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Abstract

This paper presents a method to estimate the H2 optimal and a robust feedback controller by means of Subspace Model

Identification using the internal model control (IMC) approach. Using IMC an equivalent feed forward control problem is obtained,

which is solved by the Causal Wiener filter for the H2 optimal controller. The robust variant, called the Cautious Wiener filter,

optimizes the average performance w.r.t. probabilistic model errors. The identification of the Causal and Cautious Wiener filters are

control-relevant. The method is illustrated by experiments on a 4-inputs 4-outputs vibrating plate with additional mass variation.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Practical active vibration control (AVC) systems,
should yield high suppression of disturbing vibrations,
while still being robust against system and environ-
mental variations. For example, as considered in this
paper, a feedback controller counteracting the disturb-
ing vibrations in a plate should not yield significant
lower performance or even instability of the closed loop,
if the mass load on the plate varies.
LQG=H2 control (see e.g. Anderson & Moore, 1989)

minimizes the mean square error (MSE) of the residual
disturbances, but the model is assumed to be perfect,
which leads in general to very poor stability robustness.
Gradient-type adaptive algorithms, such as Filtered-X
LMS (FxLMS) and Filtered-U LMS (FuLMS) have
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better robustness properties, but may lead to slow
convergence and suboptimal performance in broadband
MIMO applications (see e.g. Elliott, 2001).
In robust control literature, much attention has been

paid to minimizing the HN norm, in which model errors
are taken into account explicitly (see e.g. Zhou, Doyle,
& Glover, 1996). Though, stability robustness can be
increased significantly, too often the performance is
poor when optimizing for the worst case condition.
Better performance is obtained by mixed H2=HN

control design, where the H2 performance measure is
optimized subject to HN constraints to guarantee user
determined stability/performance robustness margins
(see e.g. Bernstein & Haddad, 1989). More recently, a
minimax LQG method was proposed by Petersen,
Ugrinovskii, and Savkin (2000), which minimizes the
MSE for the worst case model error (contained in a
stochastic model uncertainty description). For more on
robust H2 control, see, e.g. Paganini (1999) and the
references therein.
However, in all these robust design methods, the

likelihood of the model errors is not taken into account.
Such a design philosophy may be useful in critical
applications where stability and a certain minimal (often
low) level of performance should be guaranteed under
all, including extremely rare, circumstances, e.g. in
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flight-by-wire control in aircrafts or biomedical control
applications. Most active control problems are not that
critical to pay a significant price on performance, and
optimal performance on the average of all kind of model
errors is desired. An additional reason is that most
model identification methods give estimates of the
likelihood of model errors, rather than hard bounds
(see the discussion by Goodwin, Gevers, & Ninnes,
1992; Ljung, 1999). In this line Sternad and Ahl!en
(1993) proposed a probabilistic robust filtering/feed
forward control method, which minimizes the MSE
averaged over the (estimated) stochastic distribution of
the model errors. The resulting robust filter is called a
Cautious Wiener (CW) filter.
In this paper, the CW design philosophy is applied to

feedback control systems via the well-known Internal
Model Control (IMC) approach. It is also shown, via a
small-gain theorem, that stability robustness is in-
creased. Furthermore, the CW design problem is
reformulated in an identification problem, which is
approximately solved by e.g. Subspace Model Identifi-
cation (SMI, Verhaegen, 1994) to obtain a state-space
realization of the controller. This is done, because in
AVC very high orders (here from 40 to 80) for the plant
and the controller are used due to the large number of
dominant modes. In such cases, the polynomial
approach of Sternad and Ahl!en (1993) (and .Orn, 1996
for MIMO case) may lead to inaccurate and badly
conditioned control design equations, especially for
MIMO systems (see e.g. Gevers & Li, 1993). A second
important advantage, is that the controller design
problem is reformulated as a control-relevant identifica-

tion problem. This means that the controller is estimated
by directly minimizing the control cost function. The
certainty equivalence principle is not valid in case of
model uncertainty, which will reduce performance.
Contrary, control-relevant identification takes model
uncertainty into account in the optimal controller
approximation.
The paper is organized as follows. Section 2

introduces notation and formulates the control problem.
Sections 3 and 4 describe the estimation of the nominal
and robust controller, respectively. Section 5 presents
the validation of the methods on a vibrating plate
experimental setup under two operating conditions: with
and without additional mass mounted on the plate.
C

y(n)
S

+

+

u(n)

M
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K

Fig. 1. Block scheme of the standard feedback disturbance rejection

configuration.
2. Notation and problem formulation

The notation Pðq�1Þ indicates a discrete time LTI
transfer function matrix and q�1 is the unit shift back
operator. Usually Pðq�1Þ is abbreviated with P: The
conjugate transpose of P is indicated by P�ðq�1Þ ¼
PTðqÞ with q on the unit-circle in the complex-plane,
jqj ¼ 1: For a state-space realization ðAp;Bp;Cp;DpÞ of
P; the transfer function matrix is Pðq�1Þ ¼ Dp þ
q�1CpðIn � q�1ApÞ

