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Abstract

We present a higher order accurate discontinuous Galerkin finite element method for the simulation of linear free-surface gravity
waves. The method uses the classical Runge–Kutta method for the time-discretization of the free-surface equations and the discontin-
uous Galerkin method for the space-discretization. In order to circumvent numerical instabilities arising from an asymmetric mesh a
stabilization term is added to the free-surface equations. In combination with a higher order velocity recovery technique this stabilizes
the numerical discretization with minimal effect on the accuracy of the wave computations. A stability analysis of the semi and fully-dis-
crete scheme is presented, which suggests that for a suitable choice of the stabilization constant a relatively large time step can be chosen
for accurate simulations over a long period of time. Numerical examples of a number of problems are also presented.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Numerical computations of free-surface waves require a
higher order accurate discretization, both in space and
time, in order to obtain accurate solutions with minimal
dispersion and dissipation errors, in particular for long
time simulations. For wave problems in complex domains,
finite element methods provide an attractive numerical
technique to achieve high order accuracy, in particular
for nonlinear waves. Also, finite element methods result
in a sparse matrix which can be efficiently solved with fast
iterative solvers. Recently, discontinuous Galerkin (DG)
finite element methods have become very popular due to
their suitability for mesh adaptation, using local mesh
refinement and coarsening or the adjustment of the polyno-
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mial order of the basis functions, while maintaining high
order accuracy on unstructured meshes. In this paper we
further investigate their suitability for the simulation of
wave problems.

In [9] we have proposed an unconditionally stable DG
method for the numerical simulation of linear free-surface
gravity waves. A key feature of this numerical algorithm is
the introduction of the free-surface boundary condition
directly into the weak formulation, which eliminates a sep-
arate computation of the velocity field. This DG algorithm
is unconditionally stable and does not suffer from a weak
instability originating from the free-surface boundary con-
dition when a non-uniform mesh is used in the interior
domain, as occurs for instance in the higher order spectral
method proposed in [8].

The algorithm in [9] is higher order accurate in space,
but only second order accurate in time. When the polyno-
mial order of the finite element basis functions is two or
higher then a severe time step limitation occurs if one wants
to have the same accuracy in time as in space. Also, a
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straightforward extension of this algorithm to nonlinear
problems cannot be accomplished by completely eliminat-
ing the velocity field.

In this paper an alternative DG method is presented
where we treat the free-surface boundary conditions sepa-
rately, i.e. they are not included into the weak formulation.
In this approach, once the velocity potential is computed in
the domain, the time dependent free-surface equations can
be discretized using high order explicit schemes, e.g. the
classical Runge–Kutta method. We combine this technique
with an L2 projection based high order velocity recovery
technique [7], which ensures that the velocity field has the
same order of accuracy as the velocity potential. This
approach results in a uniformly higher order accurate finite
element discretization, which we demonstrate for linear
free-surface waves in an inviscid incompressible fluid. The
study of this model problem is an essential step in the devel-
opment of a finite element method for nonlinear waves.

Unfortunately, the algorithm discussed in this paper is
not unconditionally stable on non-uniform meshes. To
overcome this, as suggested in [8], we add a stabilization
term to the free-surface boundary condition. Using Fourier
analysis, we will demonstrate that in combination with the
higher order velocity recovery technique this has minimal
effect on the wave properties. Also, for the same level of
accuracy the presented algorithm is more efficient than
the approach discussed in [9], which was only second order
accurate in time and requires a significantly smaller time
step for a comparable accuracy as the algorithm discussed
in this article.

Furthermore, the core of the approach presented here,
the weak formulation of the Laplace equation in the fluid
domain, will not have to be altered for the fully nonlinear
problem, only the discretization of the free-surface bound-
ary conditions has to be changed. Thus, the system of
equations resulting from the weak formulation for the
velocity potential will preserve the symmetry and posi-
tive-definiteness for the fully nonlinear problem, which
can therefore be solved efficiently by many fast iterative
solvers.

