi applied to the intact column (i.e., a column without any

crack), Fn
a
h

� �
is the non-dimensional crack configuration function, and h is the total strip length (see

Fig. 10b).

The local flexibility due to the crack for a unit width strip can be written as

cij ¼
oui

oPj

¼ o2

oPioPj

Za

0

J yð Þdy; ð12Þ
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Fig. 10. Local crack model: a column

section containing a crack; b crack cross

section

8 K. Yazdchi and A. R. Gowhari Anaraki



which, after integration along the crack edge, becomes

Cij ¼
o2

oPioPj

Zb

�b

Za

0

J yð Þdy dz: ð13Þ

In this study the concentric vertical load is only considered, hence C11 is required in Eq. (12). The

mode I fracture parameter is the only dominating case in this study. Therefore the mode I stress

intensity factor is considered.

A dimensionless flexibility factor is defined, C11; here by normalizing the local flexibility of C11,

which can be written as

C11 ¼ C11
pEh

1� t2ð Þ ; ð14Þ

where C11 is obtained using Eq. (12).

The corresponding cracks configuration functions, F1(a/h) for prismatic columns of rectangular

and circular cross section, with a single and double edge cracks can be written as suggested in Ref.

[15]:

for rectangular cross section with a single edge crack:

F1 a=hð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
tan k

k

r
0:752þ 2:02 a=hð Þ þ 0:37 1� sin kð Þ3
h i

= cos k where k ¼ pa

2h
; ð15Þ

for rectangular cross section with a double edge cracks:

F1
a

h

� �
¼ 1:12þ 0:43

a

h

� �
� 4:79

a

h

� �2

þ 15:46
a

h

� �3
� �

; ð16Þ

for circular cross section with a double edge cracks:

F1
a
h

� �
¼

1:121� 1:302 a
h

� �
þ 0:988 a

h

� �2 � 0:308 a
h

� �3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a

h

� �3
� �r

2
664

3
775: ð17Þ

The dimensionless local flexibility C11 for different crack configuration functions can be obtained by

numerically integrating Eqs. (12), (13). As a typical example, for a prismatic column of rectangular

cross section with a single edge crack we have

C11 ¼
Zx

0

sð1:12� 0:23sþ 10:6s2 � 21:7s3 þ 30:4s4Þ2ds

¼ 92:416x2ð0:555þ ð�1:181þ xÞxÞð0:563þ ð�0:880þ xÞxÞð0:159þ xð0:085þ xÞÞ
ð0:135þ xð0:389þ xÞÞ; where x ¼ a=h:

ð18Þ

The variation of local flexibility with respect to the normalized crack depth is shown in Fig. 11. Both

results obtained from FEM and J-Integral are presented.

It is seen that there is good agreement between the results obtained from the FE method and those

obtained from the J-Integral when a/h B 0.55.

The variation of local flexibility, obtained from the FEM and J-Integral method, with respect to

the normalized crack depth, is shown in Fig. 12 for the rectangular and circular cross section of

double edge cracked components.
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It is worth noting that the results obtained for the local flexibility, illustrated in Figs. 11 and 12,

are not reliable when a/h C 0.65 because it was found, for example for a column of rectangular

cross section with a single edge crack, that fast fracture phenomena occur if the normalized critical

crack depth ac/h C 0.55. It was also found that for all different columns geometries and crack types

the phenomena of fast fracture occur when ac/h C 0.45. Equations (10) and (14)–(18) can be used to

estimate the critical normalized crack depth (ac/h), in which the fast fracture phenomenon occurs.

For example, for a rectangular cross section cracked column with a single edge crack equation (10)

becomes

KI ¼ r
ffiffiffiffiffiffi
pa
p

F1
a

h

� �
: ð19Þ

We replace K I with the column material fracture toughness constant KIc as

KIc ¼ r
ffiffiffiffiffiffiffiffi
pac

p
F1

ac

h

� �
; ð20Þ

where F1
ac

h

� �
is determined from Eq. (14). The critical normalized crack length can be calculated

from Eq. (19) for the given geometry column. If was found that for all geometries considered the

critical normalized crack depth is equal or greater than 0.45 (i.e. ac/h C 0.45).
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4 Buckling analysis of a cracked column

In this Section, using the transfer matrix method and fundamental solution of an intact column,

buckling analysis of slender prismatic columns of rectangular and circular cross sections, with a

single and double edge cracks, is performed. The transfer matrix method, suggested in Ref. [10], is

an efficient and attractive tool for the solution of the eigenvalue problem for one-dimentional

structures with nonuniform mechanical properties.

