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An Exact Limit for the Peierls Distortion Energy in an
Antiferromagnetic Chain by Means of a Renormalization
Procedure
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A renormalization procedure gives a rigorous upper bound for the ground-
state energy per spin for a Peierls-distorted antiferromagnetic chain with
Heisenberg interaction.
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1. INTRODUCTION

Peierls distortions in a linear antiferromagnetic chain have been analyzed
by a number of authors.*~™ This paper is devoted to the calculation of a
rigorous upper bound for the ground-state energy per spin for the distorted
chain. This calculation is based on a renormalization procedure developed
in a previous paper,® which is used here in first order.

We consider an antiferromagnetic chain of a large number N of quantum
mechanical spins 4 with alternating interaction constants depending on a
distortion parameter ¢, The Hamiltonian of the spin system may be written™

HES) = =13 |1+ (eSS Jo <0 (1)
The distortion results in a classical elastic energy of the lattice™
E(D) = Nw A%, £ =yA (2)

the kinetic energy of the lattice not being taken into account. In (2) the
parameter A is the displacement of the lattice points, the relative change of
the exchange constant being a linear function of this parameter.
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In the next section we determine an upper bound for the lowest eigen-
value of (1) with our renormalization procedure and minimize the total
energy per spin including (2), by varying £. In Section 3 a comparison with
the results of other authors is made.

Because our results give an upper bound for the ground-state energy,
we can prove rigorously that for wy/y? < 1.994, Peierls distortion occurs.

2. GROUND-STATE ENERGY PER SPIN

As in Ref. 8, we divide the spin system into cells of three spins
(i = 3k — 1, 3k, 3k + 1) and the energy eigenvalues for these cells are

—3J, (quartet, S = 3)
LT[ £ (1 + 363)17] (2 doublets, S = £

The lowest doublet for the kth cell for all £ corresponds to an eigenvalue
& = LJG[1 + (1 + 3£%)%?] and eigenstates

13, 3k = (1/\/6)[¢20€in Fodop t (o + \/gﬁk)l F ot to
+

+ (o — \/gﬂk)l + F el
— __1__ i3
* VRO F ud = (0 + )R
P Y R
k T \/-2- [1 + 77k2 _ (1 + 77k2)1/2]1/2
M = ("‘)ks‘:\/5

The symbols |+ — + ), etc., were introduced in Ref. 8.
To determine the renormalized Hamiltonian for the spin system, we
need the projected spin operators for the ground state

Py 5(K)SsiPajofk) = H(—e? +.38°)(Sa-1 + Sax + Sz 1)Prja(k)
Py o(k)Ssx a1 Prja(k) = Foyley * \/gﬁk)(SSk—l + Sap + Sap i) PrjAk)

First-order perturbation calculus results in an effective Hamiltonian for the
ground state in terms of the S = (Sai-1 + Sai + Sar+1)Pije(k):

HD(ED, 8P = (N + o HHH(ED, S) (3
with
eo(§) = $o[l + (1 + 36)7]
2¢° 2 _ _ g2 AN1/2
co(§) = M+ 3% — (1 T 352)1/2]2 [1 + & (1 f)(l + 35) ]

by - 28
£V =T(¢) = 1+ & —(1 - &1 + 38
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The renormalization procedure leading to H® may be repeated, yielding a
series expansion for the ground-state energy per spin

«© =3 p|[Jaw]ae)  e-ten o=t ©

As was discussed in Ref. 8, first-order perturbation calculus leading to (¢)
gives a rigorous upper bound for the energy per spin.

The actual Peierls distortion is determined by the minimum of the total
energy per spin, including the elastic energy (2), i.e., the minimum of

we) = e¢) + 22 -

(&) + (6)
Numerical results of our method are shown in four graphs and two tables.
Figure 1 shows the graph of I'(¢), which we need for the calculation of e(¢).
We confine ourselves to the interval [0, 1.5] for €, I'(¢) being an odd function.
Asymptotic values of I'(§) are I'(§) ~ —4¢ (£ —0) and I'(§) ~ —2/4/3 =
—1.1547 (¢ — ). One renormalization transformation gives a change of
sign of the distortion parameter. Fixed points are given by the equation
I'(¢) = — ¢ and the only ones for ¢ > 0 are ¢ = 0,1, The stable point
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Fig. 1. The function T'(¢).
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Fig, 2. The ground-state energy per spin «(£).

|€9] = 1 is reached with sufficient accuracy after a small number of trans-
formations, for all values of & = ¢ in the interval [0, 1.5]. In Fig. 2 we
give the values of «(¢) for J, = —4.