We now briefly summarize the contents of this paper. In
Section 2 we present the governing equations, tessellation,
and function spaces followed by the trace and lifting oper-
ators. In Section 3 we discuss the discontinuous Galerkin
method and present the weak formulation. Section 4 pre-
sents the discrete form of the weak formulation for the
potential and velocity field. This is followed by Section 5
where the discrete formulation of the linear free-surface
equations is presented and the time-discretization scheme
is discussed. Some of the matrix notations introduced here
will be needed in the stability analysis. In Section 6 we first
present the semi-discrete stability analysis of the linear
problem, which provides the dispersion and dissipation
properties of the scheme. This is followed by a fully-dis-
crete stability analysis of the classical Runge–Kutta
scheme, giving an estimate for the maximum time step nec-
essary for a stable scheme. Numerical results are presented
in Section 7, followed by the conclusions in Section 8.
Finally, further algorithmic details are given in the
appendix.

2. Preliminaries

2.1. Governing equations

Let us assume the fluid to be incompressible, inviscid,
with the velocity field irrotational. Let (x,z) denote the reg-
ular Cartesian coordinate system in Rd , with d = 2 or 3. In
case d = 3, x will represent (x,y) wherever required. We
consider the equations for linear free-surface waves in a
domain X � Rd . The boundary is split into two parts CD

and CN with CD \ CN = ;. CD represents the boundary
where the free-surface conditions are applied. The surface
CD is taken as (part of) the z = 0 plane for convenience.
The following equations then govern the motion of linear
free-surface waves [9,8,11,12]

� D/ ¼ 0 in X; ð2:1aÞ
r/ � n ¼ gN at CN ; ð2:1bÞ
o/
ot
¼ �f at z ¼ 0; ð2:1cÞ

of
ot
¼ o/

oz
at z ¼ 0; ð2:1dÞ

where / denotes the velocity potential, f the wave height, t

time, n 2 Rd the unit outward normal vector to oX, and gN

the normal velocity at solid surfaces. Eqs. (2.1a)–(2.1d) are
non-dimensionalized using the transformations

/! HðgcHÞ
1=2/; ðx; zÞ ! Hðx; zÞ; f! Hf; and

t! ðH=gcÞ
1=2t;

where H represents the average water depth and gc the
gravitational constant.

Now, let us assume that at a given instance in time, say
tn, the potential on the free-surface boundary CD be equal
to /D. We then obtain the velocity potential at the next
time level by solving the following boundary value
problem:

� D/ ¼ 0 in X; / ¼ /D at CD;

r/ � n ¼ gN at CN : ð2:2Þ

Using (2.1c) and (2.1d), the velocity potential thus obtained
will be updated to give /D for the next time level. An exam-
ple of a flow domain is given in Fig. 1, where a model basin
with a wave-maker on the left side and solid walls on bot-
tom and right sides are depicted. As discussed in Section
7.2, at the wave-maker a time periodic Neumann boundary
condition is applied.

2.2. Tessellation and function spaces

Let Th be the tessellation of X and Ne the total number
of elements in the mesh at a given time tn. We denote the



Fig. 1. Example of a flow domain for wave computations.
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elements of Th by K, with h ¼ maxK2Th diamðKÞ, the union
of the faces of the elements K of Th by C, i.e. C ¼

SNe
K¼1oK,

and the union of the internal faces by C0 = CnoX. We fur-
ther denote the set of all faces of Th by FA, the set of inter-
nal faces by FI , the set of faces on CD by FD, the set of
faces on CN by FN , and the set of faces on oX by Fo.

We define the usual Sobolev spaces as follows:

H 1ðXÞ :¼ fw 2 L2ðXÞ : Dw 2 L2ðXÞg;
where D denotes the distributional derivative and L2(X) the
space of square integrable functions on X. In addition, we
introduce the broken Sobolev spaces H 1ðThÞ ¼Q

K2Th
H 1ðKÞ. The traces of functions in H 1ðThÞ belong

to T ðCÞ :¼
Q

K2Th
H 1=2ðoKÞ. Functions in T(C) are thus

double-valued on C0 and single-valued on oX.
Next, we introduce the finite element spaces associated

with the tessellation Th of the domain X. We assume the
elements K to be shape-regular [3]. We set

Wh :¼ fw 2 L2ðXÞ : wjK 2 P ðKÞ; 8K 2Thg;
V h :¼ fv 2 ½L2ðXÞ�d : vjK 2 V ðKÞ and

rwjK 2 V ðKÞ; 8w 2 Wh; 8K 2Thg;

where PðKÞ ¼ PpðKÞ is the space of polynomial functions
of degree at most p P 1 on K and V ðKÞ ¼ ½PpðKÞ�d . Note
that Vh additionally contains the gradients of the functions
in Wh.