It can be seen from Fig. 2 that the column is divided into segments, segment 1 (0 B x B xc) and

segment 2 (xc B x B L), by the rotational spring. The Euler–Bernoulli beam model will be

employed to formulate the governing equation and the following second-order differential equation

relating the curvature and moment will be used:

EI
d2

y xð Þ
dx2

¼ �M xð Þ; ð21Þ

where EI is the flexural stiffness of the column. In this case, the relationship among the displacement

(y(x)), slope (h (x)), bending moment (M(x)), and shear force (V (x)) are as follows. The relevant

displacement and rotation for segments 1 and 2 are expressed here as (y1(x), h1(x)) and (y2(x),

h2(x)), respectively,

h1ðxÞ ¼
dy1

dx
;

M1ðxÞ ¼ �EI
d2

y1

dx2
;

V1ðxÞ ¼
dM1

dx
� p

dy1

dx
:

ð22Þ

The differential equation for buckling of segment 1 can be written as [1]

d4
y1

dx4
þ k2 d

2
y1

dx2
¼ 0 where k2 ¼ p

EI
: ð23Þ

The general solution of Eq. (21) is given by

y1ðxÞ ¼ A1 þ A2xþ A3 sinðkxÞ þ A4 cosðkxÞ: ð24Þ
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Fig. 12. The variation of C with a/h for
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with a single edge crack
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Using Eqs. (21) and (23), the following relationship can be written:

y xð Þ
h xð Þ

M xð Þ
V xð Þ

8>>><
>>>:

9>>>=
>>>;
¼ B xð Þ½ �

A1

A2

A3

A4

8>>><
>>>:

9>>>=
>>>;
; B xð Þ½ � ¼

1 x sin kxð Þ cos kxð Þ
0 1 k cos kxð Þ �k sin kxð Þ
0 0 p sin kxð Þ p cos kxð Þ
0 �p 0 0

2
64

3
75: ð25Þ

The relationship between the parameters written above at the two ends of segment 1 can be

expressed as

y1 xcð Þ
h1 xcð Þ

M1 xcð Þ
V1 xcð Þ

8>>><
>>>:

9>>>=
>>>;
¼ T1½ �

y1 0ð Þ
h1 0ð Þ

M1 0ð Þ
V1 0ð Þ

8>>><
>>>:

9>>>=
>>>;
) T1½ � ¼ B xcð Þ½ � B 0ð Þ½ ��1: ð26Þ

[T1] is called the ‘‘transfer matrix’’ for segment 1, because this matrix transfer the parameters at the

upper end (x ¼ 0) to those at the lower end (x ¼ xc) of segment 1. Similarly for segment 2,

[T2] ¼ [B(L)] [B(xc)], where [T2] transfer the parameters at (x ¼ xc) to those at (x ¼ L) of

segment 2. There is continuity among the displacement, bending moment and shear force, at the

boundary of segments 1 and 2, but there is a discontinuity between slopes at this point. Caused by the

bending moment and rotation of the spring representing the cracked section, as shown in Fig. 13,

y1ðxcÞ ¼ y2ðxcÞ;
y001ðxcÞ ¼ y002ðxcÞ;
y0001 ðxcÞ ¼ y0002 ðxcÞ;
h2ðxcÞ � h1ðxcÞ ¼ y02 xcð Þ � y01 xcð Þ ¼ �CM xcð Þ:

ð27Þ

Equation (26) can be written in matrix form as

y2 xcð Þ
h2 xcð Þ

M2 xcð Þ
V2 xcð Þ

8>>><
>>>:

9>>>=
>>>;
¼ Tc½ �

y1 xcð Þ
h1 xcð Þ

M1 xcð Þ
V1 xcð Þ

8>>><
>>>:

9>>>=
>>>;
; Tc½ � ¼

1 0 0
0 1 �C 0
0 0 1 0
0 0 0 1

2
64

3
75: ð28Þ

Fig. 13. Boundary conditions for

segments 1 and 2
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[T] is called the ‘‘general transfer matrix’’ that transfers the parameters at the upper end (x ¼ 0) of

segment 1 to those at the lower end (x ¼ L) of segment 2 and can be obtained from Eqs. (25) and

(27) as

T½ � ¼ T1½ � Tc½ � T2½ � ¼

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

2
6664

3
7775: ð29Þ

4.1 Eigenvalue equations and eigenvalues

Eigenvalue equations can be established by using Eq. (29) and the end conditions as follows:

(a) Pinned–pinned ended column: for this case, Eq. (29) becomes

0

h2 Lð Þ

0

V2 Lð Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

2
6664

3
7775

0

h1 0ð Þ

0

V1 0ð Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
)

0

0

( )

¼
T12 T14

T32 T34

� � h1 0ð Þ

V1 0ð Þ

( )
) T12T34 � T14T32 ¼ 0: ð30Þ

It can be seen that the eigenvalues are obtained from a second order determinant.