For the fixed points we find e(0) = —36/23 = —1.5652 and «(1) = —3.
For the calculation of «(¢) for general values of ¢ use has been made of the
Wang 500 desk calculator. The function «(¢) is monotonic for ¢ > 0 and
its behavior for ¢ = 0 is determined by a characteristic exponent «, which is
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calculated as follows: We introduce three new functions &(¢), ¢,(¢), and

e_()(f)a
(&) — «(0) = (&) + 36/23 = &¢)

co(&) — co(0) = co(é) — § = (&)
',50(5) — &(0) = () + % = &(§)
The function «(¢), according to (5), obeys the relation
€(§) — eold) = $eo(§)e(€), € =T(¥)
which may be translated in terms of the functions &(¢), ¢o(€), and €,(¢)

&8 — &(é) = —(12/23)co(8) + (412D)&(E) + 3e(HE(E)

™

For small ¢ the functions &,(¢) and é,(¢) are quadratic, whereas &' ~ —4¢£.
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Fig. 3. Distortion parameter £, for minimum energy, as a function of w,/y2.
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Introducing the exponent « by &¢) ~ k;[£]|% one easily determines the
dominant terms in (7) for small ¢, which give the equation

~3In3
~2In2

Because « < 2 the term &,(¢) of the left-hand side and the first and third
terms of the right-hand side of (7) do not contribute to the dominant part.
This value of o« is confirmed by our numerical results for «(¢). For large

values of £, ¢ ~ —2/V/3, ¢co(é) ~ 3£V/3, and
€(8) = (&) + Leo(Oe(&) ~ [—3V3 + 1 3V3e(—2/V3)]¢ = —1.56960¢

The minimum of w(¢) [cf. formula (6)] is easily determined numerically
and the value £, of ¢ for which this minimum is reached, as a function of
wo/y?, is given in Fig. 3. Finally Fig. 4 shows the graph of w(¢,), the minimal

kgl = %k14“lfi“, o — 1 = 1.37744
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Fig. 4. Minimal energy w({,) as a function of wg/y®.
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Table I. §; As a Function of wq/y?

wofy? & wo/‘}’2 &

0.5 1.5125 1.5 0.5104
0.6 1.2536 2.0 0.3826
0.7 1.0714 2.5 0.3007
0.8 0.9377 3.0 0.2436
0.9 0.8351 3.5 0.2021
1.0 0.7538 4.0 0.1713
1.1 0.6877 4.5 0.1477
1.2 0.6327 5.0 0.1293
1.3 0.5859 5.5 0.1145
1.4 0.5456

energy of the distorted chain, as a function of w,/y® The results of Figs. 3
and 4 are also given in Tables I and II. In addition to these results Table 11
gives values of (&;).

3. DISCUSSION

We should stress that, in our approximation, there is a finite distortion
for all finite values wo/y?, as a consequence of the characteristic exponent
« being smaller than 2.

In our normalization, Hulthén’s result® equals ¢y = —1.7726. Our
calculations show w(é;) < e4(0) for wofy? < 1.994, so that for these values
of wy/yv? one is sure that Peierls distortion occurs for the exact ground state,
because our value for w(é,), being an upper bound for the energy, is smaller
than Hulthén’s result.

Table II. w(E) and e(&;) as a Function of wg/y?

woly? w(&o) (£o) wply? w(éo) (£0)
0.5 —2.6275 —3.7713 1.5 ~1.8697 —~2.2604
0.6 —2.4379 —3.3807 2.0 -1.7717 —2.0645
0.7 —2.3036 —3.1071 2.5 -1.7140 —1.9400
0.8 —2.2031 —2.9066 3.0 —-1.6772 —1.8552
0.9 —2.1248 —2.7525 35 —1.6526 —1.7956
1.0 —2.0619 —2.6301 4.0 —1.6352 —1.7526
1.1 -2.0101 —2.5303 4.5 —1.6226 —1.7208
1.2 —1.9666 —2.4469 5.0 —1.6130 —1.6966
13 -1.9295 —2.3758 5.5 —1.6056 —1.6777

14 —1.8975 —-2.3143
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For wo/y? > 1.994 one cannot be sure of the occurrence of a distortion
on the basis of our approximation, but we expect that for the exact solution
of the problem one finds a distortion for all w,/y?.

We may also compare our result for the rigid lattice ¢(0) = —36/23 =
—1.5652 (w, = o0) with Hulthén’s result. For this case, however, a far
better approximation was given in a previous paper.®

Our results for &, given in Fig. 3 and Table I may be compared with
those in Refs. 1 and 4. In the first paper the analogous problem for the XY
model is solved exactly, resulting in &, & exp(—nwy/4y?) (£, « 1), expressed
in terms of the corresponding constants in our analysis. For the Heisenberg
interaction in the Hartree-Fock approximation it was found in Ref. 4 that
& ~ exp(—a) (& « 1), where @ = 2a/[1 + (1 + 8a/=)"'?] and a = ww,/4y>.

Pytte® has analyzed the Peierls distortion for a linear antiferromagnetic
chain in interaction with three-dimensional phonons. Jacobs et al.® have
given a survey of the energy lowering of the ground state near the uniform
limit (¢ = 0): For the XY model it goes like £2 In £,%® and for the Heisen-
berg model in the HF approximation like £%(In £)%,%® whereas in our
first-order approximation for small cells of three spins we find £-27744,
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