2.3. Trace and lifting operators

To deal with multivalued traces at the element boundary
faces in a DG discretization we introduce some trace oper-
ators to manipulate the numerical fluxes and to define the
primal DG formulation. For u 2 T(C), we define the aver-

age {u} and jump sub of u as follows:
Let F be an interior face shared by elements L and R.

Define the unit normal vectors nL and nR on F pointing
exterior to L and R, respectively. With uL=R :¼ ujoKL=R

we set

fug ¼ 1

2
ðuL þ uRÞ; sut ¼ uLnL þ uRnR on F 2FI :

For q 2 [T(C)]d we define qL and qR analogously, and set

fqg ¼ 1

2
ðqL þ qRÞ; sqt ¼ qL � nL þ qR � nR on F 2FI :
For F 2Fo each u 2 T(C) and q 2 [T(C)]d have a un-
iquely defined restriction on F; we set

sut ¼ un; fqg ¼ q on F 2Fo;

where n is the outward unit normal at oX. Since we do not
require either of the quantities {u} or sqb on boundary
faces, we leave them undefined.

In the sequel we will also need the lifting operator
R0 : ½L2ðC0 [ CDÞ�d ! V h, defined byZ

X
R0ðqÞ � vdx ¼

Z
C0[CD

q � fvgds; 8v 2 V h: ð2:3Þ

Further, to get the most compact stencil in the discretiza-
tion matrix we also need a local lifting operator
RF : ½L2ðFÞ�d ! V h, where F � C0 [ CD, defined byZ

X
RFðqÞ � vdx ¼

Z
F

q � fvgds; 8v 2 V h: ð2:4Þ

Note that RFðqÞ vanishes outside the union of the one
or two elements connected to F and that R0ðqÞ ¼P

F2FIþFDRFðqÞ for all q 2 [L2(C)]d.

3. Discontinuous Galerkin method

To solve the boundary value problem (2.2) for the veloc-
ity potential and the velocity field using a discontinuous
Galerkin method we introduce the velocity field u = $/
as an auxiliary variable into our system. Eqs. (2.1a) and
(2.1b) can now be rewritten as

u�r/ ¼ 0 in X; �r � u ¼ 0 in X; ð3:1aÞ
/ ¼ /D at CD; u � n ¼ gN at CN : ð3:1bÞ

Using the DG discretization technique proposed by Brezzi
et al. [4,5] the primal DG formulation for the potential /h

can now be formulated as:
Find a /h 2 Wh such that for all wh 2 Wh the following

relation holds:

Bh /h;whð Þ ¼ Lh whð Þ; ð3:2aÞ
where the bilinear form Bhð/h;whÞ : Wh �Wh ! R and the
linear form LhðwhÞ : Wh ! R are defined as

Bhð/h;whÞ :¼
Z

X
rh/h � rhwh dx

�
Z

C0[CD

ðs/ht � frhwhg þ frh/hg � swhtÞds

þ gF

X
F2FIþFD

Z
X
RFðs/htÞ �RFðswhtÞdx;

ð3:2bÞ

LhðwhÞ :¼
Z

CD

/Dn � rhwh ds

þ gF

X
F2FD

Z
F

/Dn �RFðswhtÞdsþ
Z

CN

gNwh ds:

The parameter gF must be chosen such that gF > nf , the
number of faces of an element. For the derivation the read-
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er is referred to [9,1]. For the discretization of (3.1a) and
(3.1b) one can also use other stable and consistent/ad-
joint-consistent DG methods as listed in [1], for example
Bassi et al. [2] or the local discontinuous Galerkin method
by Cockburn and Shu [6].

Furthermore, the following relation gives the velocity
field uh 2 Vh:

uh ¼ rh/h þR0ðs/̂� /htÞ; ð3:3Þ

with the lifting operator R0 defined in (2.3).

