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Abstract

Different stakeholders in the design of an enterprise information system have their own view on that design. To help produce a coher-
ent design this paper presents a framework that aids in specifying relations and consistency rules between such views. The contribution of
our framework is that it provides a collection of basic concepts. These basic concepts aid in relating viewpoints by providing: (i) a com-
mon terminology that helps stakeholders to understand each others concepts; and (ii) re-usable consistency rules. We show that our
framework can be applied, by performing a case study in which we specify the relations and consistency rules between three RM-
ODP viewpoints.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In any large-scale design, different people with different
interests are involved. These people, or stakeholders as we
call them, have their own way of looking at a system, for
which they use their own modelling languages, techniques
and tools. Informally, we call the way in which a stake-
holder looks at a system the viewpoint of that stakeholder.
From his viewpoint, each stakeholder constructs his own
design part, or view. However, because views are parts of
the same multi-viewpoint design, we must preserve the
coherence and consistency between the different views.

In this paper, we propose a framework that aids in pre-
serving the consistency in a multi-viewpoint design of
Enterprise Information Systems. To this end the frame-
work provides:

– a collection of basic concepts that is common to all
viewpoints;

– a means to specify relations between different views;
– a means to specify consistency rules that apply to these

relations;
– re-usable relations; and
– re-usable consistency rules.

The framework focuses on the architectural design of
enterprise information systems, which focuses on higher
levels of abstraction in the design process. The highest level
of abstraction that we consider is the level at which the sys-
tem is described in its enterprise environment (e.g. by
means of a business process in which the system is used).
The lowest level of abstraction that we consider is the level
at which the system parts correspond to parts that can be
deployed on some middleware system (e.g. J2EE or Web
Services).

The problems of coherency and consistency in
multi-viewpoint design are well-known and several
frameworks are proposed to address these problems
[1,16,15,7,28,12,14,13,3,2,29,19,10,20,17]. This paper con-
tributes to this work by providing a common collection
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of basic concepts to specify consistency rules and by pro-
viding re-usable viewpoint relations and consistency rules.
The benefit of using common, basic concepts are that these
concepts:

– provide a common terminology to all stakeholders,
helping them to understand each others concepts more
easily; and

– provide a basis for specifying re-usable relations and
rules, something that has, to the best of our knowledge,
not been attempted before.

By providing these techniques, we claim that our frame-
work reduces the time and effort needed to specify and
check relations and consistency between viewpoints.

We derived the elements of our framework in two steps.
Firstly, we analyse existing frameworks for multi-viewpoint
design and sets of concepts for design from the viewpoints.
From these frameworks and concepts, we generalize to
develop a common collection of basic concepts. We also
use these frameworks and concepts to derive frequently
occurring inter-viewpoint relations for re-use. Secondly,
we apply the basic concepts and relations in a case study
to evaluate them.

This paper is further structured as follows. Section 2
presents related work and, based on an analysis of the
related work, motivates the contribution of our frame-
work. Section 3 presents the framework. Also, it explains
and justifies the re-usable relations and consistency rules
that we define further on. Section 4 presents the common
collection of basic concepts that supports the specification
of (re-usable) relations and consistency rules between
views. Section 5 formally defines the re-usable consistency
rules, such that they can be checked. Section 6 presents
an example in which the framework is used. Section
7concludes.

2. Related work

In Fig. 1, we plotted the support that existing frame-
works in the area of architectural design provide for defin-
ing view relations and checking consistency in multi-
viewpoint design. We compared the frameworks with
respect to two aspects of viewpoint relations: (i) the expres-
siveness of the viewpoint relations; and (ii) the conceptual
support to represent the viewpoint relations.

We distinguish three levels of expressiveness of view-
point relations. At the lowest level, a framework supports
the definition of relations between views, but not the (con-
sistency) rules that apply to these relations. At the next
level, a framework supports the definition of consistency
guidelines that each stakeholder in a multi-viewpoint
design must follow. These guidelines are defined informally
and no automated support is available to check them. At
the highest level, a framework supports the definition of
consistency rules and their automated checking.

A framework can provide conceptual support to repre-
sent relations between the viewpoints, by defining a set of
concepts that crosses the boundaries between the view-
points and relations between these concepts. For example,
consider a set of concepts that includes an ‘Action’ concept
and an ‘Information Item’ concept and a relation that
relates an ‘Action’ to the ‘Information Items’. This set
crosses the boundaries between a viewpoint that focuses
on behavioural aspects and a viewpoint that focuses on
information aspects, allowing a designer to relate those
viewpoints. We discovered three different forms of concep-
tual support in the literature. Abstract concepts provide
abstractions of concepts that are used in the viewpoints
covered by the framework. They have relations with each
other, which allow a designer to represent relations
between views from the viewpoints in the framework.
Abstract concepts are developed with the sole purpose of
representing the relations between views and cannot be
used to represent the views themselves in detail. Common

abstract concepts have the additional property that they
are shared between the views, where regular abstract con-
cepts are different for each of the views. Like abstract con-
cepts, (Common) basic concepts have relations that allow a
designer to represent relations between views. However,
unlike abstract concepts, basic concepts can represent some
aspects from the views in detail. In theory, this makes it
possible to design some (part of the) views with basic con-
cepts rather than viewpoint concepts. But typically a com-
position of basic concepts or a specialization of a basic
concept is necessary to represent a single viewpoint con-
cept. This makes a view designed with basic concepts
harder to develop and understand than a view designed
with viewpoint concepts. For that reason, viewpoint con-
cepts are more frequently used for viewpoint design.

Fig. 1 illustrates the potential for a framework that com-
bines the highest level of expressiveness with conceptual
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Fig. 1. Existing frameworks and their support for consistency checks.
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support for representing viewpoint relations. Moreover, we
show below that this combination allows for the definition
of re-usable rules to check consistency. Leite and Freeman
[17] describes a framework in this class, allowing for the
consistency verification using common basic concepts.
However, this framework does not consider different mod-
elling languages that may be used by stakeholders. It is the
goal of our framework to explicitly consider this.

