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1 In t roduct ion 
ELECTRIC ACTIVITY in the human body can be registered 
noninvasively by measuring the electrical potential dis- 
tribution at the body surface or the magnetic field distribu- 
tion outside the body. These measurements can be used to 
estimate strength and position of the source. To do so a 
model of the source and the surrounding body is required. 
It is usual to model the source by one or more current 
dipoles. Normally the volume conductor is modelled by 
compartments, which are piecewise homogeneous and iso- 
tropic. However, many biological tissues have some degree 
of directional organisation and would therefore be 
expected to behave anisotropically. Skeletal muscle is 
strongly anisotropic and conductivity ratios as high as 
14:1 can exist in these tissues (GEDDES and BAKER, 1967). 
STANLEY et al. (1986) showed in a study on dogs that the 
anisotropic nature of the muscle layer around the rib-cage 
has a strong effect on the relationship between torso and 
epicardial potentials, and if this is taken into account it 
greatly improves the agreement between calculated and 
measured torso potentials. 

Their calculations are based on a model of the muscle 
layer introduced by RUSH (1967). Because the muscles are 
essentially directed parallel to the body surface but other- 
wise almost uniformly distributed over all angles, Rush 
assumed that the muscle layer as a whole is essentially 
isotropic over the two directions parallel to the body 
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surface but with a different higher resistivity in the perpen- 
dicular directions. In models used to explain the potential 
distribution due to electric activity in muscle fibres or 
human nerves, the anisotropic nature of the passive sur- 
rounding muscle tissue is usually taken into account, e.g. 
ALBERS et al. (1986). However, the influence on the mag- 
netic field has, to our knowledge, not yet been reported in 
the literature. Recently MIZUTANI and KtmIKI (1988) 
reported the measurement of magnetic responses in the 
vicinity of the neck evoked in the spinal cord. ERN~ et al. 
(1988) reported the measurement of the magnetic activity 
of the peripheral nerve in the vicinity of the arm in the 
area between the elbow and shoulder. Both types of mea- 
surements are used for localisation of the source. Because 
skeletal muscles in the cases mentioned are a part of the 
volume conductor, it is important to estimate the extent of 
the influence of the anisotropy on the various components 
of the magnetic field. 

The heart is mildly anisotropic, the electrical conductiv- 
ity in the direction of the fibres being roughly a factor 
three larger than that across the fibres. However, the fibres 
are wound in such a complicated fashion that no overall 
preferred direction can be readily discerned. Although the 
structure of the heart muscle is far too complicated to 
permit a realistic theoretical estimate of the anisotropy, its 
influence on the wavefronts has been studied, e.g. COLLI- 
FRANZONE et al. (1982), GONELLI and AGNELLO, (1988). 

The head tissues are also expected to be anisotropic 
(NICHOLSON, 1973). In the cerebellar cortex, for example, 
the Purkinje cells are roughly orientated normal to the pial 
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surface, their dendrites forming a system of parallel planes. 
Measurements of the conductivity in cat cerebellar cortex 
showed that the conductivity in the direction normal to 
the cortical surface has a value which is approximately 
twice as large as the conductivity parallel to the surface 
(YEDLIN et al., 1974) and in the cerebral white matter this 
factor is nine (NICHOLSON, 1965). HOELTZELL and DIJKER, 
(1979) also demonstrated the existence of cortical aniso- 
tropy in the somatosensory cortex of the cat. They found 
that the anisotropy varied with the depth. NICHOLSON and 
FREEMAN (1975) measured the conductivity in frog and 
toad cerebella and found that the anuran cerebellum is 
anisotropic. According to Rush and DRISCOLL (1968) the 
skull also has a greater resistivity transversely than in 
directions parallel to its surface. Up to now, studies on the 
influence of anisotropy on the magnetic field have been 
limited to the search for aspects of the sources which 
cannot be seen in the potential (ROTH and WlKswo, 1986) 
and to the magnetic field generated by a current dipole 
situated in an infinite homogeneous anisotropic medium 
(PETERS et al. 1988). In the latter case the conductivity was 
defined by two values only, namely one in the direction of 
the fibres and the other in the direction across the fibres. 