4. Discrete formulation

The weak formulation for the Laplace equation (3.2) is
transformed into a set of algebraic equations by introduc-
ing the polynomial expansion for /h and wh in each element
K, given by

/K;h ¼
XpK

j¼0

~/K;jNK;jðxÞ; wK;h ¼
XpK

j¼0

~wK;jNK;jðxÞ;

x 2 K � Rd ; ð4:1Þ

into the weak formulation equation (3.2). Heree/K;j 2 RpKþ1 and ewK;j 2 RpKþ1 are the expansion coefficients
of the potential /h and the test function wh in the element
K, respectively, and NK;j the pK + 1 polynomial basis func-
tions of order pK, which can vary in each element.

After some lengthy algebra the linear problem can be
represented in matrix form as

A/ ¼ X ; with A 2 RN�N ; /;X 2 RN ; ð4:2Þ

where N ¼
PNe

K¼1ðpK þ 1Þ is the total number of degrees of
freedom in the discretization. The details of the construc-
tion of the matrix A are given in Appendix A.2. The matrix
A, consisting N 2

e blocks ½A� 2 RðpKþ1Þ�ðpKþ1Þ, is a sparse sym-
metric positive definite matrix since the bilinear form (3.2b)
is symmetric and coercive on H 1ðThÞ, for a proof see e.g.
[1]. Further, the vectors /, X consist of blocks ½/�; ½X � 2
RðpKþ1Þ, respectively. The linear system can be solved
straight-forwardly with either a sparse direct method or a
preconditioned conjugate gradient method. For the update
of the linear free-surface boundary conditions we do not
need, however, the potential in the whole domain, only
the gradient in the z-direction at the free-surface is needed.
This is particularly useful in the stability analysis discussed
in Section 6. In Appendix A.3 we discuss the details of the
construction of the discrete Dirichlet to Neumann operator
which maps the discrete free-surface potential /D

h to the
vertical velocity component of uh at the free-surface.

4.1. Higher order accurate velocity recovery

The free-surface boundary conditions (2.1c) and (2.1d)
require the vertical velocity at the free-surface. Using the
discretization for the Laplace equation (4.2) with a given
free-surface potential /D, we can compute this velocity
using (3.3). In this section we describe the DG algorithm
to compute the velocity field. Since the velocity field
depends on the gradient of the potential /h, we loose one
order of accuracy. This would also affect the accuracy of
the wave computations. In the second part of this section
we describe therefore a higher order velocity recovery tech-
nique which improves the accuracy in the velocity field and
also the stability of the numerical scheme, the latter is dem-
onstrated in Section 6.

We express the velocity field in an element K as

uK;kd ;h ¼
XpK

j¼0

~uK;kd ;jNK;jðxÞ; x 2 K; ð4:3Þ

where ~uK;kd ;j are the expansion coefficients for the kdth com-
ponent of uK,h. We now define the matrices DK 2 RpK�pK ,
ELR 2 RpL�pR�d and MK 2 RpK�pK�d as

DK
ij ¼

Z
K
NK;iNK;j dx; ELR

ijkd
¼
Z
F

NL;iNR;jnR;kd ds;

MK
ijkd
¼
Z

K
NK;i

oNK;j

oxkd

dx ð4:4Þ

"kd = 1, . . . ,d. Here L and R denote the elements con-
nected to the face F and nK;kd is the kdth component of
the unit outward normal vector at the boundary of element
K. Substituting the approximation (4.3) into (3.3), multi-
plying with arbitrary test functions vh 2 Vh, integrating
over element K and finally using the relation for the lifting
operator given in the appendix, we obtain the following
equation for the expansion coefficients of the velocity field
in element K:XpK

j¼0

~uK;kd ;jD
K
ij ¼

XpK

j¼0

~/K;jMK
ijkd
þ
X

F2FD

XpK

j¼0

~/D
K;jE

KK
ijkd

� 1

2

X
F2FIþFD

F�oK

XpL

j¼0

~/L;jELL
ijkd
þ
XpR

j¼0

~/R;jELR
ijkd

 !
:

ð4:5Þ

These equations can be solved independently in each ele-
ment, since given the coefficients for the potential ~/K and
the free-surface potential ~/D

K , they are fully uncoupled from
the velocity field in neighboring elements. We note that
for the linear problem we only need to compute the z-com-
ponent (kd = d) of the velocity field.