3. A framework for preserving consistency in multi-viewpoint

design

In this section, we outline our framework for preserving
consistency in a multi-viewpoint design. Firstly, we present
the elements of multi-viewpoint design. Secondly, we pres-
ent a means to specify relations between viewpoints.
Thirdly, we explain the roles that basic concepts play when
specifying viewpoint relations and when checking consis-
tency in a multi-viewpoint design.

3.1. Multi-viewpoint design

Fig. 2 illustrates the elements of multi-viewpoint design.
Multi-viewpoint design is based on the observation that
multiple stakeholders contribute to a design.

Each of these stakeholders focuses on a part of the
design, which we call the view of that stakeholder. More
specifically, we say that a stakeholder focuses on certain
design concerns and considers these concerns at a certain
level of abstraction. This observation is shared by most
of the frameworks that we considered in Section 2. A design

concern is a class of system properties. For example, the
behaviour concern is the class of properties that address
the behaviour of a system, such as the activities that can

occur in the system and the relations between these activi-
ties. A level of abstraction, also called a level of detail, is a
relative position in the design process that prescribes what
design information is considered essential at that position
in the design process.

A viewpoint is a prescription of the concerns at a certain
level of abstraction that a stakeholder must address and
the concepts that he uses to do so. A design concept is an
abstraction of some common and essential property of dis-
tributed systems. A view is constructed using instances of
the concepts from the corresponding viewpoint. To commu-
nicate a view it can be represented graphically (or textually)
by a model. To this end each concept instance is represented
by one or more model elements. Correspondingly, the view-
point defines the modelling language used to construct the
models, such that each concept defined by the viewpoint is
represented by one or more modelling language elements.
In this way, viewpoints and views, concepts and concept
instances and modelling language elements and model ele-
ments have a template/instance relation, such that one pro-
vides a template to construct the other.

The concepts shown in Fig. 2 are in line with the con-
cepts defined in the IEEE 1471 recommended practice [12].

Fig. 3 shows an example of a viewpoint. The viewpoint
is that of an operational manager, who focuses on the
behavioural concern at the level of abstraction of opera-
tional processes. He uses concepts such as ‘Task’ and ‘Task
Relation’ to construct views from his viewpoint, which he
graphically represents using modelling language elements
such as ‘Node’ and ‘Edge’. The dashed line informally
depicts the ‘representation relation’ between concepts and
the modelling elements that represent them. These model-
ling elements are associated with a graphical representa-
tion. The figure also shows an example of a view that is
constructed according to the viewpoint. The view shows a
process that consists of a sequence of two tasks, A and B.

3.2. Relations and consistency in multi-viewpoint design

To construct a coherent and consistent multi-viewpoint
design, relations between the viewpoints (and views con-
structed according to them) must be specified explicitly.
We represent relations between two viewpoints by relating
concepts from these viewpoints. The semantics of these
relations must be specified separately. This can partly be
done by means of consistency rules. A consistency rule is
a rule that represents a requirement on the relation between
concepts from different viewpoints. In a consistent design
all consistency rules must evaluate to ‘true’. In the remain-
der of this paper, we use the UML Meta Object Facility
(MOF) [22] and the Object Constraint Language (OCL)
[21] to specify viewpoint concepts and their relations as
well as consistency rules that apply to these relations. We
assume that the reader has basic knowledge of both
MOF and OCL.

Fig. 4 shows an example of three related viewpoints.
One viewpoint is the behavioural viewpoint from Fig. 3
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Fig. 2. The elements of multi-viewpoint design.
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and the others show the structural aspect of the enterprise
and the behaviour of individual applications. The struc-
tural viewpoint can be used to represent the actors and
applications that exist in an enterprise and to represent
which actor is authorized to use which application. The
application behaviour viewpoint can be used to represent
the behaviour of an applications by means of a statema-
chine. The statemachine represents the states that an appli-
cation can be in and how actions can trigger a transition to
another state. Each viewpoint is represented as a MOF
package. The overall design is also represented as a MOF
package. The design imports each of the used viewpoints,
such that all of the concepts (and relations) from the view-
points are available to it. It also specifies the relations

between the viewpoints. These relations represent that
actors can be authorized to perform tasks and that applica-
tions are used to perform tasks. The relations also relate
applications to their behaviour and they represent that a
process can be fully automated by (the behaviour of) an
application. One consistency rule is specified that applies
to the relation between the viewpoints. This rule specifies
that an actor must be authorized for all applications used
in tasks for which he is authorized.

Since viewpoints consider certain concerns at a certain
level of abstraction, we can position the viewpoints of a
design relative to each other. The same goes for views,
because they are constructed as instances of viewpoints.
Frequently occurring relations between viewpoints, and
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Fig. 3. Example of a viewpoint and a view.
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therefore views, can be inferred from the relative position
that viewpoints can have with respect to each other.

Fig. 5 illustrates the relative position of some viewpoints
in a table. The columns of the table represent the different
concerns of stakeholders in the design, while the rows rep-
resent the levels of abstraction at which these concerns are
considered. The rows in the table are ordered, such that the
level of abstraction decreases (and therefore the level of
detail increases) as we get to lower rows in the table.

Because each viewpoint considers certain design con-
cerns at a certain level of abstraction, viewpoints can be
related by considering related levels of abstraction and by
considering related concerns. This gives rise to two fre-
quently occurring viewpoint relations: the refinement rela-
tion and the overlap relation. Two viewpoints have a
refinement relation, if they (partly) consider the same con-
cerns at different levels of abstraction. In case of a refine-
ment relation between two viewpoints, the more concrete
viewpoint is a refinement of the more abstract viewpoint.
If two viewpoints have partly overlapping concerns we
say that they have an overlap relation. Two viewpoints
have an overlap relation if they (partly) consider the same
concerns at the same level of abstraction. For example,
viewpoints 1 and 2 from Fig. 5 have an overlap relation,
while viewpoints 1 and 4 have a refinement relation in
which viewpoint 1 is the more abstract and viewpoint 4 is
the more concrete viewpoint.