In the present study biological tissue is treated as con- 
tinuous and therefore we are only concerned with gross 
distributions of currents, potentials and magnetic fields. 
We shall study three different analytical techniques for 
solving electrical potential and magnetic field problems. 
We shall not pay attention to purely numerical methods 
such as the boundary-element and the finite-element 
methods, usually applied to solve the basic equations for 
more complex configurations of the volume conductor. It 
will be shown that the boundary-element method cannot 
be used for anisotropic media. 

Although the class of problems that can be solved ana- 
lytically is restricted, the advantages of an analytical 
approach are: 

(a) each parameter may be varied continuously 
(b) general conclusions can be drawn, for instance with 

regard to the component of the magnetic field which 
will be least influenced by anisotropy 

(c) results can be used for verification of results obtained 
by purely numerical methods. 

First we shall present a comprehensive survey of the math- 
ematical equations which are obeyed by the magnetic field 
H and the electrical potential V. A complete set of equa- 
tions for both H and V will be given, where these are 
coupled, even in the case that the volume conductor is 
chosen to be homogeneous and of infinite extent. In the 
present study some examples of the solution of the set of 
equations for H and V are given and from these we can 
find some rules of thumb that may be used when dealing 
with layered structures where anisotropy is involved. 

2 Assumptions and fundamenta l  equat ions 
Before describing the different techniques used for 

solving electrical potential and magnetic field problems the 
fundamental equations and assumptions are given. The 
volume conductor is described by compartments which are 
piecewise homogeneous and which are either isotropic or 
anisotropic. Furthermore, the magnetic permeability of 
each compartment is #o. As shown by PLONSEY and 
HEPPNER (1967), in solving the magnetic and electric fields 
caused by physiological current sources in a physiological 
conductor, the quasistatic approach may be used. 

We choose our co-ordinate system to be Cartesian. The 
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conductivity of each tissue is described by a tensor conduc- 
tivity 8, which is defined by the diagonal elements ax, ay 
and a.. only. In general a x, % and or= are compartment- 
dependent constants. The total current density J within an 
anisotropic volume conductor will be the sum of the 
current density in the active cellular regions, the so-called 
primary current density alp and the ohmic current density 
6 �9 E, implying 

J =  Jp + 8 . E (1) 

In the quasistatic approach the equation of continuity 
reads 

div J = 0 (2a) 

yielding 

div (8. E) = - d i v  Jp (2b) 

The electric field E is related to the electrical potential V 
by 

E =  - g r a d  V (3) 

Introducing V in eqn. (2b) and rewriting the left-hand term 
in full yields 

(22  ~2 ~2) 
ax ~x--Z + ay 3),~ + a~ ~ V = div Jp (4) 

Eqn. 4 is the fundamental equation for the electrical poten- 
tial V. The fundamental equation for the magnetic field H 
can be deduced from the quasistatic Maxwell equations 

rot H = J (5a) 

and 
div H = 0 (5b) 

Combining eqn. 1 and the rule of vector analysis: 

rot rot H = grad div H -  AH 

results in 

AH = - r o t  J p  - -  rot(8 �9 E) (5c) 

Introducing the electrical potential V in eqn. 5c and 
writing the left-hand term in full yields the fundamental 
equation for the magnetic field 

~ 2  + - -  + H = rot Jp + rot (6 �9 grad V) (6) 
\3x  2 2y 2 

Eqn. 6 shows that in general H is coupled to the electrical 
potential V. Applying the operator 

( 2  2 22 22 ) 
ax ?x ~ + % 3v-Z + a= 

to eqn. 6 and combining eqns. 6 and 4 yields 

+ 2 +  )\a77 + --Oy 2 + n 

(22  (~2 22 ) 
= -  a~ ?x~ + ay-~y2 + az ~z2 r o t J p  

+ rot (tr �9 grad div Jp) (7) 