The velocity potential computed using Eq. (3.2a) has an
order of accuracy O(hp+1) in the L2 norm, where h denotes
the mesh size and p the approximating polynomial order
[9,4,1]. Without any treatment the velocity field computed
using the technique described above can at best achieve
an order of accuracy O(hp). However, achieving super con-
vergence for the gradient of a finite element solution has
been an active research area for quite some time
[7,13,14,10,15] (and the references therein). Here we use
the L2 projection based higher order gradient recovery
technique proposed by Heimsund et al. [7]. In this
approach two meshes are required, a finer mesh with mesh
size hf and polynomial order p and a coarser mesh hc with
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polynomial order r, with hc > hf and r > p. In [7] a detailed
comparison has been given with respect to various polyno-
mial orders and mesh sizes. To achieve a high order of
accuracy improvement with increasing p it is required to
maintain an appropriate ratio between p and r. For exam-
ple, for a combination of p = 1 and r = 2 the accuracy
improvement for the gradient will be higher than for the
combination of p = 3 and r = 4. The latter can then be
increased by choosing a higher value for r in an appropri-
ate ratio, e.g. r = 6. We perform the computations of the
velocity potential on the finer mesh and use a coarser mesh
for computing the velocity field. Note that this technique is
required in the z direction only since for the linear problem
we only need the z-component of the velocity field.

5. DG discretization of the free-surface boundary conditions

and time integration

In this section we provide the fully-discrete explicit in
time DG scheme for the free-surface problem. Let Th

denote the tessellation of the domain X into elements
K = 1,2, . . . ,Ne. Let the elements K 2Th be numbered
such that the first NF elements KF = 1, . . . ,NF are at the
free-surface. The mesh points in the domain X are denoted
as (xG,G = 0, . . . ,NG) and ordered such that ðxGS ;
GS ¼ 0; . . . ;NGF Þ are the mesh points at the free-surface.
At the free-surface we also denote the free-surface elements
ðSKS ;KS ¼ 1; . . . ;N F Þ, which are equal to the free-surface
boundary of the elements KF = 1, . . . ,NF. Finally, the total
degrees of freedom on the free-surface elements are
denoted as NF ¼

PNF
K¼1ðpK þ 1Þ.

We now consider the free-surface potential /D(x, t) at
z = 0, which provides a Dirichlet type boundary condition
at the free-surface for the potential / in the flow domain.
Let w(x, t) denote the z-component of the velocity field at
the free-surface:

wðx; tÞ ¼ o/
oz
ðx; 0; tÞ:

In each free-surface element we use a polynomial approxi-
mation for /D, f and w similar to (4.1) and by ~wK;j, ~/D

K;j,
~fK;j

we denote the expansion coefficients of w, /D, and f,
respectively, in the element K connected to the free-surface.
Let the matrix ND denote the discrete Dirichlet to Neu-
mann operator (see Appendix A.3 for the definition). For
ease of notation we introduce the sub-matrices N D;K;K 0

j;i as

ND;K;K 0

j;i ¼ N D
ðpKþ1ÞðK�1Þþjþ1;ðpKþ1ÞðK 0�1Þþiþ1: ð5:1Þ

We can express the coefficients ~wK;j in terms of the coeffi-
cients of the free-surface potential ~/D

K;j using the discrete
Dirichlet to Neumann operator ND as

~wK;j ¼
XNF

K 0¼1

XpK

i¼0

ND;K;K 0

j;i
~/D

K 0 ;i: ð5:2Þ

The DG discretization of the free-surface conditions in
each free-surface element can now be written as
XpK

j¼0

d~/D
K;j

dt

Z
K
NK;iðxÞNK;jðxÞdx

¼ �
XpK

j¼0

~fK;j

Z
K
NK;iðxÞNK;jðxÞdx;