�1Bp with n the order of P: RM�N
p is

the set of all rational proper M � N transfer function
matrices. RHM�N

N
is the set of all asymptotically stable

rational proper M � N transfer function matrices. So
PARHM�N

N
implies that all eigenvalues of Ap are in the

open unit disc. The causality and the anti-causality
operators are denoted as ½:	þ and ½:	�; respectively, see
e.g. Elliott (2001). Note, that for every transfer function
matrix P it holds that P ¼ ½P	þ þ ½P	� with ½P	þ causal
and stable and ½P	� strictly anti-causal (without direct
feed through), and anti-stable. For example, let PARH

be written as a Laurent series

P ¼
XN

i¼�N

Piq
�i;

then

½P	� ¼
X�1

i¼�N

Piq
�i ARH=RHN;

½P	þ ¼
XN
i¼0

Piq
�i ARHN:

The trace operator, which sums up the diagonal
elements of a matrix, is indicated by trð:Þ and stochastic
expection by E½:	: Also the shorthand notations ð:Þ� and
ð:ÞT are used in multiplication with the same, but
complex conjugate transposed and transposed factor,
respectively.
Consider the standard block scheme of the feedback

active control problem depicted in Fig. 1. The signal
sðnÞARM is the signal generated by the disturbance
source. Assume E½sðnÞ	 ¼ 0 and E½sðnÞsTðmÞ	 ¼ IMdðm �
nÞ with dð0Þ :¼ 1 and dðnÞ :¼ 0 for na0; hence s is a
white-noise stochastic process. The primary path and
the secondary path are denoted by PARHM�M

N
and

SARHM�K
N

; respectively. The primary disturbance
signal, denoted by dðnÞARM ; is the disturbance signal
which should be counteracted by the secondary signal
yðnÞARM : The remaining disturbance is represented by
the residual signal eðnÞARM ; which is measured. The
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control signal uðnÞARK is calculated by the K � M

controller C (not necessarily stable) using the measured
residual signal. Hence, the plant is given by

eðnÞ :¼ PsðnÞ þ SuðnÞ ð1Þ

and the control law by

uðnÞ :¼ CeðnÞ: ð2Þ

The H2 nominal controller design problem considered
by e.g. Anderson and Moore (1989) is to minimize the
cost function

JðCÞ :¼ trE½eðnÞeTðnÞ	 ð3Þ

subject to the constraint that C internally stabilizes the
closed loop in Fig. 1.
The closed-loop in Fig. 1 can be stabilized by means

of IMC, see Fig. 2. All internally stabilizing controllers
are given by

CðW;SÞ ¼ ðIK þWSÞ�1W with WARHM�K
N

; ð4Þ

which is the Youla parameterization of the controller for
stable S: The stable filter W is called the Youla
parameter, and we will determine this parameter for
H2 and for robust control. Note, that the control
problem is reformulated as a filtering problem, which
should be taken into account in case the model of S is
not perfect, see Section 4.
The H2 optimal controller, which minimizes Eq. (3)

and stabilizes the closed-loop is given by Eq. (4) withW
given by the Causal Wiener filter given by the following
theorem.

Theorem 1 (Causal Wiener). Let S ¼ SiSoARHM�K
N

with SiARHM�L
N

and SoARHL�K
N

with LpminðK ;MÞ
are the inner- and the outer-factor of S; respectively,
which are such that S ¼ SiSo and S�i Si ¼ IL and S�o So ¼
S�S; So has a stable right-inverse SwoARHK�L

N
: Let

PoARHM�M
N

be a minimum-phase spectral factor of P;
which is such that PoP

�
o ¼ PP� and P�1

o ARHM�M
N

: Then

the closed-loop in Fig. 1 is internally stabilized and Eq. (3)
is minimized by C given by Eq. (4) with W ¼WH2

given

by

WH2
¼ �Swo½S

�
i Po	þP

�1
o ; ð5Þ

which is called the Causal Wiener filter.
_
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Fig. 2. Block scheme of the IMC controller, with internal model #S:
Proof. For the proof of this theorem, see Vidyasagar
(1985, Section 6.3). &

Note, if S has a stable right-inverse Sw; then Si ¼ IM
andWH2

reduces toWH2
¼ �Sw: However, in practice S

does not have a stable right-inverse due to non-
minimum phase zeros and delays from e.g. discretiza-
tion, reconstruction and anti-aliasing filters.
3. Estimation of the nominal controller

This section describes three different methods to
estimate the optimal filter given by (5), which yields an
estimate of the optimal IMC controller given by (4). The
first is the standard filter design fully based on the
models of S and Po and the principle of certainty
equivalence.
The second method estimates the optimal filter by a

prediction error model (PEM) identification method
with output-error (OE) model structure, abbreviated as
PEM-OE. The advantage of this approach is, that no
spectral factor of the disturbance has to be estimated.
Furthermore, if S is perfectly modeled, the cost function
to be minimized in the identification problem equals the
cost function to be minimized during control, and
therefore called control-relevant.