If different compartments are involved it is necessary to 
formulate the conditions for H and V at the boundaries 
between different compartments: 

(a) V is continuous 
(b) the normal component of 8 . V V is continuous 
(c) because all compartments have the same permeability, 

the normal component of H is continuous 
(d) the tangential components of H are continuous. 
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The field equations and conditions stated above are valid 
for every configuration of compartments and every sort of 
primary current density. In this study the source is a small 
plane current dipole layer. At distances larger than the 
dimensions of the layer, the source acts as a dipole 

p =  f ze, d S =  f J ,  adS (8) 

where z is the dipole density, e, is the normal vector on the 
layer and a is the thickness of the layer. 

3 Techniques to solve the fundamenta l  
equations 

3.1 The scale transformation 
Several authors described a method in which the solu- 

tion of eqn. 4 is found with the help of a scale transform- 
ation of the co-ordinate system, e.g. KuNz and MORAN 
(1958) and Rush (1967). The co-ordinate system is trans- 
formed to a primed system such that x' is defined by 

x ' =  x x/~-y tr~ (9) 
tr 

y' and z' being defined correspondingly. To keep the 
dimensions of x and x' the same tr is introduced, but the 
value is a free choice. If both the currents and the potential 
are chosen to be invariant, i.e. they are the same at corres- 
ponding points of the primed and unprimed system, then 
the x-component of the current density, being a current 
divided by a surface, transforms as 

0 -2 
= (J )x trx  trz 

The y- and z-components transform analogously. As a 
consequence in the primed system eqn. 4 will read 

A'V' = - div 'J~ and J'p = trV'V' (10) 
tr 

In other words, the method of scale transformation leads 
to a constructed space, where the relationships between J'p 
and V' are similar to those in a homogeneous isotropic 
medium. The solution of eqn. l0 followed by the inverse 
transformation to the original co-ordinate system results in 
the expression for the potential in the anisotropic medium. 
For instance, the potential generated by a dipole in the 
origin of a homogeneous isotropic medium of infinite 
extent reads 

1 x'p'x + ' ' + z'p'z 
V' - Y py (11) 

47ztr [(x') 2 + (y,)2 + (z,)213/2 

The inverse transformation, where Px, being a current 
times a distance, transforms as 

P" = Px v/trYtr~ 
(7 

leads to the potential generated by a dipole in the origin of 
a homogeneous anisotropic medium of infinite extent 

xpx YPr + ZPz 

V - 1 ax try trz (12) 

try 

The method of scale transformation is not an adequate 
method for solving H, as is clearly shown by eqn. 7. 
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Although the first operation in eqn. 7 

( 0  2 0 2 0 2 ) 
trx ~x2 + try --c3y2 + trz ~z2 

is transformed properly, the second 

63y 2 

is not. 
In the next section we shall comment on another 

approach to find a solution for V and H in an anisotropic 
volume conductor. 

3.2 Secondary sources at the boundaries 
The solutions of eqns. 4 and 6 read 

V(r) - p " r 1 f 1 div (6(r') grad V(r')) dar, 
41ttrr 3 + ~ 6"(r') [r - r'l 

all 
s p a c e  

(13) 

(14) p x r 1 f rot (6(r') grad V(r')) dar, 
H(r) 

= 4~zr - - - ~  +4-~ ~ [ r - - r ' [  
all 

space  

If all compartments are homogeneous and isotropic, these 
volume integrals can be transformed into the following 
surface integrals as derived, respectively, by BARNARD et al. 
(1967) and GESELOWITZ (1970) 

V(P)-- P ' r  1 f s 4 - ~ a r  -3 4-7z. ( 1 ) E Atr i V/grad' �9 dSi 
i 

(15) 

H(r) p x r  1 ~ f s A t r ,  V~grad, ( 1 , )  
= 47cr 3 41t . i ~ x dS i 

(16) 

where V~ is the electrical potential at the boundary Si 
and ~,s, means summation over all interfaces Si, the outer 
boundary included 
tr is the conductivity at the point r 
Atrl is the difference in conductivity of the regions at both 
sides of the interface numbered i. 