XpK

j¼0

d~fK;j

dt

Z
K
NK;iðxÞNK;jðxÞdx

¼
XpK

j¼0

~wK;j

Z
K
NK;iðxÞNK;jðxÞdx;

for all i = 0, . . . ,pK. Using the expression for ~wK;j in terms
of ~/D

K;j, given by (5.2), and the fact that the matrix DK
i;j is

non-singular we obtain, for K = 1, . . . ,NF and
j = 0, . . . ,pK, the following system of expansion coefficients
for the DG discretization of the free-surface potential and
the wave height

d~/D
K;j

dt
¼ �efK;j;

d~fK;j

dt
¼ ~wK;jð~/DÞ ¼

XNF

K 0¼1

XpK

i¼0

N D;K;K 0

j;i
~/D

K 0 ;i:

ð5:3Þ
If we introduce UC = ([UD][f])T, with f 2 RNF

, then the
coefficients satisfy the equation

dUC

dt
¼ PUC; where P ¼

0 �I

ND 0

� �
: ð5:4Þ

For the time integration of these coupled equations for the
expansion coefficients we use the classical 4th-order four
stage Runge–Kutta method. We briefly summarize the
steps required to solve the coupled system of equation
(5.3): Given /n and fn we compute

/D
nþ1 ¼ /D

n þ
1

6
ðk1/ þ 2k2/ þ 2k3/ þ k4/Þ;

fnþ1 ¼ fn þ
1

6
ðk1f þ 2k2f þ 2k3f þ k4fÞ;

where

k1/ ¼ �Dtfn; k1f ¼ Dtwð/D
n Þ;

k2/ ¼ �Dt fn þ
1

2
k1f

� �
; k2f ¼ Dtw /D

n þ
1

2
k1/

� �
;

k3/ ¼ �Dt fn þ
1

2
k2f

� �
; k3f ¼ Dtw /D

n þ
1

2
k2/

� �
;

k4/ ¼ �Dt fn þ k3fð Þ; k4f ¼ Dtw /D
n þ k3/

� �
:

6. Stability analysis

In this section we discuss the stability of the numerical
scheme on a non-uniform mesh. We first discuss the
semi-discrete scheme which suggests a sufficient value for
the stabilization constant to guarantee the stability of the
scheme. This is followed by a fully-discrete stability analy-
sis which helps us to choose a suitable time step for a stable
explicit time-discretization scheme.
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Fig. 2. Dispersion error of the scheme on the uniform mesh.
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6.1. Semi-discrete analysis: dispersion and dissipation of the

numerical scheme

In this section we perform a semi-discrete Fourier anal-
ysis of the DG scheme. In [8] the dependence of the spatial
stability on the mesh type was discussed within the frame-
work of spectral methods. It was found that the asymmetry
of the mesh causes instability in the numerical scheme. To
overcome this, one of the promising techniques suggested
was to add a small stabilization term to the free-surface
boundary condition (2.1d), see equation (53) of [8]. The
explicit Runge–Kutta DG scheme also exhibits a depen-
dence of the stability on the mesh type and hence, as a rem-
edy we also add a small stabilization term. However, it will
be shown that the higher order gradient recovery technique
for the velocity field, as discussed in Section 4.1, has a
favorable effect on the size of the stabilization constant l
(see (6.1)), and therefore, we can choose very small values
of l for higher polynomial degrees to keep the scheme sta-
ble. This results in a very low dissipation.

Note here that we perform the Fourier analysis only on
the free-surface equation (5.4) and not on the whole
domain. Let k be the wave number and x the frequency.
Let us assume that we have a uniform mesh at the free-sur-
face, with mesh size Dx, equipped with periodic boundary
conditions in the x-direction. The interior mesh, however,
can be non-uniform. We introduce the Fourier ansatz

~/D
K;j ¼ ~/F

j eıðKkDx�xtÞ; ~fK;j ¼ ~fF
j eıðKkDx�xtÞ;

with kDx 2 [0,p), since any wave with kDx P p cannot be
represented on the mesh, and ı ¼

ffiffiffiffiffiffiffi
�1
p

. Now we need to
determine the relation between k and x for the numerical
scheme. Introducing the Fourier ansatz in the free-surface
discretization we have

ð�ıx~/F
j þ ~fF

j ÞeıðKkDx�xtÞ ¼ 0;