3.3. Using basic concepts in multi-viewpoint design

A common collection of basic concepts can be used in a
multi-viewpoint design for the following purposes:

1. As a common frame of reference that helps stakeholders,
or a stakeholder that is responsible for maintaining
relations between the viewpoints, to understand the con-
cepts of the other stakeholders. Because, if a stakeholder
knows what his concepts represent in terms of basic con-
cepts, he can explain them to other stakeholders in those
terms.

2. As a source of re-usable concepts, relations, consistency
rules and notation. Because, if a viewpoint is defined in
terms of the basic concepts, all concepts, relations, con-
sistency rules and modelling language elements that are
defined on the basic concepts are automatically inherited
by the viewpoint.

In our framework, we exploit (2) by defining re-usable
relations and consistency rules on the basic concepts. In
particular, we define a refinement and an overlap relation
and corresponding consistency rules on the basic concepts,
because we have shown a need for these relations in Section
3.2.

Fig. 6 illustrates how the basic concepts can be used to
specify and check a particular consistency in the design
from Fig. 4. This design allows a designer to relate a pro-
cess to the (behaviour of) an application that automates
this process. Fig. 6 specifies a part of the mapping between
the viewpoint concepts and the basic concepts. This map-
ping maps processes and statemachines to basic behav-
iours. It is the responsibility of the stakeholder to create
a basic behaviour for each process and statemachine and
to relate that basic behaviour to the corresponding process
or statemachine. In the next section, we explain how this
can be facilitated by tools. Once a basic behaviour exists
for each process and statemachine, we can check the con-
sistency rule. This consistency rule represents that, if a pro-
cess is automated by a statemachine, the behaviour of the
process must be equivalent to the behaviour of the statema-
chine. The consistency rule uses the basic consistency rule
‘equivalent’ that is defined on the behaviour basic concept.

Checking consistency in this way is very similar to
checking consistency by means of a formalism; checking
consistency by means of a formalism involves mapping
viewpoint concepts to that formalism, while our approach
involves mapping viewpoint concepts to basic concepts.
However, we can observe that formalisms are often aimed
towards use for particular design concerns. Therefore, as a
foundation for verifying consistency between views, a col-
lection of formalisms may be required that each addresses
its own concerns. This presents us with the additional chal-
lenge of maintaining the consistency between formalisms.
Furthermore, formalisms are mainly aimed towards math-
ematical rigour, rather than ease of use and understanding,
which are important qualities when trying to understand
viewpoint concepts and how they are used and related.
Therefore, we claim that using basic concepts helps the
designer, because he does not have to understand the for-
malisms involved in checking consistency, nor how they
are related. Moreover, through the basic concepts we do

use formalisms to check consistency, but these formalisms
are invisible to the designer. They provide a formal basis of
the concepts that is only used by the tool to perform the
consistency checks, but invisible to the user of the tool.
The user only sees the basic concepts.

3.4. A tool architecture to support the framework

Fig. 7 shows a tool architecture that supports the frame-
work. The architecture shows the software components
and illustrates the data that they can contain and exchange.

The architecture contains a model repository in which
the designer stores the concepts that the viewpoints define,
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viewpoint 
2

viewpoint 
4
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viewpoint 1 viewpoint 3

Fig. 5. Example of viewpoints in a design.
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as well as the concept instances that represent the views.
The designer also stores the views and viewpoint relations
in the repository. The model repository is MOF compliant.
We store our basic concepts and their relations, as we
define them in Section 4, in the repository.

The architecture contains a transformation engine that
can transform views into compositions of basic concept
instances. Such transformations are necessary to re-use the
consistency rules that are defined on the basic concepts. To
use these consistency rules between two viewpoints, both
viewpoints are transformed into compositions of basic con-
cepts, after which the consistency rules that are defined on
the basic concepts can be used. The transformations are
defined by the stakeholders of the viewpoints, to reflect the
mapping of viewpoint concepts onto basic concepts.

The OCL constraint checker can verify consistency rules
that the designer prescribes in the form of OCL constraints.

The OCL constraint checker can invoke the checker for the
re-usable consistency rules that are defined on the basic
concepts.

We developed an implementation of the tool architec-
ture [5]. However, that implementation does not yet imple-
ment the relation between the OCL constraint checker and
the re-usable consistency rules checker. A MOF M2 model
of the basic concepts that can be inserted into the model
repository is also available.

4. Basic concepts for multi-viewpoint architectural design

In this section, we present our basic concepts. The con-
cepts are developed through careful analysis of the domain
of architectural design of distributed systems and case stud-
ies in this area [24,8]. Earlier versions of the concepts are
presented in [25,26,8]. We distinguish between structural,
behavioural and information concepts. In this paper, we
explain the basic concepts only briefly. We refer to [4] for
a more detailed explanation and for the MOF M2 models
that allow a stakeholder to define an (automated) mapping
from his viewpoint concepts to the basic concepts.

4.1. Structural concern

The structure of a system is the aggregate of the system’s
parts and their relationships to each other. We consider
two kinds of relationships between system parts. The first
kind is the connection relationship that exists between parts
that interact via some communication mechanism. The sec-
ond kind is the part–whole relationship that exists between a
system and its parts. We can consider each part as a (sub-
)system. Therefore, this relation can also exist between a
part (sub-system) and its sub-parts. The structure of a sys-
tem can change over time. However, in this paper we focus
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on the structure of a system at a certain moment in its life-
cycle, which we call a structural snapshot.