These equations show that the contribution of the 
volume currents can be considered equivalent to the influ- 
ence of secondary sources which lie at the interfaces 
between regions of different conductivities. The orientation 
of these secondary sources is normal to the interfaces and 
their strengths are proportional to the local potential and 
the conductivity difference of the successive compartments. 
The numerical computations of the integral equations can 
be carried out by means of the boundary-element method. 
It is in general not possible to transform the volume inte- 
grals into surface integrals if one or more of the com- 
partments behaves anisotropically, because div (b -g r ad  
V) and rot (8 �9 grad V) cannot be expressed as the diver- 
gence and the rotation, respectively, of the gradient of a 
scalar. Therefore the idea of secondary sources is no longer 
applicable. Numerical solutions of V and H will require a 
three-dimensional integral approximation instead of the 
two-dimensional boundary-element method used in the 
case of isotropy. 

However, there are some special configurations in which 
one of the components of H can be computed with the 
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procedure mentioned above. These configurations appear 
in electrophysiology in cases where the conductivity in the 
anisotropic compar tment  is defined by two values only, 
one in the direction of the fibres and one at right angles to 
them. Suppose, for example, that az = cr, and crx = a r = crt 
in a compar tment  which is bounded by an isotropic com- 
partment  with conductivity a o . Because in this case (rot 
(8 �9 grad V))~ = (a t rot grad F)~ we can handle the volume 
integral in the expression for H~ in the same way as in the 
isotropic case, and 

(p X r)z 1 
H z ( r ) -  4~zr 3 4n 

x ; ( c r , -  ao)V(grad ( i r @ r , [ )  x dS)~ (17) 

This means that the influence of the volume conductor on 
the component  of the magnetic field in the direction of the 
fibres can be interpreted as caused by a secondary source 
density (crt - ao)V. If the boundary is a surface normal to 
the fibres the last term on the right hand side in eqn. 17 is 
zero, which means that the component  of H in the direc- 
tion of the fibres is neither influenced by the anisotropy, 
nor by the inhomogeneity. This last situation is found if 
the head is modelled by concentric spherical shells. Here 
the proper co-ordinates are spherical polar co-ordinates. If 
the cortex in this model is described as an anisotropic 
sheet with a, = cr, and cr~ = a o = crt then the radial com- 
ponent of the magnetic field H~ is equal to the source term 
only. A similar situation is found if the muscles around the 
rib cage are modelled as a cylindrical shell. The proper 
co-ordinates are cylindrical and in the muscle layer a, = cra 
and a ,  = cre = crt. Again it follows that the contribution of 
the volume currents to the radial component  of H is zero. 

3.3 Solving the homogeneous equations 
In this section a method is given to compute the mag- 

netic field distribution due to a dipolar source embedded 
in a volume conductor consisting of anisotropic homoge- 
neous compartments  which have a simple geometry. This 
method implies that the homogeneous equations are 
solved taking the source into account by means of condi- 
tions for V and H at the singularity (see also AMELSFORT 
and SCHARTEN (1986)). The fundamental equation for V 
according to eqn. 4 is 

( 02 02 02 ) 
cr~ ~ x  2 + cry --0y2 + crz ~ z  z V = div Jp (18) 