Definition 2. An identification problem is said to be
control-relevant if the cost function to be minimized for
the identification equals the cost function to be
minimized for control.

The third method makes use of Subspace Model
Identification which has some computational
advantages indicated below. Another identifica-
tion problem has to be formulated, which needs an
estimate of the spectral factor Po but is still control-
relevant.

3.1. Model based design

The secondary path S can be identified using a batch
of measured data fuðnÞ; yðnÞgN

n¼1 measured by the error
sensor(s) under the condition that sðnÞ ¼ 0 (this assump-
tion can be weakened to the assumption that the process
sðnÞ is independent of the process uðnÞ). To obtain a
state-space model for #S time-domain (Verhaegen, 1994)
or frequency-domain (McKelvey, Fleming, & Mohei-
mani, 2002) subspace identification can be used. The
obtained estimate is denoted by #S and should be stable
#SARHM�K

N
: The minimum phase spectral factor Po can

be estimated using a batch of measured data fdðnÞgN
n¼1

measured by the error sensor(s) under the condition that
uðnÞ ¼ 0: A state-space realization of Po can be
estimated using stochastic subspace identification
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methods, see e.g. Mari, Stoica, and McKelvey (2000).
The obtained estimate is denoted by #Po and should be
such that #Po; #P�1

o ARHM�M
N

; which can always be
realized for non-singular spectra (i.e. PoP

�
o > 0; for

�ppoop). Note, that S and Po can also be identified
together by identification of a deterministic-stochastic
model of ½S Po	: However, identification of S and Po
separately can be done with much higher accuracy
because in the identification of S there is no disturbance
from sðnÞ and vice verse. This conclusion was supported
by experiments.
Using #S and #Po an estimate of the H2 optimal filter

can be made using Eq. (5)

#WH2
¼ � #Swo½ #S

�
i
#Po	þ #P�1

o : ð6Þ

Due to model errors Cð #WH2
; #SÞ may not yield the

optimal performance and may even destabilize the
closed loop due to model errors in #S: If we assume #S

is perfectly modeled (robustness w.r.t. uncertainty in #S

will be discussed in Section 4), then the closed loop is
guaranteed to be stable because the controller is
contained in the set of all stabilizing controllers given
by (4). However, still optimal performance is not
obtained due to model errors in #Po:

3.2. Filter estimation by prediction error identification

The factor ½S�i Po	þP
�1
o in the Causal Wiener filter

can be estimated by PEM-OE and restricting the
model to be stable (Ljung, 1999). This is clear from
noting, that

½S�i Po	þP
�1
o ¼ arg min

XARHL�M
N

1

2p
tr

Z p

�p
ðS�i Po � XPoÞ

� ðS�i Po � XPoÞ
� do

¼ arg min
XARHL�M

N

Jid ðXÞ

with Jid ¼ lim
N-N

1

N

XN

n¼1

ðS�i dðnÞ � XdðnÞÞð�ÞT ð7Þ

which can be inferred from Theorem 1 by setting
So ¼ IL (note that the power-spectral density of dðnÞ is
given by UdðoÞ ¼ PoP

�
o ). Hence, by restricting the

model to be stable, the factor ½S�i Po	þP
�1
o is estimated

by PEM-OE using the input/output data

fdðnÞ;S�i dðnÞg
N
n¼1; ð8Þ

where the sequence fS�i dðnÞg
N
n¼1 is generated by filtering

backwards in time from n ¼ N to 1 because S�i is strictly
unstable.
The following lemma shows that the identification of

the factor X ¼ ½S�i Po	þP
�1
o is control-relevant, because

in the limit N-N (under reasonable conditions see
Ljung, 1999) the cost function to be minimized in the
identification equals (7) the cost function to be
minimized during control (3).
Lemma 3. Let SARHM�K
N

be known, let XARHL�M
N

and

express C as given by Eq. (4) with WARHK�M
N

equal to

WðXÞ ¼ �SwoX:

Then minimizing Eq. (3) over all XARHL�M
N

is equivalent

to minimizing Eq. (7) over all XARHL�M
N

:

Proof. The proof is given in Appendix A.1. &

Let us discuss the advantage of estimating the factor

½S�i Po	þP
�1
o by PEM-OE over explicitly calculating

½S�i #Po	þ #P�1
o as in Section 3.1. Often, it is difficult to

estimate #Po accurately, especially its zeros. The model-

errors in #Po will propagate in ½S�i #Po	þ #P�1
o and leads to

degradation of the performance. Also the estimate of

½S�i Po	þP
�1
o obtained by the identification approach of

this section is contaminated with model errors and thus
yields suboptimal performance. However, here

½S�i Po	þP
�1
o is estimated directly by minimizing the

control cost function, and will usually lead to better
performance compared with the indirectly, model-based
approach.
The PEM-OE identification problem can be solved

approximately by the pem tool implemented in the
Matlab System Identification Toolbox (Ljung, 2002).
In the MIMO case, a state-space model of ½S�i Po	þP