Following the same procedure, the eigenvalue equations for other boundary conditions are

obtained as

(b) Fixed–free

T11T22 � T12T21 ¼ 0; ð31Þ

(c) Fixed–pinned

T12T24 � T14T22 ¼ 0; ð32Þ

(d) Fixed–fixed

T13T24 � T14T23 ¼ 0; ð33Þ

4.2 Critical buckling load

After determining the elements Tij of the matrix [T] and then using Eqs. (30)–(33), the eigenvalue

equations are obtained in explicit form as

(a) Pinned–pinned ended column

sin kLð Þ � Ck sin bkLð Þ sin 1� bð ÞkL½ � ¼ 0; ð34Þ

(b) Fixed–free ended column

cos kLð Þ � Ck sin bkLð Þ cos 1� bð ÞkL½ � ¼ 0; ð35Þ

Carrying capacity of edge-cracked columns under concentric vertical loads 13



(c) Fixed–pinned ended column

kLð Þ cos kLð Þ � sin kLð Þ½ � þ Ck sin bkLð Þ sin 1� bð ÞkL½ � � kLð Þ cos 1� bð ÞkL½ �f g ¼ 0; ð36Þ

(d) Fixed–fixed ended column

4 sin kL=2ð Þ sin kL=2ð Þ � kL=2ð Þ cos kL=2ð Þ½ �
þ Ck sin kLð Þ � kLð Þ cos bkLð Þ cos 1� bð ÞkL½ �f g ¼ 0:

ð37Þ

In Eqs. (34)–(37), b ¼ xc/L (see Fig. 1) and k
2 ¼ P/EI. By using any of a number of root finder

algorithms, the roots (eigenvalues) of the above transcendental equations can be obtained. It is worth

nothing that, by setting C ¼ 0 in the above equations, one obtains the buckling conditions, i.e.

eigenvalue equations, of the corresponding intact columns.

5 Numerical results and discussion

In order to illustrate the proposed method a buckling analysis of a prismatic column with a single and

a double edge crack with rectangular and circular cross section is presented.

5.1 A rectangular cross section cracked column with a single edge crack

As a first example, a pinned–pinned column with the following data is considered:

E ¼ 200GPa; a ¼ 0:3 h ¼ 9 cm; b ¼ h ¼ 30 cm;

L ¼ 3m; xc ¼ 0:7L ¼ 2:1m

) f ¼ a=h ¼ 0:3) C ¼ 0:166968=EI

) Pcr ¼ 1:0187EI; Pe
p2EI

L2
¼ 1:0966EI where Pe is the Euler buckling load:

Therefore the crack causes 7.1% reduction in the buckling load. The variation of Pcr/Pe, versus

crack location parameter is shown in Fig. 14. According to the figure when the crack shifts towards

any of the supports, its effect diminishes.

In order to see more clearly the effect of the crack depth (a ¼ f h) and the location (xc ¼ b L),

consider four compression columns having a single non-propagating edge crack and pinned–pinned,

fixed–free, fixed–pinned and fixed–fixed support conditions and the same cross sectional dimensions

0.2 0.4 0.6 0.8 1
X c L

0.9

0.92

0.94

0.96

0.98

Pcr Pe

Fig. 14. The variation of Pcr/Pe versus

the crack location parameter (b ¼ Xc/L)
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of h ¼ 0.1 m, b ¼ 0.1 m, but different lengths of 1.30, 0.65 1.85 and 2.60 m, respectively. With

these properties all columns buckle in the elastic range. The first critical buckling load to the Euler

buckling load Pe ¼ p2EI
L2

� �
ratio versus crack location parameter curves, corresponding to the 0.1,

0.25 and 0.45 values of the crack depth parameter, are shown in Fig. 15.