In a source-free region the right-hand side is zero and the 
equation is called the homogeneous equation. The homo- 
geneous equation for H is, according to eqn. 6, 

c r x ~ + c r r - -  +crz + - - +  H = O  (19) 0y 2 ~z2J\~--~x 2 0y 2 ~ z  2 

To find the conditions at the source we will first consider a 
small dipole layer, which is infinitely thin, in the plane 
z = 0 centred at the origin. On crossing a dipole layer 
there is a discontinuity in V. This is clear if we take into 
account that the potential generated by a homogeneous 
dipole layer in a homogeneous isotropic medium is lin- 
early proportional  to the solid angle subtended by the 
dipole layer and the solid angle makes a jump of 4n when 
passing the layer. The normal component  of the electric 
field E~ = -OV/Oz  is continuous. The discontinuity in 1: 
can be found by the following procedure. Integrating eqn. 
18 from z = Az to z = oo, where Az > 0, yields 
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fa ( ~-y2) f a :  div 
cc 0 2 V 6 ~2 V'~ c 3 V(Az) Ip dz 

cr~-S-X-~x2 + cr ,, dz + cr~ O--S---  

= - J ~ ( A z )  

The first term on the left-hand side is finite. A similar 
expression is found in the region z < 0. Subsequent inte- 
gration of 0V/0z from z = - A z  to z = Az and taking the 
limit for Az --, 0 gives 

1" 
limV(z) - lim V(z) = - -  
z,L0 z'f0 O'z 

In the limit that the area of the dipole layer goes to zero, 
we can describe the source by a current dipole Pz and the 
jump in the potential is 

6(x)6(y) 
P z  - - - -  

crz 

From div H = 0 it follows that H is a continuous function 
and consequently H~ is continuous at z = 0. Combining 
the continuity of H with the fact that the x- and y- 
components of rot H are zero yields that OHJOz is contin- 
uous at z = 0. 

If the source is a dipole at the origin, orientated in the 
x-direction, then the electric field component  in the z- 
direction suffers a discontinuity at the source. To compute 
this discontinuity, eqn. 18 is integrated from z = - A z  to 
z = Az and the limit for Az ~ 0 is taken yielding 

a z li ~ - lim = ~xx Px 6(x)6(y) 
z zT0 

From the combination of the facts that H is continuous 
and (rot H)x = Px it follows that OH:/Oz makes a jump of 
Op~/Oy at the source. 

The technique that can be used to actually solve the 
homogeneous equations using the boundary conditions at 
both the source and the interfaces between various com- 
partments is to apply integral transformations to both the 
equations and the conditions. The type of integral trans- 
formation which will be suitable depends on the symmetry 
of the problem. For the planar geometry the Fourier trans- 
formation is an appropriate choice. The Fourier transform 
is defined as the function 

f ( kx ,  ky) = (x, y)e ixkxe irk'dx dy (20) 
.,-1o 

The inverse transformation is then defined as 

l f of? f ( x ,  y) = ~ 2  ~ (k x, ky)eiXkxeiyk~dk~ dky (21) 

The transform of p6(x) 6(y) = b. The transforms of the ele- 
mentary functions Of/Ox and Of/Oy are respectively i k j a n d  
ikyf  If we call 

K 2 k~ + kr 2 and S 2 crx 2 (7)' 2 = = - -  kx + ky 
crz crz 

the Fourier transforms of eqns. 4 and 7 in the source-free 
regions read 

02 ~ - -  /(.2 (. ;;)( 
with solutions of the form 

(22) 

= 0 (23) 

~" = Kx e sz + K2 e-s~ 
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~-I z = K 3 e Kz + K 4 e -~z + K 5 e s= + K 6 e -s= (25) 

The constants K I - K  6 are typical for the various com- 
partments, where K1, K2, Ks and K 6 a r e  related through 
the ohmic currents. These relationships can be deduced 
from the Fourier transform ofeqn. 6: 

(x2 _ $2)/~, = - ( a x  - ay)k.  kr ~z 

which gives the relationships 

(~:2 _ S2)K s = - (a~ - ay)k~ kr K 1 

(K 2 - -  $2)K6  = --(or x - -  crr)k x ky K 2 (26) 

The solution of / t~  and V is found if the following bound- 
ary conditions are met 

(a) ~" and/4~ vanish at infinity 
(b) The conditions at the interfaces between com- 

partments, mentioned in section 2, in the transformed 
domain, read: V; az OV'/dz; FI~ and OFIz/dZ are contin- 
uous 

(c) (i) If the source is orientated in the z-direction then 
the conditions at the source in the transformed 
domain read: V makes a jump of pJa~ while OV/az, 
/4~ and OFI~/dz are continuous 

(ii) If the source is orientated in the x-direction then 
the conditions are: OVe/8z makes a jump of 
ik~p,ja~; Fl~ is continuous and OFI~/dz makes a 
jump of ik r p~. 