�1
o is

estimated by means of an iterative search, restricted to
the domain of stable models (choose Focus ¼
‘Simulation’) and initialized by the solution of a
subspace identification method (see Verhaegen, 1994).
To save computation time the calculation of the
covariance of the parameter vector and the disturbance
model were switched off. However, using this approach
with the System Identification Toolbox the calculations
are still very time consuming and no good accuracy
could be obtained. For example, for a 4� 4 system
as considered in Section 5 with N ¼ 4000 samples
and of order 20; the calculation time was 25 min on a
Pentium 4, 1500 MHz and the obtained MSE was
only �7:3 dB (related to the power of the measured
outputs). Note that no canonical forms of the state-
space matrices should be constrained to prevent
numerical problems (choose SSParam ¼ ‘Free’). By
increasing the order, the accuracy could not be
improved. In comparison, the calculation time with the
method of the next subsection was only 2 min and the
model was significantly more accurate, the obtained
MSE was �10 dB:

3.3. Filter estimation by subspace model identification

An attractive alternative for computationally complex
multi variable system identification problems is to apply
the subspace identification methods, as e.g. implemented
in the SLICOT library (SLICOT, 2002). These methods
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can be used only for causal/stable systems, but with
the method of Verhaegen (1996) the tools can be
adjusted easily to identify mixed causal/anti-causal
systems.
However, if the input/output data (8) is used, the anti-

causal system S�i would be modeled instead of
½S�i Po	þP

�1
o : In case Po is known, a state-space realiza-

tion of the factor ½S�i Po	þ can be estimated by the mixed
causal/anti-causal subspace model identification method
of Verhaegen (1996) using input/output data
fP�1

o dðnÞ;S
�
i dðnÞg

N
n¼1: In case only a model

#Po of Po is
known ½S�i Po	þ is estimated using input/output data
f #P�1

o dðnÞ;S
�
i dðnÞg

N
n¼1 and W is given by

#WH2;id ¼ �Swo
d½S�i Po	½S�i Po	þ #P�1

o ð9Þ

with d½S�i Po	½S�i Po	þ denotes the estimate of ½S
�
i Po	þ: Note, that

even in case of model errors in #Po; which result in non-

white input sequence f #P�1
o dðnÞg

N
n¼1; the estimate

d½S�i Po	½S�i Po	þ
is determined such thatd½S�i Po	½S�i Po	þð #P

�1
o dðnÞÞES

�
i dðnÞ for n ¼ 1;y;N:

Again, it can be shown that the identification problem is
control-relevant. The proof is similar to the proof of
Lemma 3 and therefore not included here. This
advantage over the indirectly model-based approach of
Section 3.1 will be illustrated in the experiments of
Section 5.
By explicitly evaluating the multiplications of the

factors Swo;
d½S�i Po	½S�i Po	þ and #P�1

o in Eq. (9), a very high order

filter may be obtained (the sum of the orders of all
factors). To circumvent this high order, an identification
problem can be formulated to implicitly evaluate the
multiplications in Eq. (9) by estimating a reduced order
controller as explained by Fraanje, Verhaegen, and
Doelman (2001).
4. Robust controller design

4.1. Derivation of the robust controller expression

In designing the nominal filter, it is assumed that the
secondary path S was perfectly modeled. However, this
assumption is not valid in practical Active Control
systems. Therefore, this section shows how to estimate a
robust filter WCW (Cautious Wiener filter), where WCW

will replace W in Fig. 2, such that the controller
CðWCW; #SÞ yields robust performance and robust
stability w.r.t. secondary path model errors DS given as

DS :¼ S� #S:

In the Cautious Wiener design philosophy of Sternad
and Ahl!en (1993) and .Orn (1996) the uncertainty on the
secondary path model DS is modeled as a stochastic
variable (see also Goodwin, Gevers, & Ninnes, 1992)
independent of sðnÞ; P and #S and such that

%E½DSðe�joÞ	 ¼ 0; �ppoop; ð10Þ

%E½DSðe�joÞDSðe�joÞ�	 ¼ UDSðe�joÞ; �ppoop; ð11Þ

UDSðe�joÞ > 0; � ppoop is given and %E½:	 the expecta-
tion operator over DS: The only difference with (Sternad
and Ahl!en, 1993; Goodwin et al., 1992) is that we will
assume a state-space model estimate of a stable spectral
factor of UDS is available rather than the covariance
matrix of polynomial filter coefficients. During control
design, it can be assumed that the disturbance signal dðnÞ
can be measured (set uðnÞ ¼ 0), such that the following
feed forward control problem is obtained. Let the plant
equations be given by

eðnÞ ¼ PsðnÞ þ ð #Sþ DSÞuðnÞ; ð12Þ

dðnÞ ¼ PsðnÞ ð13Þ

and the control-law by

uðnÞ ¼WCWdðnÞ: ð14Þ

Then the robust filter problem is to design
WCWARHK�M

N
such that the robust cost function

Jrob ¼ tr %EE½eðnÞeTðnÞ	 ð15Þ

is minimized. This problem is solved in the following
theorem.

