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Abstract. To compute the transient solution of free-surface flow problems in two and three dimensions boundary integral 
equation formulations are considered. Consistent lower and higher order approximations based on small curvature expan- 
sions are compared and applied to a time-dependent, linear free-surface wave problem. 

1 Introduction 

In many problems in ocean engineering irrotational gravity waves play an important role. When 
large fixed or floating bodies are involved (i. e., bodies with a characteristic length of the order of 
the wave length) viscosity and compressibility effects, as well as surface tension, are of minor 
importance, and the fluid flow is described well by a potential flow. The velocity potential qS, 
governing the flow, satisfies the Laplace equation 

V2~b = 0 (1) 

throughout the fluid domain t?. The motion of the free surface waves is described by the dynamic 
and the kinematic free-surface boundary conditions. These boundary conditions are nonlinear, time- 
dependent partial differential equations 

5q~ 1 
~ t  + 2 (V~b)2 + g" t / = f ( t ) ,  (2) 

aq~ a~ ~¢ a~ aq~ 
eA + - - . - -  + - - .  - 0, (3) 
at 5x ax ay ay az 

where r/is the free surface elevation anf g is the gravitational acceleration. The nonlinear waves 
described by (1)-(3) are of theoretical interest (e. g., wave-wave interaction, and the deformation of 
steep waves), as well as of practical interest (e. g., wave forces on offshore structures). In order to 
solve (1)-(3), we also need boundary conditions on all other boundaries of t'2, as well as appropriate 
initial conditions for the time-dependent boundary conditions. Assuming that wave amplitude and 
body motions are small compared to wave length and water depth, boundary conditions may be 
linearized and moving boundaries fixed. But even with these simplifications analytical solutions 
only have been found for very special geometries, and numerical methods are needed to solve more 
general free surface problems, such as the nonlinear problem (1)-(3). 

In recent years, this type of nonlinear wave problem has been solved succesfully with the use of 
boundary integral methods (Longuet-Higgins and Cokelet 1976; Vinje and Brevig 1981). For this 
reason an integral equation method has been chosen to be used in the solution of the equivalent 
problem in 3D. In three dimensions the solution of (1)-(3) is much more complex than it is in two 
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dimensions. Not  only is the process of solving the system of differential equations much more 
complex, but also problems are encountered in for instance geometric modeling, numerical grid 
generation and flow visualization; not to mention the fact that usually 3D simulations are restricted 
severely by computing time and storage requirements. 

Therefore, we will focus our attention on the efficient computation of the solution of the Laplace 
equation in 3D using integral equations. Especially the choice of integral equation(s) and the analysis 
of the order of accuracy will be considered. Also some new results in this respect will be given. Using 
this analysis a versatile computer program which allows the selection of a number of different 
formulations, has been written. The program is modular and vectorized. It turns out to be most 
efficient. This will be demonstrated by considering a linear free surface wave. 

Before going into details, we want to mention some of the advantages and disadvantages of the 
integral equation method (IEM) in comparison with field discretization methods, such as the finite 
element method (FEM). The fact that only the boundary of the fluid domain has to be discretized 
(using IEM), has some obvious advantages. In the first place, the problem of numerical grid 
generation is reduced to the generation of a surface grid, instead of a volume grid. A surface grid 
is more easy to generate, and of course also cheaper. Secondly, the reduction of the number of 
unknowns means easier data handling, less storage problems, and also a more simple flow visualiza- 
tion. These features make the integral equation method suited very well for problems involving 
moving boundaries. 

The disadvantages are also clear. The IEM is rather complex, and therefore difficult to program, 
it is sensitive to the discretization, and later extensions to solve other equations than the Laplace 
equation are difficult or impossible. 

As far as the computational effort of  IEM and FEM is concerned, it is less apparent which of 
the methods is the more attractive. To obtain some idea of the effort involved, consider a rectangular 
box ~ ,  which is discretized for FEM resulting in a regular (0~n x n x n)-grid, where 0~n is an integer 
and c~ ~< 1. This grid also defines the surface grid for the integral equation method. The most time- 
consuming parts in the calculations of both methods are the calculation of the matrix coefficients 
Aij , and the solution of the matrix equation A x = b, and therefore only these parts will be considered. 