It is clear from the figure that for all columns, when the crack depth and thus the local flexibility

increases, the buckling load and thus the Pcr/Pe ratio decreases, as expected. While the largest

decrease occurs in the fixed–free ended column, the smallest decrease is in the fixed–fixed column,

both for f ¼ 0.45. The crack location has different effects depending on the end conditions. As is

well known from fracture mechanics and strength of materials, the strain energy stored in an elastic

body under a bending effect is directly related to the magnitude of the bending moment. Therefore,

for a constant crack depth, a crack located in the section of maximum bending moment causes the

largest decrease in the buckling load. Naturally, a crack located in the inflexion point (zero moment

point) has no effect on the critical buckling load.

5.2 Critical buckling loads of columns having a single and a double edge crack

with rectangular cross sections

As a second example, consider two columns having the fixed–free and pinned–pinned end conditions

with the same dimension properties h ¼ b ¼ 0.1 m, L ¼ 1 m and the dimensionless crack depth

f ¼ 0.15, 0.45. The variation of Pcr/Pe, versus the crack location parameter for these two columns is
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Fig. 15. Variation of the first critical buckling load to the Euler buckling load ratio (Pcr/Pe) depending on the

dimensionless crack depth (f ¼ a/h) and dimensionless crack location (b ¼ Xc/L)
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shown in Fig. 16. As is seen double edge cracks have the larger local flexibility and thus greater

decrease the critical buckling load.

5.3 Critical buckling loads of columns with a single and a double edge crack and circular

cross sections

As a third example, consider two columns having the fixed–free and fixed–pinned end conditions

with the same dimension properties D ¼ h ¼ b ¼ 0.1 m, L ¼ 1 m and the dimensionless crack

depth f ¼ 0.15, 0.45. The variation of Pcr/Pe, versus the crack location parameter for these two

columns is shown in Fig. 17. As is seen double edge cracks have the larger local flexibility and thus

greater decrease the critical buckling load, but the decrease in the critical buckling load for a circular

cross section is smaller than for the rectangular cross section.

5.4 Critical buckling loads of columns with a double edge crack, having rectangular

and circular cross sections

As the last example, a pinned–pinned (simply supported) column having a single and a double crack

with rectangular and circular cross section is considered. For theses columns h ¼ b ¼ D ¼ 0.2 m,

L ¼ 2 m and f ¼ a/h ¼ 0.2, 0.4. The results are shown in Fig. 18.

0.95

0.96

0.97

0.98

0.99

1

1.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Xc/L

P
cr

/P
e

Pinned-pinned column
with a single edge crack

Pinned-pinned column
with a double edge
crack

Fixed-free column with
a single edge crack

Fixed-free column with
a double edge crack

a

0.5

0.6

0.7

0.8

0.9

1

1.1

Pinned-pinned column
with a single edge
crack

Pinned-pinned column
with a double edge
crack

Fixed-free column with
a single edge crack 

Fixed-free column with
a double edge crack

b

P
cr

/P
e

Xc/L

Fig. 16. The variation of Pcr/Pe versus the crack location parameter for columns having a single and a double

edge crack with rectangular cross section; a a/h = 0.15, b a/h = 0.45
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6 Conclusions

The buckling analysis of slender prismatic columns of rectangular and circular cross section, with a

single and double edge cracks, subjected to concentrated vertical loads has been presented in this

study.
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Some principal conclusions can be drawn as follows:

(i) Local flexibility functions due to the presence of one and double non-propagating edge cracks

in circular and rectangular cross sections are derived. The explicit formulae are obtained and

the best-fitted polynomials are also presented.
(ii) There was very good agreement between the flexibility results obtained by finite element and

J-Integral approaches (maximum discrepancy less than 2%).
(iii) The effect of a crack on the buckling load of a column depends on the depth and the location

of the crack.
(iv) In columns under axial compression, the effect of a crack is to decrease the buckling load. As

expected, the load carrying capacity decreases as the crack depth increases. On the other

hand, the effect of crack location depends on the end conditions of the column. Generally,

the maximum decrease of the buckling capacity occurs when the crack is located at the

position with maximum curvature of the buckling mode shape of the column. If a crack is

located just in the inflexion points of the corresponding intact column, it has no effect on the

buckling load.
(v) The results showed that the buckling capacity obtained for columns having rectangular cross

section of b � b mm2 is lower than those obtained for a similar column of circular section

with a diameter of b mm2.
(vi) As it is expected, the capacity of columns having a single edge crack is higher than those with

double edge cracks.
(vii) The transfer matrix method is a simple and efficient method to analyze the buckling of

cracked columns with various boundary conditions. Eigenvalue equations of cracked columns

could be easily established from a system of two linear equations.
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