Theorem 4 (Cautious Wiener filter). Let the plant

equations be given by Eqs. (12) and (13) with DS a

stochastic variable satisfying Eqs. (10) and (11). Let the

spectral factor fDSDSARHM�M
N

of fDSDS�fDSDS ¼ UDS be given,

define the following augmented primary and secondary

paths

Paugo :¼
Po

0M�M

" #
; Saug :¼

#SfDSDS
" #

and let S
aug

i Saugo be an inner–outer factorization of Saug:
Then the control-law Eq. (14) minimizes Eq. (15) if WCW

is given by

WCW ¼ �Saugwo ½Saug�i Paugo 	þP
�1
o ; ð16Þ

which is called the Cautious Wiener filter.

Proof. For the proof see Appendix A.2. &

From the proof (Eq. (A.1)), it is directly inferred that
by minimizing the robust cost function (15) the gain of
the filter WCW is decreased in the frequency region
where the uncertainty in the secondary path is large (i.e.
UDS), hence the influence of the uncertainty on eðnÞ will
be reduced. The robust controller is determined by a
frequency-dependent regularized optimization problem.
Furthermore, Eq. (16) can be reduced to

WCW ¼ �Saugwo ½Saug�i1 Po	þP
�1
o
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with

S
aug

i Saugo ¼
S
aug

i1

S
aug

i2

" #
; Saugo ¼

#SfDSDS
" #

:

Note that S
aug�
i1 S

aug

i1 þ Saug�i2 S
aug

i2 ¼ IL and Saug�o Saugo ¼
#S� #Sþ UDS which shows how Si and So are adjusted to
compensate for the model errors modeled by UDS:
The next subsection describes how to estimate this

robust filter by means of system identification.

4.2. Estimation of the robust filter

Using the models #S and cDSDSARHM�M
N

which modelsfDSDS such that cDSDS�cDSDSEfDSDS�fDSDS we can define #Saug and its
inner–outer factorization as

#Saug :¼
#ScDSDS

" #
¼

#S
aug

i1

#S
aug

i2

" #
#Saugo :

Then the Cautious Wiener filter WCW can be estimated
similar to Eq. (6) by

#WCWð #Saug; #PoÞ ¼ � #Saugwo ½ #Saug�i1
#Po	þ #P�1

o :

However, like in the case of the H2 optimal filter, the
factor ½Saug�i1 Po	þ can also be estimated by system
identification. By replacing Si and Po in the design of
the nominal filter by #S

aug

i1 and #Po; respectively, it is
inferred that ½Saug�i1 Po	þ can be identified using input/
output data

f #P�1
o dðnÞ; #S

aug�
i1 dðnÞgN

n¼1:

The obtained estimate using #Po and #S
aug

i1 and NoN is

denoted by
d½Saug�i1 Po	½Saug�i1 Po	þ: The estimate of the Cautious

Wiener filter obtained by using
d½Saug�i1 Po	½Saug�i1 Po	þ is given by

#WCW;id ¼ � #Saugwo
d½Saug�i1 Po	½Saug�i1 Po	þ

#P�1
o : ð17Þ

It can be shown, that this identification problem again is
a control-relevant identification problem.
Finally, as in Section 3.3, an identification problem

can be formulated to implicitly evaluate the multi-
plications in Eq. (17) to estimate a reduced order filter
by system identification.

4.3. Estimation of the model error model

The secondary path model #S and the spectral factorcDSDS which models the uncertainty in the secondary path
are estimated by means of a series of p experiments. In
each experiment the (environmental) conditions may be
different, e.g. in the experiments of Section 5 p is set to
p ¼ 2 where the experiments are evaluated with and
without an additional mass on a vibrating plate. In each
experiment the secondary path is modeled, which yields

a series of secondary path models f #Skgp
k¼1: Then,

#S and
cDSDS are determined such that
#SðejoÞ ¼

1

p

Xp

k¼1

#SkðejoÞ; ppoop;

cDSDSðejoÞ�cDSDSðejoÞ
¼
1

p

Xp

k¼1

ð #SkðejoÞ � #SðejoÞÞ�ð #SkðejoÞ � #SðejoÞÞ;

� ppoop:

To circumvent very high order models for #S and a high

order spectral factorization problem for cDSDS; #S and cDSDS are
approximated by solving identification problems. #S of
restricted order can be estimated using input/output data

fuðnÞ; yðnÞgN
n¼1 with uðnÞARK zero mean white noise and

yðnÞ ¼
1

p

Xp

k¼1

#SkuðnÞ:

The restricted order spectral factor cDSDS can be deter-
mined by estimating the spectrum of

nðnÞ ¼
1ffiffiffi

p
p Xp

k¼1

ð #Sk � #SÞfkðnÞ

with fkðnÞ; k ¼ 1;y; p such that E½fkðnÞ	 ¼ 0 and

E½fkðnÞfkTðmÞ	 ¼ IKdðm � nÞ and fk independent of fl

for kal:

4.4. Stability robustness with respect to secondary path

model errors

As is clear from Fig. 2, the closed-loop gain is given
by

Lðe�joÞ ¼Wðe�joÞDSðe�joÞ:

To guarantee stability in case DSa0; a small gain
argument can be inferred. According to the small gain
Theorem (Zhou, Doyle, & Glover, 1996) stability is
guaranteed ifWARHK�M

N
; DSARHM�K

N
and the follow-

ing inequality is satisfied:

jjWðe�joÞjj
N
o

1

jjDSðe�joÞjj
N

; �ppoop: ð18Þ

The assumption WARHK�M
N

is satisfied because all
factors in Eq. (16) are stable. Furthermore DSARHM�K

N

is satisfied in case S; #SARHM�K
N

which is usually the
case in Active Control.
In the derivation of the CW filter, it is inferred that

the gain of W is reduced in the frequency range wherecDSDS (and thus on the average DS) is large to obtain
robust performance. From (18) it is inferred that this is
also needed for robust stability, i.e. for o where
jjDSðejoÞjj

N
is large jjWðejoÞjj

N
should be small. How-

ever, the CW filter does not guarantee that Eq. (18)
is satisfied, because (15) is not minimized subject to
this constraint. To improve stability robustness an
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Fig. 3. Algorithm to estimate the robust controller for the plant in

Fig. 2.

Additional mass

actuator

sensorvibrating plate

loudspeaker

Fig. 4. Schematic picture of the vibrating plate setup of TNO TPD.
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alternative cost function is introduced

J ¼ tr E½ðdðnÞ þ #SWdðnÞÞðdðnÞ þ #SWdðnÞÞT	

þ r tr E½ðcDSDSWdðnÞÞðcDSDSWdðnÞÞT	 ð19Þ

with r > 0 a scalar tuning variable. The cost function
(15) equals (19) for r ¼ 1: By increasing the value of r
more weight is put on the second term and thus the gain
of W will be more reduced. Note, that here the
frequency dependency of DS is explicitly taken into
account, whereas in HN-theory the frequency depen-
dency of model errors is implicitly taken into account by
means of proper weighting functions. Furthermore, the
introduction of the tuning parameter r is similar to the
introduction of a user chosen N-norm bound (often
indicated by g) on the uncertainty; both parameters can
be increased to improve stability robustness.
Fig. 3 summarizes the algorithm to estimate the

robust controller described in this section.
5. Experimental validation on the vibrating plate

5.1. Description of the experimental setup

The nominal and the robust design method has been
applied on a vibrating plate experimental setup, supplied
by TNO Institute of Applied Physics, see Fig. 4. A
loudspeaker is placed beneath the plate and generates a
broadband disturbance sound, which propagates
through the vibrating plate. The vibration of the plate
should be counteracted by piezoelectric actuators
mounted on the lower side of the plate. The residual
vibration of the plate is measured by piezoelectric
sensors mounted at the upper side of the plate,
collocated with the actuators. In the experiments 4
sensors and 4 actuators are used as indicated in Fig. 4.
The sampling frequency was fs ¼ 2000 Hz: The vibrat-
ing plate is controlled with the nominal and the robust
controller under the two different operating conditions:
without and with additional mass, of E6% of the plate
mass, mounted on the vibrating plate at the place
between the 4 sensors.

5.2. Identification of the average secondary path model

and its variance

Under both conditions a state-space model #Si (i ¼ 1:
without mass, i ¼ 2: with mass) of the secondary path
was estimated using the PO-MOESP subspace model
identification method (Verhaegen, 1994) using band
limited white noise as the excitation signal. Here, a short
description of the identification procedure is given, for a
more detailed description of the procedure to identify
models for active control applications, see Verdult and
Fraanje (2002) or McKelvey, Fleming, & Moheimani
(2002). Two input/output data sequences each of 14 000
samples (i.e. 7 s) were recorded, one for identification
and the other for validation of the model. Both 4-inputs
4-outputs models #S1 and #S2 are of order 80 and
accurately model the dynamics of the secondary path
without and with additional mass mounted on the plate,
respectively. A measure of the accuracy of the model is
the Variance Accounted For (VAF), which is defined as

VAFðymeas; #SuÞ :¼ 1�
varðymeas � #SuÞ
varðymeasÞ

 !
100%;

where the calculations are performed per channel and
with varð:Þ the variance operator, ymeas the measured
output and #Su the simulated output using the estimated
model #S and the same input u applied during measure-
ment of ymeas: Table 1 gives the VAF values obtained
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Table 1