Fig. 8 graphically represents the concepts that we use to
represent structural snapshots. An entity represents a logi-
cal or physical part of a system that carries behaviour. An
entity can be drawn inside another entity, to represent that
it is part of the other entity. An interaction point represents
a shared communication mechanism that two or more enti-
ties can use to interact. An interaction point part represents
an entity’s (potential) participation in a shared communi-
cation mechanism.

4.2. Behavioural concern

The behaviour of a system consists of the activities that
can be performed by the system and the relations between
these activities. The behaviour of a system can be struc-
tured into sub-behaviours to improve modularity of the
behaviour. An activity can be performed either by a single
system part or by some system parts in collaboration. It
produces a tangible or intangible result that is available
to all parts that engage in the activity. This result is avail-
able to the parts at some logical or physical location. An
activity takes time to be performed. Hence, it starts and fin-
ishes at particular time moments. Two activities are related
if the occurrence of one depends on the (non-)occurrence of
the other.

Fig. 9 graphically represents the concepts that we use to
represent behaviour. We use a behaviour block to represent
a behaviour. An action represents the successful completion
of an activity that is performed by a single entity. An inter-

action represents the successful completion of an activity
that is performed by some entities in collaboration. An
interaction contribution represents the participation of an
entity in an interaction. Actions and interaction contribu-
tions are assigned to a behaviour, by drawing actions inside
the behaviour to which they are assigned and interaction
contributions on the border of the behaviour to which they
are assigned. The name of an action or interaction contri-
bution is drawn inside a box that is attached to it by a

dashed line. By convention, interaction contributions of
the same interaction must have the same name. Attributes
represent the possible result of an action or interaction. If
an action of interaction occurs, its attributes are given a
value. Together, these values represent the result of the
action or interaction. Attributes have a name and a type.
The type identifies the possible values and the information
structure of those values. They are defined in the informa-
tion concern. Constraints may further constrain the possi-
ble values of an attribute. Two special kinds of attributes
exist: the time and the location attributes, which represent
the time and the location at which an action or interaction
occurs, respectively.

Each action has a condition for its occurrence. This con-
dition represents the dependency of the action to other
actions or interactions. Similarly, each interaction contri-
bution has a condition for its occurrence. By giving an
interaction contribution, rather than an interaction, a con-
dition, each entity can specify its own conditions for the
occurrence of the corresponding interaction. In this paper,
we do not present a detailed language for specifying the
conditions of actions and interactions. Rather, we explain
in Section 5 how these conditions can be formalized by
means of Petri nets, which is sufficient for the reader to
understand how consistency can be checked by means of
the basic concepts. For more details on representing condi-
tions and on behaviour structuring, we refer to [4].

The relation between the behavioural and the structural
concepts is as follows. Behaviours are assigned to the entity
of which they represent the behaviour. Interactions occur
between entities and must therefore be drawn between
the behaviours of those entities. The value of a location
attribute of an interaction must represent an interaction
point between the entities that participate in the
interaction.

4.3. Information concern

Information concepts can be used to represent the pos-
sible values and the structure of an attribute type. It is

<name>

i. Entity ii. Interaction Point iii. Interaction Point Part iv. Delegation Relation

whole

<name> <name> part

Fig. 8. Graphical representation of structural concepts.
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Fig. 9. Graphical representation of behavioural concepts.
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not our goal to define detailed information concepts.
Therefore, we only define minimum requirements that
those concepts should meet to be usable in our framework.
A designer must define a binding between a language’s con-
cepts and our concepts to show that the language meets
these requirements. This binding also defines how the lan-
guage’s concepts can be used in our framework.

Fig. 10 shows our information concepts. An information
value represents the result of an action or interaction. Each
information value has an information type that represents
the structure of information values of that type and a set
of allowable information values. An information type can
either be primitive (unstructured) or composite (structured).
In case it is composite, it consists of information blocks of
specified types. An information value of a composite type
consist of information values that are governed by the
information types identified by the blocks of the composite
type. Information types with a special status are the ‘Time’
and ‘Location’ types. A value of type ‘Time’ represent the
time at which the result of an action or interaction is avail-
able. A value of type ‘Location’ represents an interaction
point in the structural concern.

We defined a binding of UML to our basic concepts [4].
We bind the UML instance specification concept to the
information value concept. We bind the UML data type
concept to the primitive type concept. This means that
the primitive types that are available when using the
UML binding are: the UML Boolean, Integer, String,
Unlimited Natural and Enumeration types. We bind the
UML class concept to the composite type concept and
the UML property concept to the information block con-
cept. We bind OCL constraints to conditions and con-
straints in the behavioural concern. In this way, we can
represent information values and information types in
UML.

5. Re-usable basic consistency rules for the behavioural

aspect

This section explores the notions of overlap and refine-
ment from Section 3.2 in more detail and motivates some
frequently occurring refinement and overlap relations, with
the corresponding consistency rules, which it defines as re-
usable relations on the basic concepts. We focus on defin-
ing these relations for the behavioural aspect. For which
we first explain how we formalize it using Petri nets.

Much work exists on formalizing behaviour using Petri
nets and checking consistency (in particular with respect to
refinement) on Petri net behaviours. We refer to [6] for an
overview of related work in this area. Here, we limit our-

selves to stating that the ‘integration of final actions’
explained below is our contribution to this area.

5.1. Formalizing behaviour using Petri nets

We use a labelled Petri net to formalize a basic behav-
iour, such that each transition is labelled with the name
of the action or interaction contribution that it represents
(or with the silent label). In that way, we can represent
when this action or interaction contribution can occur.
We assume that the reader is familiar with Petri net theory.