For basic methods (involving lower order polynomials) the operation counts are given in Table 
1 (neglecting small terms). The influence of the geometry, i.e., of  the aspect ratio e, is considerable. 
For small ~ there will be relatively few internal nodes, and integral equation methods will be 
favourable only for very large n. Example: Suppose ci -- 20, that is, it takes 20 operations to calculate 
one matrix coefficient using an IEM (only for large Ni (say Ni > 1000); for small Ni ci will be O (200)). 
And furthermore, suppose an iterative method can be used for IEM, with k = n, i.e., it converges 
in O ( 1 ~ )  iterations. Then the approximate total number of operations, for c~ -= 1.0 and 0~ = 0.1, 
are given in Table 2. It is clear that integral equation methods will be more efficient than finite 
element methods if n is large enough. 

2 Integral equation methods 

Assume that the simply-connected domain ~ is bounded by the closed surface S, consisting of C 2- 
continuous subsurfaces Si. Using Green's third identity a large number of equivalent integral 

Table 1. Operation counts for a lower order IEM and a lower order FEM; 
(ci and c z are coefficients) 

IEM FEM 

band width (M) of A full 
number of nodes (N) (2 + 4 ~)n 2 
storage N~r 
coefficients Aij ciN~i 
solution A x  = b 1/3 N~i/k N 2. 

0~n2+ (l + 2c0n 
c~n 3 + (1 + 2~)n 2 
Us~/1 
cf20 N d 
1/2NzM/ 

* 1/3 N~/for Gauss elimination, kN~/for iterative methods 
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Table 2. Number of operations for the integral equation method and the finite element for 
two aspect ratios 

1EM (K~) FEM (Kf) K~ >~ Kf 

= 1.0 (36)n 5 + (720)n 4 (0.5)n 7 + (4.5)n 6 n ~> 11 
c~ = 0.l (5.8)n 5 + (116)n 4 (0.0005)n 7 + (0.018)n 6 n ~> 100 

+ (0.216)n s 

equation formulations can be derived to solve the Laplace equation (1) in f2. All are based on source 
and/or  dipole distributions on the boundary S. In this paper two families of  integral equations are 
considered: 

1 OG dS (4) + 
s 

&b } 02G dS (5) 

with 

- 1  
G(x;~)- 4 n l l x - ~ H  (6) 

Here, ~ is the integration variable on S, o (3) and / t  (~) are the source and dipole distribution on S, 
and nx and n denote the local inward normals at x and ~ respectively (Fig. 1). The symboliC-denotes 

s 
the finite part  of the integral S~ in the sense of Hadamard.  

s 
To make the problem determinate a mix ofo- and # has to be chosen in (4)-(5) for each subsurface. 

A certain choice should render a well-posed problem, having a unique solution. Fur thermore the 
numerical errors should be as small as possible. Three obvious choices are: 

(1) a = 0, 

(2) -- 0 

84  

(3) a = On'/~ q~ 

(dipole-only) 

(source-only) 

(Green's identity) 

Source-only distributions, dipole-only distributions and mixed distributions all take about the same 
computat ional  effort. However, as Hunt  (1978) states, the choice of  a mix of source and dipole 
distributions leads to better results than a source-only or a dipole-only distribution, as it reduces 

leakage considerably. For this reason Green's formulation a = ~ - , / t  = - ~b is favourable. If q~ 

and V~b are both of interest on a boundary Si t  is also more advantageous to use Green's formulation. 
To illustrate this consider the free-surface boundary conditions involving both q5 and Vq~ and suppose 

~b is known. Then 0~_~ is known from the boundary integral equation method and the two tangential 
an 

derivatives ~ and Oq5 - -  can be computed easily form ~b, thus giving Vq~ on S. Any other choice of 
~tt ~t2 

singularities would lead to the necessitY of calculating extra influence coefficients per singularity in 

°:@ 
Fig. 1. Definition of  geometric quantities 
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Table 3. Summary of results on local errors 