VAF values ð%Þ obtained by #Si; i ¼ 1; 2 and #S on validation data for

the conditions with and without additional mass

Output 1 Output 2 Output 3 Output 4

VAFðyno mass; #S1uÞ: 99.76 99.79 99.73 99.77

VAFðywith mass; #S1uÞ: 81.77 87.58 82.88 88.28

VAFðyno mass; #S2uÞ: 83.10 87.68 84.74 88.09

VAFðywith mass; #S2uÞ: 99.72 99.78 99.73 99.77

VAFðyno mass; #SuÞ: 95.39 96.66 95.76 96.71

VAFðywith mass; #SuÞ: 95.03 96.63 95.24 96.76
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Fig. 5. Maximal singular value of estimated model with and without

mass (a) and their difference (b).
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using #Si; i ¼ 1; 2 and #SEð #S1 þ #S2Þ=2 on validation data
measured under both conditions with, ywith mass; and
without additional mass, yno mass: It can be concluded,
that the model obtained under no additional mass
condition is not accurate anymore under the additional
mass condition and vice verse. The average model #S

models both conditions much better, but still has
significant model errors for which the controller should
be robust.
Fig. 5(a) shows the largest singular value of
#Siðe�j2pf =fs Þ; i ¼ 1; 2; which shows that the first and the
fourth resonance frequencies significantly change in case
an additional mass is mounted. The average secondary
path model #S and the model error model cDSDS are
estimated as described in Section 4.3. The average model
#S has order 80, and cDSDS has order 50. Fig. 5(b) shows the
largest singular value jjcDSDSðe�j2pf =fs Þjj

N
: It is clearly seen,

that the model error is depending on the frequency.

5.3. Estimation of the average spectral factor of the

disturbance

The spectral factor Po of the disturbance signal
changes when an additional mass is mounted on the
vibrating plate. Therefore, like in modeling the second-
ary path, an average model of the spectral factor Po has
been estimated by averaging the measured disturbances
under both conditions. The estimated spectral factor
model #Po has order 40. The filter #P�1

o is an approxima-
tion of the whitening filter for the disturbance signal.
Fig. 6 shows the spectra of the disturbance signal of
output 1 (dashed) and the spectrum obtained by using
the whitening filter #P�1

o (solid) for the average dis-
turbance, the measured disturbance without additional
mass and the measured disturbance with additional
mass respectively.
From these figures it can be concluded that #P�1

o

indeed approximately whitens the disturbance signal
under both conditions. However at 300 and 600 Hz
there are still resonances in the whitened disturbance
signal, which are due to the fact that the spectrum of the
disturbance signal differs under both conditions. At high
frequencies, above E700 Hz; the spectrum of the
disturbance signal falls down.

5.4. Nominal and robust controller estimation and

validation

5.4.1. Nominal controller estimation and validation

Using #Po and #S; the Causal Wiener filter Eq. (5) can
be calculated explicitly. After model reduction, a 120th
order filter has been obtained. The performance measure
is the average performance over the whole frequency
band in dB, which is defined as

�1010 log
1

M

XM
k¼1

1

2p

Z p

�p

UekðoÞ
UdkðoÞ

do ð20Þ

with Udk and Uek the power spectra of the kth
disturbance signal and the kth residual signal, respec-
tively. The average performance over the whole fre-
quency band for each output separately and based on
simulation (hence there is no measurement noise and the
secondary path is perfectly modeled) using the average
disturbance signal is given in Table 2.
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(b) Disturbance without additional mass and whitened.

(c)  Disturbance with additional mass and whitened.

Fig. 6. Spectrum of disturbance at output 1 under various conditions (dashed) and pre-whitened (solid).

Table 2

Average reduction in dBs of the H2 optimal controller, the identified

H2 optimal controller and the identified reduced order filter obtained

by simulation

Output 1 Output 2 Output 3 Output 4

H2 optimal ðorder ¼ 120Þ: 6.9 8.1 6.5 7.6

Identified H2 optimal

ðorder ¼ 160Þ:
7.1 8.7 7.0 8.1

Identified (reduced order,

order ¼ 80):
7.1 8.6 6.8 7.7
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The H2 optimal controller can also be estimated using
the identification approach described in Section 3.3. The

factor ½S�i Po	þ was estimated by causal-/anti-causal

subspace identification, using 14 000 samples and 100
block rows, the estimate of the order is 56. Because 16

anti-causal poles of S�i Po which are due to S�i are

rejected, the order of ½ dS�i PoS�i Po	þ is 40. The controller

obtained by explicitly evaluating the multiplications in
Eq. (5) is 160. The performance of this controller is
given in the second row in Table 2. A reduced order
filter of order 80 could be estimated by formulating the
controller order reduction problem as an identification
problem (see Section 3.3). Its simulated performance is
given by the third row in Table 2.
From Table 2. it can be concluded that the

performance of the identified H2 optimal controller
(based on simulation) is better than the performance of
the explicitly calculated H2 optimal controller. This can
be explained by the fact that in the identification
approach a control-relevant identification problem is
solved which compensates for model errors in #Po:
Furthermore, the order of the identified controller could
be reduced by about a factor 2 (from 160 to 80), without
(significant) performance loss.
By applying the 80th (reduced) order identified

controller into the real-time setup to control the
vibrating plate, the closed-loop became unstable under
both conditions: without and with the additional mass
mounted on the plate, which is due to the relatively large
model error in the average model #S for both conditions.
This motivates the use of a robust controller.
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5.4.2. Robust controller estimation and validation