Fig. 11 illustrates our approach to formalizing behav-
iours by showing two examples. Fig. 11(i) shows a behav-
iour, specified using the basic concepts from Section 4,
that represents a business process of an enterprise. A Petri
net represents when an action of the behaviour can occur.
To this end a transition is related to an action or interac-
tion contribution with the same name. For Fig. 11(i), this
means that the actions in the business process can occur
in sequence. Fig. 11(ii) shows a refinement of the enterprise
from Fig. 11(i). The company is refined into two interacting
behaviours that represent the front office and the back
office. The figure represents that, initially, a client can
apply for a loan. Next, the front office interacts with the
back office to make a first draft of the loan. After a first
draft has been made, the front office can offer two different
loans (type 1 and type 2) to the client, one of which
includes an additional life insurance. After either one of
the loans was accepted by the client, the loan is paid out.

5.2. Frequently occurring overlap relations

Two views overlap if they (partly) consider the same
properties. If two viewpoints overlap, either: (i) they con-
sider exactly the same proper-ties; (ii) one viewpoint con-
siders all the properties that the other considers as well as
some other properties; or (iii) they have some properties
in common but both also consider other properties. These
different forms of overlap are also identified by Spanouda-
kis et al. [27]. They are illustrated in Fig. 12. The figure
shows the properties that are addressed on the horizontal
axis. It represents concerns on the property axis between
dashed lines, representing that they are used to represent
the properties between these dashed lines. Viewpoints that
address these concerns are drawn between dashed lines as
well, representing that they ad-dress the concerns that
belong to the dashed lines. If two views overlap, they must
be equivalent with respect to their overlapping properties.
This motivates the definition of a re-usable ‘equivalence’
relation and the corresponding consistency rule. It also
motivates the definition of a technique to ‘remove’ the part
of the viewpoints that is not overlapping. Removing parts
of a behaviour is achieved by removing (a transition that
represents) an action or interaction as well as the flows that
are attached to it.

We define a re-usable ‘equivalence’ relation for behav-
iours. We define this relation using the notion of (weak)

:<type>

<blockname> = <value>

i. Composite Value

<type>

<blockname>: <blocktype>

ii. Composite Type

Fig. 10. Graphical representation of information concepts.
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bi-similarity [18]. Informally, two processes are bi-similar
if, in any state, one process can take the same transitions
as the other and can take silent transitions independently.
Two transitions are ‘the same’ if their labels are the same.

Fig. 13 shows a behaviour, we name it A here, that is
equivalent, by bi-similarity, to the behaviour from
Fig. 11(i), we name it B here. Intuitively, this can easily
be seen, because, like Fig. 11(i), Fig. 13 performs the
actions apply, offer and pay in sequence, even though it
performs silent transitions in between.

5.3. Frequently occurring refinement relations

A view is a refinement of another view, if it contains
more detailed information about how the system under
design will be implemented. Hence, the refined view must
be equivalent to the more abstract view, after we insert
the details into the more abstract view; or, vice versa, after
we remove the details from the refined view. This motivates

the definition of a re-usable refinement relation and corre-
sponding consistency rules.

Focusing on behaviour, we first explain how we allow a
behavioural view to be refined. Second, based on these pos-
sible refinements, we explain how we can check the consis-
tency of a behavioural view and its refinement.

A behaviour can be refined in one, or a combination, of
the following ways:

1. By describing one of its behaviours as a composition of
multiple interacting behaviours. As a result of this form
of decomposition, activities that were performed by the
(single) original behaviour may be performed by the
(multiple) refining behaviours. Hence, they are trans-
formed from actions into interactions.

2. By describing a relation between two of its activities as a
composition of multiple more fine-grained relations,
introducing activities to connect these relations. We refer
to these activities as inserted activities.

3. By describing one of its activities as a composition of
multiple more fine-grained activities. When an activity
is refined in this way, some of its refining activities cor-
respond to its completion. We refer to these activities
as final activities. The other refining activities are
inserted activities.

To check consistency we introduce techniques to remove
the details that are inserted during refinement. Subse-
quently, we can check equivalence of the abstract behav-
iour with the behaviour from which we removed the
details. In particular, we introduce techniques to: (i) com-
pose multiple interacting behaviours into a single behav-
iour, composing interactions between those behaviours
into actions at the same time; (ii) abstract from inserted
actions; and (iii) integrate final actions into a single action.
Note that we only defined the abstraction and integration
techniques for actions and not for interactions. We can still

Front Office

apply insure pay

Back Office

Enterprise

apply offer pay

draft

i. abstract behaviour ii. refined behaviour

apply offer pay

apply

insure

pay

draft

draft offer type2

offer type1

offer type1 offer type2

Fig. 11. A behaviour and its refinement.

viewpoint

i. fully overlapping

concerns

viewpoint

ii. one overlapping the other

concerns

viewpoint

iii. partly overlapping

concerns

viewpointviewpoint

Fig. 12. Different forms of overlap.

apply payoffer

apply pay
offer

Fig. 13. A behaviour that is equivalent to Fig. 11(i).
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apply the techniques to interactions, by first composing
them into actions. This has the limitation that we cannot
check refinement with respect to assigning activities to
behaviours. For example, the refinement check would
approve of refining an interaction (assigned to multiple
behaviours) by an action (assigned to a single behaviour),
although we did not define such a refinement as correct
in the refinement rules above. Further investigation of this
problem and a possible solution is left for future work.

5.3.1. Composing behaviours

Two behaviours can be composed by integrating their
interactions into actions. The resulting behaviour must be
equivalent to the original behaviour, with the difference
that the interactions are transformed into actions. We
achieve this with our formalism, by creating a single tran-
sition for each interaction between the composed behav-
iours. This transition represents the integrated action.
The transition can be labelled with the name of one of
the interaction contributions from which it was derived
(the choice is arbitrary, because all interaction contribu-
tions must have the same name by convention). Incoming
flow relations to (transitions representing) contributions
of the interaction, become incoming flow relations of the
newly created transition. Similarly, outgoing flow relations
from contributions of the interaction, become incoming
flow relations from the newly created transition. Finally,
we can remove the transitions that represent the interaction
contributions. As an example, Fig. 14 shows the result of
composing the behaviours from Fig. 11(ii). It illustrates
that the draft interaction is composed into an action, which
has the flow relations of both interaction contributions
from which it was derived.