Using the stated equations and boundary conditions, ~" 
and Hz can be found. By rewriting eqn. 5a and 5b expres- 
sions are obtained from which Hx a n d / t r  can be deduced: 

~ I  x - -  N" 2 ik r a~ ~ z  -- ikx 8z f (27) 

1( 
FIr = - ~  ikx a~ -~z + iky Oz f (28) 

The final expressions for V and H are obtained by apply- 
ing the inverse transformation (eqn. 21). In most cases the 
inverse transformation has to be carried out numerically. 
An exception is the two-layered medium pictured in Fig. 1, 
which can be handled analytically. 

o-lz 
I ~ 

Fig. 1 Current dipole p located below an interface separating two 
regions having different conductivities. The origin of  the 
co-ordinate system is at the dipole. The lower region is 
anisotropic, the fibres are parallel to the interface z = z 1 . 
The upper region is isotropic of  conductivity % .  The point 
of  observation is R 

The actual computation will be given as an example. In 
the region z < z~ the medium is anisotropic wth the fibres 
perpendicular to the boundary z = z~. The conductivity 
normal to the fibres is tr~ = ay = a t and the conductivity in 
the direction of the fibres is az = a~, which means that 
S = 2x, where 2 = x /aJa~ .  

In the region z > z~ the medium is isotropic with con- 
ductivity ao, implying that S = K. In both regions cr x = e r 
and therefore according to eqn. 34 Ks = K6 = 0. Conse- 
quently, taking into account the fact that P and H= vanish 
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at infinity, eqns. 24 and 25 read in the various regions 

z > z 1 ~'= C2 e-~= ffI= = C 4 e  -~= 

0 < z < z I ~ '= B l e  ~xz + B 2 e - ~  FI= = B 3 e ~ + B4 e-Kz 

z < 0 ~" = A l e  ~a~ 171= = A a e ~ 

Using the boundary conditions at z = 0 and z = zl we find 
straightforwardly for z > Zl 

_ 2p= e -~-K~z- l )zL  and/ t=  = 0 
Xa~ + ao 

From these expressions/t~ and/~r  can be deduced. 
In this special situation the inverse transformation can 

be performed analytically. Substituting k x = x cos cz and 
k v = x sin a and using integrals from GRADSHTEYN and 
RYZHIK (1965) yields in the region where z > z 1 

l "~Pz Z + Zl(,~ - -  1) 
V =  

2n 2a a + a o /~3 , 

where /~2 = X 2 ..~ y2 + (Z + ZI(• - -  1)) 2 (29) 

1 - ao 2pz y 
n x -- 

2n 2aa + ao ~3  

1 ao 2pz x 

Hr  - 2n 2aa + ao ~a  

H= = 0 

The same procedure using conditions (c)(ii) at the source 
give H and V in the case where the dipole is parallel to the 
boundary, i.e. normal to the fibres, yielding in the region 
where z > z~ 

1 xpx 1 
V -  

2n 2a~ + a o ~a 

and 

1 YPx R 2 x 2 y2 Z2 
H = - 4 n  R a ' w i t h  = + + (30) 

4 Discussion 
Three methods are discussed to solve volume conductor 

problems taking anisotropy into account. The number of 
problems which can be solved is restricted because all 
compartments are considered to be homogeneous and the 
interfaces are either parallel or perpendicular to the fibres. 
Although the example given in Section 3.3 where p = Pz ez 
was solved by means of Fourier transformation, due to the 
cylinder symmetry of the problem Hankel transformation 
is also appropriate. 