�
XNF

K 0¼1

XpK

i¼0

eıðK 0�KÞkDxND;K;K 0

j;i
~/F

i � ıx~fF
j

 !
eıðKkDx�xtÞ ¼ 0;

for K = 1, . . . ,NF, j = 0, . . . ,pK. Using ~fF
j ¼ ıx~/F

j from the
first equation in the second we get

x2 ~/F
j �

XNF

K 0¼1

XpK

i¼0

eıðK 0�KÞkDxND;K;K 0

j;i
~/F

i ¼ 0:

Note that for a uniform mesh and periodic boundary con-
ditions in the x direction the matrices ND;K;K 0

j;i are circular
permutations in K and the dispersion will therefore be inde-
pendent of K. Let Ij denote the (pK + 1) identity matrix,
then the dispersion relation is given by

x2Ij
~/F

E �
XNF

K 0¼1

eıðK 0�KÞkDxND;K;K 0 ~/F
E ¼ 0;

with ~/F
E 2 RpKþ1 denoting the Fourier coefficients in an ele-

ment. Non-trivial solutions ~/F
E are obtained for those val-

ues of x and k for which
det x2Ij �
XNF

K 0¼1

eıðK 0�KÞkDxND;K;K 0

 !
¼ 0;

which represents an eigen-value problem with ks = x2. If
we introduce lðkDxÞ :¼ eıkDx then we obtain the following
eigen-value problem:

det ksI j �
XNF

K 0¼1

lK 0�KND;K;K 0

 !
¼ 0;

solving which we get pK + 1 eigen-values ks
jðkDxÞ with

xj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks

jðkDxÞ
q

. Since the Fourier ansatz assumes

~/D
K;j ¼ ~/F

j eıðKkDx�xtÞ, the real and imaginary parts of ks
j are

related to the frequency and dissipation of mode j, respec-
tively. The mode with xj(kDx) closest to the exact mode
xðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k tanhðkÞ

p
and with the smallest dissipation is

called the physical mode, the other modes are spurious or
numerical modes.

We now show the effect of the asymmetry of the mesh on
the stability of the scheme. In order to test the dependence
of the stability of the numerical scheme on the mesh
smoothness we use a uniform mesh with square elements
and a randomly generated mesh (a mesh of square elements
with the vertices randomly displaced up to a maximum of
30% of the edge length). However, since we need to have
the same domain for the coarse mesh as well as the fine
mesh (see the discussion in Section 4.1), we choose a coarse
mesh with polynomial order r = 2p for a fine mesh with
polynomial order p. Thus, the node points of the coarse
mesh will exactly match with the nodes of the fine mesh.
Note that in general the algorithm is perfectly suited for
an unstructured mesh with any reasonable choice of hc,
hf, p and r. In order to investigate the effect of the higher
order velocity recovery technique we first consider cases
where this technique is not applied. Figs. 2 and 3 show that
while the dispersion is unaffected by the asymmetry in the
mesh, it causes the imaginary part of the physical mode
to be non-negligibly positive, which results in instability
of the numerical scheme, see Figs. 4 and 5.
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Fig. 3. Dispersion error of the scheme on the random mesh.
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Fig. 4. Dissipation of the scheme on the uniform mesh.
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Fig. 5. Dissipation of the scheme on the random mesh.
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Fig. 6. Dissipation of the scheme with added stabilization.
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To ensure stability we now add stabilization term to the
free-surface condition:
of
ot
¼ o/

oz
þ l

o2f
ox2

; ð6:1Þ

where l is called the stabilization constant. Let ld denote
the smallest value of l to produce a stable solution. To dis-
cretize o2f

ox2 we again use the DG method, which straight-for-
wardly results in the stabilization term Pd. Eq. (5.4) is now
changed to

dUC

dt
¼ PUC; where P ¼

0 �I

ND �ldP d

� �
: ð6:2Þ

We do not repeat the qualitative analysis of the dependence
of the stabilization constant ld on h, p and the mesh skew-
ness and refer the reader to [8] for details, where a relation-
ship of the form ld = Crap was obtained, with C and a
constants, p the polynomial degree and r the mesh skew-
ness. Only those values which are small enough to make
the scheme stable for our choice of h and p are mentioned
here. It is easy to see, however, that Eq. (6.1) satisfies the
consistency requirement since the mesh skewness r is pro-
portional to the mesh size h for different sizes of similar
shaped elements and hence, ld decays as hap. In all cases
hereafter we consider only the random mesh.