5.3.2. Abstracting from inserted actions

We can abstract from an inserted action by labelling it
with the silent label, s. This means that, in an equivalence
check, although the action can still occur, it is not
observed; it can occur independently of what happens in
the equivalent behaviour. In our case it is not observed,
because it exists at a lower level of detail.

5.3.3. Integrating final actions

To integrate final actions into an integrated action, we
need to know how the completion of final actions corre-
sponds to the completion of the original action. For exam-
ple, the completion of all final actions can correspond to
the completion of the abstract action, or the completion
of any of the final actions can correspond to the completion
of the abstract action. Therefore, we require that the
designer specifies a completion condition that represents
which of the final actions must have completed, for the
integrated action to complete. A completion condition
can use a conjunction, represented by �, to represent that
all actions in the conjunction must have completed for
the abstract action to complete. It can use a disjunction,
represented by �, to represent that any of the actions in
the disjunction must have completed for the abstract action
to complete. And, it can use combinations of conjunctions
and disjunctions. We assume that a completion condition is
specified in the disjunctive normal form. An example of a
completion condition is: a1 � (a2 � a3). This condition rep-
resents that the completion of some abstract action corre-
sponds to the completion of final action a1 or the
completion of final actions a2 and a3.

To integrate final actions into an integrated action, we
create the integrated action and a corresponding transition.
We compute the flow relations that represents when the
integrated action can occur, by transforming the comple-
tion condition into a Petri net as follows. We transform
each of the conjunctions into a silent transition. Flow rela-
tions to and from transitions in a conjunction become flow
relations of that silent transition. In this way, each of the
silent transitions is enabled when all transitions in the con-
junction are enabled (corresponding to the semantics of
conjunction). Fig. 15(i) illustrates the transformation of
a2 � a3. Subsequently, we create a place with flows to it
from each of the silent transitions that represent the con-
junctions. A flow leaves from it to the integrated action.
In this way, the integrated action is enabled after any of
the conjunctions is satisfied (corresponding to the seman-
tics of disjunction). Fig. 15(ii) illustrates the transformation
of a1 � (a2 � a3) for integrated action a.

If an action depends on final actions (there is a path of
flows from the final actions to it), then we must replace this
dependency by a dependency on the integrated action,
because we will remove the final actions. We can make
the replacements by observing that the incoming flows of

apply insure pay

draft

apply

insure

paydraft

offer type2

offer type1

offer type1 offer type2

Fig. 14. Composition of Fig. 11(ii).

i. transforming conjunctions

a2

a3

ii. transforming disjunctions

a2

a3

a1

a

Fig. 15. Incoming flows of an integrated action.
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an action determine a condition for its occurrence. This can
easily be seen if we consider that a transition is enabled if
there are tokens on all its incoming places (conjunctive
condition). There are tokens on an incoming place if any

of the incoming transitions of that place has fired (disjunc-
tive condition). This relation between a Petri net and a cau-
sal condition assumes that a token represents that an action
has occurred. Therefore, we can only compute the condi-
tion for the occurrence of an action, if each transition that
is part of the condition has exactly one outgoing flow in the
context of that condition. Because, under this assumption
an action occurs more than once if its transition produces
more than one token. Formally, we can transform the
incoming flows of a transition t into a condition, by apply-
ing the following function f to a place x in a Petri net:

f ðxÞ ¼ ^ ff ðyÞ j y 2 �xg; if x 2 T ðx is a transitionÞ
¼ _ fgðyÞ j y 2 �xg; if x 2 P ðx is a placeÞ

gðtÞ ¼f ðtÞ; if lðtÞ ¼ s;

¼lðtÞ; if lðtÞ 6¼ s:

Fig. 16 shows an example in which we compute the condi-
tion for an action b.

We can replace the final actions in this condition as
follows:

1. We can replace a conjunction of final actions by the inte-
grated action, if the completion condition is also a con-
junction of final actions. Because, in case of a
conjunction, the condition of the action represents that
it can occur if all final actions have occurred, while the
completion condition represents that the occurrence of
the integrated action corresponds to the occurrence of
all final actions.

2. We can replace a disjunction of final actions by the inte-
grated action, if the completion condition is also a dis-
junction of final actions. Because, in case of a
disjunction, the condition of the action represents that
it can occur if any of the final actions have occurred,
while the completion condition represents that the
occurrence of the integrated action corresponds to the
occurrence of any of the final actions.

3. We can replace a combination of conjunctions and dis-
junctions by applying a combination of rules 1 and 2.

Basically this means that we can replace the part of a
condition that is equivalent to the completion condition.
To make this replacement easy, we rewrite the condition
for the action into the form A � C, where A is a condition

on the final actions in the disjunctive normal form and C is
a condition on other actions. If we cannot rewrite a condi-
tion into this form, the final actions cannot be replaced.
This is the consequence of an refinement that does not con-
form to our refinement rules, in which a condition that
depends on an integrated action is refined by a condition
that only depends on a part of that integrated action (or
rather: only some of the integrated action’s final actions).
We refer to [25,4] for more details on replacing final actions
in a condition.

After we made the replacement, we can integrate the con-
dition for a transition t back into the Petri net, as follows:

1. remove all places, silent transitions and flows that
belong to the original condition of t, excluding t itself
and excluding the (transitions that represent) actions in
the original condition;

2. create a place p;
3. create a flow from (p, t);
4. for each conjunction a1 � a2 �. . .� an:

4.1. create a transition t 0 labelled s;
4.2. create a flow (t 0,p);
4.3. for each conjunctive element a that corresponds to

a transition t00;
4.3.1. find a place p 0 that represents that a has

occurred,
4.3.2. if it does not yet exist:

4.3.2.1. create a place p 0 that represents that
a has occurred;

4.3.2.2. create a flow (t00,p 0);
4.3.3. create a flow (p 0, t).