The two-layered medium served as a simple example. 
However, it may be an adequate model to explain the 
potential and magnetic field caused by an electrical activity 
in a slice of the hippocampus (TESCHE et al., 1988) or the 
cerebellum (OKADA and NICHOLSON, 1988) immersed in a 
saline solution. The magnitude will be affected by the 
anisotropic nature of the tissue as described by eqns. 29 
and 30. The scale transformation can also be used to 
explain the potential distribution in the two-layered 
medium depicted in Fig. 1. The lower region can be 
described by primed co-ordinates to the effect that the 
potential in this region is given by aA'V' = div' J'p, in the 
upper region it is given by AV = 0. 

If we construct our primed co-ordinate system such that 
the boundary conditions at the interface between the 
primed and the isotropic region read 
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and 

V is continuous 

OV' OV 
o ' ~ = a  0 dz (31) 

then we have a set of conditions and equations for the 
potential which is identical to the one which describes the 
potential distribution due to a dipole in a two-layered 
medium in which both layers are isotropic. This problem 
was already solved by the method of images (NuNEZ, 
1981). The potential in the upper material of conductivity 
go due to a source in the lower material of conductivity cr 
is 

2a 
- -  V .  ( 32 )  
a o + a  

where V n is the potential which would have been generated 
by the same source in a homogeneous medium of conduc- 
tivity a. The potential in the lower material is 

1 + -  v,, 
O'~ (7" 0 

where R is the distance from the source to the point of 
observation and S is the distance from the image of the 
source to the point of observation. Vu is given in eqn. 11. 

Condition 14 is met at the interface, because at the inter- 
face R = S. Condition 15 is met if we transform condition 
13 in primed co-ordinates 

OV a x / - ~ a  % 8V'  8 V  
a~ ~ = a z - a o - -  (33) 

a 8z' 8z 

From this latter expression it follows that a correct choice 
of a is given by 

a Z = a z  ax/a~% (34) 

Let the source be a dipole with a component  in the fibre 
direction and a component  perpendicular to the fibres, i.e. 

P = Px ex + Pz e~ 

According to eqn. 9 the transformation from the primed to 
the unprimed co-ordinates reads 

x'  = x; y' = y and z' = 2z, where 2 = (at/a,) 1/2 (35) 

On the interface the distribution of secondary sources is 
linearly proportional to the distribution found in the case 
that the distance between the source and the boundary is 
diminished with a factor 2. As a consequence the second- 
ary sources give rise to a potential for which in the upper 
region the condition AV = 0 still holds. This implies that 
the whole procedure is legitimate. 

In the upper region we find after transforming the 
primed co-ordinates of the lower region to the original 
co-ordinates in expression (32) 

1 Xpx + 2pz(Z + z~(2 - 1)) (36) 
V - 2n (2a. + Oo)(X 2 --~ y2 -k (Z + Zx()~ -- 1))2) 3/2 

which is in accordance with expressions 29 and 30. If the 
fibres are parallel to the interface then an appropriate scale 
transformation is not found for which, after inverse trans- 
formation, the condition that the ohmic currents give rise 
to such a potential distribution that A V = 0 still holds. 
Although the method given in Section 3.3 can be used in 
this case it leads to Fourier transforms which cannot be 
transformed analytically. 

An important  point in favour of magnetic measurements 
is that certain components of the magnetic field are not 
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influenced at all by the anisotropy. For  instance, if the 
head is modelled by anisotropic spherical shells, and the 
conductivity in the radial direction differs from that in the 
tangential direction, then the radial component  of the 
magnetic field is neither influenced by the inhomogeneities 
nor by the anisotropies. On the other hand, the potential is 
influenced by both the inhomogeneities and the aniso- 
tropics. The latter especially is difficult to take into 
account because the tensor conductivity is impossible to 
measure in human beings. 
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