The robust controller was determined in two different
ways. One way is to minimize the cost function Eq. (19)
with setting cDSDS ¼ I; which is equivalent with standard
control weighting, see e.g. Elliott (2001). The other way
is minimizing (19), with cDSDS determined in Section 5.2. In
both methods the value of r was varied to increase (and
decrease) robustness.
Like in the design of the nominal controller, the order

of the robust controllers was reduced to 80 by means of
solving an identification problem. Fig. 7(a) shows the
measured average reduction in dBs over all 4 outputs
versus r obtained by the controller with cDSDS ¼ I; i.e.
frequency independent regularization, for the case
without (o’s) and with (+’s) additional mass. For
rX0:13 it is observed that the closed loop was stabilized
by the controller. Fig. 7(b) shows the measured average
reduction in dBs over all 4 outputs versus r obtained by
the controller with cDSDS estimated in Section 5.2, i.e.
frequency-dependent regularization, also for the case
without (o’s) and with (+’s) additional mass. In this
figure, r is scaled with a factor 33 for visualization
reasons. The maximum performance is obtained for
33r ¼ 5;y; 10 for the cases with and without additional
mass. Note, that for maximum performance, the
weighting 33r > 1 to increase stability robustness.
Comparing both figures, it is concluded that using cDSDS

estimated in Section 5.2 yields better performance. This
is also what is expected, because the reduction of the
control effort is emphasized only at the critical
frequencies (i.e. where the uncertainty is large).
6. Conclusions

The H2 optimal controller for feedback systems was
estimated from signals that can easily be recorded. The
estimation was carried out using the IMC principle and
the solution of a control-relevant identification problem.
Using the probabilistic robust feed forward controller/
filter design method, a robust controller has been
identified. The model error (of the secondary path
model) is assumed to be a zero-mean stochastic variable,
of which the covariance function is known. By
minimizing the mean-squared error averaged over the
distribution of the model uncertainty, a robust filter has
been designed which yields increased robust perfor-
mance. Because the gain of this filter has been reduced in
the frequency region where the model uncertainty is
large, the loop gain has been reduced which yields
increased stability robustness.
The robust controller design method was illustrated

on a MIMO vibrating plate experimental setup without
and with additional mass. The nominal controller did
not stabilize the closed loop. By introducing sufficient
control weighting the closed-loop was stabilized. It has
also been shown that weighting the control signal with
the probabilistic model error model could lead to a less
conservative controller and hence better performance
could be obtained.
Future research will be directed to the problem to

iteratively update the controller and secondary path
model with its model error with the final goal to obtain
optimal performance for the specific conditions of the
plant.
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Appendix A. Proofs

A.1. Proof of Lemma 3

The proof follows directly by noting that

JðCðWðXÞ;SÞÞ

¼
1

2p
tr

Z p

�p
ðPo þ SWðXÞPoÞðPo þ SWðXÞPoÞ

� do

¼
1

2p
tr

Z p

�p
ðPo�SiXPoÞ

�½Si S>i 	½Si S
>
i 	

�ðPo�SiXPoÞ do

¼
1

2p
tr

Z p

�p
S>�i PoP

�
o S

>
i do

þ
1

2p
tr

Z p

�p
ðS�i Po � XPoÞ

�ðS�i Po � XPoÞ do

¼
1

2p
tr

Z p

�p
S>�i PoP

�
o S

>
i doþ Jid ðXÞ

with S>i such that ½Si S
>
i 	 is unitary. Hence, minimizing

JidðXÞ over XARHL�M
N

is equivalent to minimizing
JðCðWðXÞ;SÞÞ over XARHL�M

N
:

A.2. Proof of Theorem 4

By transforming Eq. (15) to the frequency domain
and using the fact that DS is independent of sðnÞ; P and
#S the expression for Jrob can be written as

Jrob ¼
1

2p
tr

Z p

�p
ð:Þ�ðPþ #SWCWPÞ þ P�W�

CWUDSWCWP do

¼
1

2p
tr

Z p

�p
ð:Þ�ðPþ #SWCWPÞ þ P�W�

CW
fDSDS�fDSDSWCWP do

¼
1

2p
tr

Z p

�p
ðPo þ #SWCWPoÞð:Þ

� þ fDSDSWCWPoP
�
o W

�
CW
fDSDS� do

¼
1

2p
tr

Z p

�p
ðPaugo þ SaugWCWPoÞð:Þ

� do ðA:1Þ

Using the solution of the nominal H2 feed forward
controller design problem of Theorem 1, it directly
follows that WCWARHK�M

N
minimizes Jrob if WCW is

given by Eq. (16).
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