Fig. 16 shows how we transform a condition the condi-
tion for the occurrence of b back into a Petri net, after we
computed the disjunctive normal form of the condition. It
remains to be proven that the Petri net after transforming it
into the ‘disjunctive normal form’ is bi-similar to the origi-
nal Petri net.

After an integrated action and its relation to other
actions have been defined, we can remove the final actions,
the corresponding transitions and incoming flow relations.

Fig. 17 shows how an integrated action, offer, can be cre-
ated from the completion condition offer type1 � (offer

type2 � insure). Fig. 17(i) shows in grey how the integrated
action and its incoming flows can be created from the com-
pletion condition. Fig. 17(i) has a silent transition that rep-
resents the conjunction offer type1 and a silent transition
that represents the conjunction offer type2 � insure. Flows
leave from these transitions to the place that represents
the disjunction offer type1 � (offer type2 � insure).
Fig. 17(ii) shows in grey how the outgoing flows of the final
actions can subsequently be replaced by outgoing flows of
the integrated action. Only the action pay depends on the
final actions according to the condition offer type1 � (offer

type2 � insure), which is already in the disjunctive normal
form and (syntactically) equivalent to the completion con-
dition. Hence, the dependency of pay on the final actions

(a1    a2)    a3

=
(a1    a3)    (a2    a3)

a3

a2

b

a1

a2

a3 b

a1

Fig. 16. Outgoing flows of an integrated action.
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can be replaced by the dependency of pay on the integrated
action offer. Finally, removing the final actions from
Fig. 17(ii) yields Fig. 13.

Example. Figs. 13, 14, and 17 illustrate the process of
checking consistency between Fig. 11(i) and its refinement,
Fig. 11(ii), if we consider that Fig. 11(i) is refined by:

1. refining offer into draft, offer type1, offer type2 and insure,
such that offer type1 � (offer type2 � insure) is the comple-
tion condition for offer;

2. decomposing enterprise into front office and back office.

To verify consistency, we must reverse the refinement
and check equivalence. Hence, we must:

1. compose front office and back office, resulting in Fig. 14;
2. abstract from the inserted action, draft;
3. integrate action offer from its final actions, by computing

the incoming flows of offer, resulting in Fig. 17(i), com-
puting the outgoing flows, resulting in Fig. 17(ii) and
finally, removing the final actions, resulting in Fig. 13.

Fig. 13 is equivalent to Fig. 17, proving that the refine-
ment is consistent.

5.3.4. Summary and basic techniques

Summarizing, this section motivates and explains the def-
inition of five basic techniques that can help check the consis-
tency between the behavioural aspect of two or more views:

1. Behaviour::equivalent(Behaviour): Boolean, which returns
true if and only if a (basic) behaviour is equivalent to
another (basic) behaviour;

2. Behaviour::compose(Behaviour): Behaviour, which com-
poses a behaviour with another behaviour and returns
the composed behaviour;

3. Behaviour::remove(Set{Activity}): Behaviour, which,
given a behaviour and a set of activities, returns the
behaviour from which those activities (and their rela-
tions) are removed;

4. Behaviour::abstract(Set{Activity}): Behaviour, which,
given a behaviour and a set of activities, returns the
behaviour in which those activities are abstracted from;

5. Behaviour::integrate(Set{Completion Condition}): Behav-
iour, which, given a behaviour and a set of completion
conditions, returns the behaviour in which, for each
completion condition, activities are integrated into a sin-
gle activity as specified by that completion condition.

A consistency rule can be defined using a composition of
these techniques, as we will demonstrate in the next section.

6. Case study

To validate the framework, we applied it to specify con-
sistency rules in the Reference Model for Open Distributed
Processing (RM-ODP) [14,13]. We specified consistency
rules between the RM-ODP enterprise, computational
and information viewpoint. In this paper, we provide an
overview of the case study for illustration purposes, focus-
ing on the enterprise and computational viewpoint. The
full case study is presented in [4].

6.1. Viewpoints, relations and consistency rules

Fig. 18 shows some of the concepts from the RM-ODP
enterprise and computational viewpoints (it does not relate
these concepts to modelling language elements as explained
in Fig. 2). It also shows how (the concepts of) these view-
points are related and how they are related to the basic
concepts. Finally, it shows a more complex consistency rule
at the bottom.

6.1.1. Enterprise viewpoint

The enterprise viewpoint can be used to specify a system
in its enterprise environment. It consists of enterprise
objects, which can represent either human actors or appli-
cations in the enterprise. The behaviour of the enterprise
can be specified using the role-based or the process-based
approach or a combination of both approaches. In the pro-
cess-based approach, we specify the enterprise behaviour
by means of business processes. In this paper, we focus
on the role-based approach, in which we specify enterprise
behaviour by means of several behaviours identified by
roles. An enterprise object can fulfil roles, representing that

i. Incoming Flows of the Integrated Action ii. Outgoing Flows of the Integrated Action

apply offer type1 offer type2 insure payoffer

apply

offer type2

insure

pay

offer

apply insure payoffer

apply

insure

pay

offer

offer type1 offer type2

offer type1

offer type2

offer type1

Fig. 17. Creation of integrated action offer.
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it has the behaviour identified by those roles. A behaviour
contains actions. Each action can be assigned to a single
behaviour, representing that it is performed only by (the
object that fulfils) that behaviour, or to multiple behav-
iours, representing that it is an interaction between (the
objects that fulfil) those behaviours.