279 

option local cr # panel geometry 
in program trunc, error eA 

int. Eq. (4) 
A 0 (A) const, const, flat 
B O (A 2) const, lin. quadr, a 
C O (A 3) lin. quadr, cubic b 
int. Eq. (5) O (1) const, const, flat 
D O (A) const, lin. flat 
E O (A 2) lin. quadr, quadr. 

a Integrals involving quadratic curvature terms can be neglected only if the boundary S is 
everywhere C2-continuous 

b Integrals involving cubic curvature terms can be neglected only if the boundary S is everywhere 
C3-continuous; here also higher order approximations are needed for the line segments re- 
presenting the panel boundaries (Romate 1988). In the program the cubic terms and curved 
panel boundaries are not included 

order to calculate Vq5 from the solved o- and #. For these and some other less important  reasons 
Green's formulation will be used. 

To solve the boundary value problem numerically the boundary S is discretized in N quadrilateral 
panels. In general the integrals in (4) and (5) over a panel surface AS cannot  be calculated analytically. 
Nonetheless, using truncated Taylor series to approximate the panel surface and the singularity 
distributions, analytical expressions can be derived approximating the integrals to a certain order 
in terms of the typical panel diameter A. It is remarked that  even the integral in Eq. (5) representing 
the velocity due to a dipole distribution on S, with its hypersingular kernel, is calculated analytically. 
(This is done by first reformulating the integral in terms of a surface vorticity distribution and a 
line vortex along the boundary of S.) A local truncation error analysis as in Hess (1975) or Romate  
(1988) shows which terms in each of the Taylor series should be taken into account. Table 3 shows 

the min imum approximations needed for the source o- = ~n ' the dipole p (=  - q~) and the panel 

geometry to obtain a certain order for the local truncation error cA. 
The singularity distributions are expressed in terms of the strenghts of the singularities in the N 

centers of the panels where the boundary conditions are imposed. Applying a discretized integral 
equation at each collocation point xi and substituting the boundary conditions will yield a set of N 

linear equations with N unknown values q5 (xi) or ~n (xi). 

It is clear that  the integral Eqs. (4) and (5) can be chosen such that  all resulting equations are 
Fredholm integral equations of the second kind. For example, in case of a Dirichlet condition at xi 
on S, the application of Eq. (5) for x = xi, results in a Fredholm equation of the second kind 

for ~b (x). 

The matrix constructed this way has large coefficients on the diagonal. In general iterative 
methods can be used to solve the matrix equation. 

3 Asymptotic convergence 

Based on the results of the local error analysis five options were implemented in the developed 
computer  program (see first column of Table 3). Various tests in both two and three dimensions 
were done to analyse the numerical behavior of the methods. The main results are given here. For 
smooth boundaries S the global errors of the methods are of the same order as the corresponding 
local errors. E.g., the higher order method E has a local truncation error of O (A 2) and thus the 
global error also is O (A 2) as A ~ 0. For non-smooth  boundaries the global error will be one order 
lower than the corresponding local error if Eq. (4) is used for a Dirichlet problem, i.e., the global 
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errors of the methods A, B and C are then O (1), O (A) and O (A 2) respectively. This is shown in Fig. 
2, where the analytical solution q$ of the flow around an infinite circular cylinder (radius 1) was 
imposed on the boundary of an infinite ,,square cylinder". The corresponding exterior problem was 

then solved, and 8~ was determined on the boundary of the square cylinder using the five methods. 
8n 

[8~b 8~b is in 2. the maximum error On On given Fig. 
oo 

In practical calculations it suffices to introduce a strip of  higher order panels along the edges of 
the subsurfaces Si where slope-discontinuities may occur, to compensate the loss of accuracy. Figure 
2 also shows that method D is less accurate than method B which involves approximately the same 
computational  effort, just as the more expensive method E is less accurate than the comparably 
expensive method C. 

4 A l inear free surface problem 

We will now consider the application of the method to a linear free-surface problem, governed by 
the Laplace Eq. (1) and the linearized free-surface boundary conditions: 

- -  + g r /=  0 on z = 0 (still water level) (7) 
8t 

8~ 84, 
- 0 o n  z = 0 (8) 

8t 8z 

8q$ _ 0 on z = - h (bottom) (9) 
8n 

In the numerical computat ions the infinite domain is truncated by artifical boundaries at some 
distance from the region of  interest (Fig. 3). 