Each enterprise object is mapped onto a basic entity and
each enterprise behaviour is mapped onto a basic behav-
iour. An enterprise action is mapped onto a basic action
if it is assigned to a single behaviour, it is mapped onto a
basic interaction if it is assigned to multiple behaviours.
The mapping keeps track of these relations between enter-
prise viewpoint and basic concepts.

6.1.2. Computational viewpoint

The computational viewpoints can be used to specify a
decomposition of the system. It consists of computational
objects that expose their functionality at interfaces. Inter-
faces of computational objects can be bound, representing
that the objects interact with each other through those

interfaces. An object has states. A state represents the con-
dition of an object at a given time that determines the pos-
sible sequences of actions that it can perform. If an object
performs an action that action causes the state of the object
to change. An action can be assigned to interfaces, repre-
senting that it is an interaction through those interfaces.

Each computational object is mapped onto a basic
entity. The states and state changes of an object constitute
a state machine that can be mapped onto a basic behav-
iour. A computational action is mapped onto a basic inter-
action if it is assigned to interfaces. The mapping keeps
track of the relation between computational objects and
basic entities and of the relation between computational
actions and basic actions or interactions.

6.1.3. Relations and consistency rules

Since the enterprise viewpoint represents the system in
its environment and the computational viewpoint repre-
sents a decomposition of the system, the relation between
the two is that: the computational viewpoint refines the
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Fig. 18. RM-ODP enterprise and computational viewpoints and their relations.
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part of the enterprise viewpoint that represents the system.
Hence, each enterprise object (that represents a system
part) and its behaviour can be decomposed into multiple
computational objects. Also, each enterprise action can
be refined by one or more computational actions. To be
able to specify and check these relations, they are part of
the design. The design maintains the relation between an
enterprise object and the computational objects in which
it is decomposed (if an enterprise object is refined by a sin-
gle computational object we relate it to a single computa-
tional object by the decomposition relation). The design
also maintains the relation between an enterprise action
and its final actions via a completion condition. We con-

sider all computational actions that are not related to an
enterprise action as inserted actions.

We can specify consistency rules that apply to the inter-
viewpoint relations, using the mapping onto the basic con-
cepts and the consistency rules that are defined on the basic
concepts in Section 5. The figure shows one example of
such a consistency rule This consistency rule checks if an
enterprise objects, that has only a single behaviour
(checked in the second line) and is refined by a single com-
putational behaviour (checked in the third line), is correctly
refined by that computational object (subsequent lines).
Refinement is checked by abstracting from computational
actions that are not refining enterprise actions, integrating
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Fig. 19. Examples of enterprise and computational views.
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computational actions that are refining enterprise actions
(as indicated by the associated completion conditions)
and then checking equivalence of the resulting computa-
tional behaviour with the enterprise behaviour. Section 5
explains this procedure for checking refinement in more
detail. This consistency rule is a strong simplification of
the consistency rule that actually checks consistency
between enterprise and computational behaviours [4],
because it is limited to the case in which the enterprise
object has a single behaviour and a single refining compu-
tational object. The rule is merely presented here as an
example.

6.2. Views and consistency

Fig. 19 shows simple examples of views that have been
constructed using the viewpoints from Fig. 18. More elab-
orate examples can be found in [4]. For ease of reading we
use UML as a notation. UML stereotypes used to define
how the UML model elements relate to enterprise and
computational concepts. Fig. 19(i) shows an enterprise
view that represents a single enterprise object fulfilling
the role of a seller with associated behaviour. Fig. 19(ii)
shows a computational object implementing a seller’s
behaviour. Fig. 19(iii) presents the relations between the
enterprise and the computational view, defining that the
computational object refines the enterprise object and
how computational actions refine the enterprise actions.
These models have to be developed by designers.

Subsequently, the framework is capable of transforming
the enterprise and computational view into ‘basic’ views,
like the computational view can be transformed into the
basic computational view from Fig. 19(iv). Then the frame-
work can validate the consistency rules, like the one defined
in Fig. 18.

7. Conclusions

This paper proposes a framework to help maintain con-
sistency in designs that incorporate viewpoints from differ-
ent stakeholders. The framework focuses on viewpoints
that address behavioural, structural and information con-
cerns. Our framework is based on the hypothesis that the
use of a common set of basic design concepts aids in defin-
ing relations between viewpoints and rules to check the
consistency between views. A common and basic set of
concepts represents properties that all stakeholders con-
sider relevant (common) and that are elementary (basic),
as opposed to composite properties that can be represented
by a composition of elementary properties.

In a case study, we show that our framework and our set
of basic concepts can be applied to check consistency
between views. We show this by applying the framework
to define consistency rules between the RM-ODP enter-
prise, computational and information viewpoints.

Currently, we use the basic concepts to define consis-
tency rules that apply to behavioural aspects. Hence, one

could argue that using a behavioural formalism instead,
is just as effective and less cumbersome. However, it can
easily be seen that our approach can be expanded to inte-
grate formalisms and re-usable consistency rules for other
aspects as well. The benefit of using the basic concepts is
that they relate the various formalisms and hide them from
the designer, such that the designer does not have to know
the details of the formalisms. Hence, a direction for future
work is to define consistency rules with respect to other
aspects than behaviour.

The framework can only aid in specifying consistency
rules on concepts that can be mapped onto the basic con-
cepts. For that reason it is important to evaluate the basic
concepts with respect to their ability to represent existing
viewpoints and adapt them to accommodate those
viewpoints.

In Section 5.3 we made the correctness of our operations
to check refinement intuitively clear. We also tested them
by applying them to typical cases of refinement. For some
operations a formal proof of its correctness would
strengthen our case. For example, we could produce a for-
mal proof that the behaviour of two interacting behaviours
is equivalent (bi-similar) to the behaviour of their composi-
tion. We could also produce a formal proof that a Petri net
after pre-processing is equivalent to the Petri net before
pre-processing. These proofs remain for future work.
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