10 -1 

10 2 

~ ! ~  • 

10 -3 

i 0 - 4 ~  
I 101 I0 z 10 ~ 

N ------- 

Z= -Z1 

2 3 

Figs. 2 and 3. 2 Asymptotic error behavior of the 5 methods for the "square cylinder" problem (N = number of panels in x- 
direction). 3 Rectangular fluid domain £2 (y = 0 is plane of symmetry) 
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Table 4. CPU-times on a CRAY-1 and a Cray X-MP of the calculation of all 
singularity contributions for a problem with 416 panels and 1 plane of symmetry 

method A B C D E 

Cray 1 CPU-time (s) 1.45 1.87 2.68 1.63 2.42 
Cray X-MP CPU-time (s) 0.68 0.76 0.90 0.83 1.05 
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For a plane wave moving in the positive x-direction the following conditions are used on the 
artificial boundaries: 

805 _ 0 on Y = Yl, Y = -- Yl (10) 
an 

805 
C 058, = 0  o n  x =  x 1 (11)  

at an 

805 805 c - - = g ( y , z , t )  on x = 0  (12) 
at an 

where g(y,z, t) represents the incoming wave with phase-velocity c. Starting from a given initial 
conditions at t = to the solution procedure consists of  discretizing the time-dependent boundary 

conditions giving an expression for 05 and/or ~ at the next time-level to + At in a finite number of 
o£/ 

collocation points. Then the integral equation method is used to solve the boundary value problem 
805 

obtained at time to + At, giving the inknown q5 and/or ~ on the boundaries. This procedure is 

repeated each time-step. 
As a test example we chose a wave with period T = 2re and wave length 2 = 43.3. We discretized 

the boundary as in Fig. 3, involving 416 panels and 1 plane of symmetry. For the time-stepping 

0.02. 
t=O 

0 

-0.02 
t= 10.07 

0 

- 0.02 
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- -  u - - ~  
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- - i z - ~  

~ l Z - ~  
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4 As=l.0 5 As=l,0 

Figs. 4 and 5. 4 The error in the wave elevation q, along a strip of panels in x-direction (option A), shown after 0, 10, ..., 
50 and 60 time-steps. 5 The error in the wave elevation r/, along a strip of panels in x-direction, shown after 0, 10, ..., 50 
and 60 time-steps; here higher order panels were used at the surface edges 
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(At = 0.1) we used a third-order Adams-Moulton scheme. All options in the program performed 
very well and according to the theoretical results obtained earlier. The method proved to be efficient 
and reliable. The efficiency of the panel method is illustrated in Table 4, which gives the CPU-times 
o f  all methods on a CRAY- 1 and a CRAY X-MP supercomputer for the calculation of all source- 
and dipole-contributions necessary for the test example. This most time-consuming part of the 
calculations looks very favourable in comparison with other higher order panel methods. For 
example, the panel method of NLR (Hoeijmakers 1983) requires 9.5 x 10 - 4  cpu S per panel-field 
point combination using an approximation similar to method E on a Cyber 170-855. For 416 
unknowns this would result in 164.4 cpu s. Also using a method similar to E the program of Saab- 
Scania needs 16.1 cpu s on a CRAY-1 for a problem involving 365 unknowns, also with one plane 
of symmetry (~  20.8 cpu s for 416 unknowns). 

Finally, Fig. 4 illustrates the typical behavior of the error in q on the free-surface. It shows the 
error of 12 consecutive panels in x-direction at seven time-levels. Here method A was used on all 
panels. The errors are introduced at the edges of the free-surface (panels 1 and 12) and penetrate 
into the interior due to the hyperbolic nature of the free-surface boundary conditions. 

To show more clearly that the error, and therefore the accuracy, in the interior of the surface is 
determined by the errors induced at the surface edges, we repeated the same calculation, but now 
used a strip of higher order panels (two panels wide) along all the surface edges, to diminish the 
local error at these edges. Figure 5 shows the results of these computations: the amplitude of the error 
wave has decreased considerably. This example clearly demonstrates the importance of reducing the 
error in the corners of the computational domain, since these determine the accuracy of the solution. 
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