The effect of adding the stabilization term with
ld = 0.0005 is shown in Fig. 6, where the negative value
of the dissipation indicates stability. However, the dissipa-
tion causes a decay in the wave amplitude which is undesir-
able, in particular for numerical simulations over a long
period of time.

We now study the effect of higher order velocity recov-
ery and suitably chosen ld in minimizing the wave dissipa-
tion. Fig. 7 shows that for small values of h/k we can
reduce the dissipation up to a factor of about 3 for p = 1,
a factor of about 4 for p = 2 and a factor of about 10 for
p = 3 with ld = 0.0005, 0.00007 and 0.000042, respectively.
Fig. 8 shows the value of ld for various polynomial orders
which shows a pattern similar to Fig. 17 of [8]. Hence,
while the stabilization operator has no effect on the spuri-
ous modes, which essentially have zero dissipation, see
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Fig. 9, we can achieve a very low dissipation for large poly-
nomial order p using the higher order velocity recovery
technique and a suitable choice of the stabilization con-
stant, compare Figs. 6 and 7. Fig. 10 shows, on a logarith-
mic scale, the effect of the stabilization operator on the
dispersion error when higher order velocity recovery tech-
nique and suitably chosen stabilization constants are used,
which is very small for the values of p P 3.
6.2. Fully-discrete analysis

In this section we conduct a fully-discrete stability anal-
ysis of the scheme which helps us to find the largest time
step within the stability region.

Following (5.4) we can express the fully-discrete RK4
scheme as

UC
nþ1 ¼ QðDtÞUC

n ; ð6:3aÞ

where

QðDtÞ ¼ I þ PDt þ ðPDtÞ2

2!
þ ðPDtÞ3

3!
þ ðPDtÞ4

4!

 !
; ð6:3bÞ

where P includes the stabilization term, see (6.2). Introduc-
ing the Fourier ansatz

~/D
K;j ¼ ~/F

j eıðKkDx�nxDtÞ; ~fK;j ¼ ~fF
j eıðKkDx�nxDtÞ;

and the matrix PF as

P F ¼
0 �IPNF

K 0¼1

lK 0�KND;K;K 0 �ldP d

24 35;
we obtain the following eigen-value problem for the RK4
scheme

ðe�ıxDtI2j � QF Þ
~/F

~fF

 !
¼ 0;
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where

QF ¼ I þ P F Dt þ ðP
F DtÞ2

2!
þ ðP

F DtÞ3

3!
þ ðP

F DtÞ4

4!

 !
; ð6:4Þ

and I2j is the 2(pK + 1) · 2(pK + 1) identity matrix. If we
introduce kt ¼ e�ıxDt then the eigen-values kt are deter-
mined by solving

detðQF � ktI2jÞ ¼ 0;

and the numerical scheme is stable for Dt 2 (0,Dtmax) if
jktj 6 1 for all values of kDx 2 [0,p). We begin with noting
that the explicit RK4 scheme is not unconditionally stable.
Figs. 11–13 show the stability region (with amplification
factor one) of the fully-discrete RK4 scheme on a random
mesh with added stabilization and higher order velocity
recovery for the minimal values of ld to ensure stability.
It is clear that the scheme is stable for a reasonably large
values of Dt. This is confirmed by the numerical examples
in the next section.
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7. Numerical examples

In this section we provide numerical results of some
model problems which support the theoretical analysis.
We first verify the spatial accuracy of the velocity potential
and the free-surface height. For a precise estimate of the
improvement in the accuracy of the computed velocity field
by the L2 projection based higher order recovery for a given
h and p the reader can refer to [7]. Next, we consider the
examples of [9] with the approach presented in this paper.
7.1. Time-harmonic waves in an unbounded domain

To verify the analysis and the accuracy of the proposed
scheme we first consider as a model problem a harmonic
wave in an unbounded domain. We choose a domain
[�1,1] · [�1,0] with periodic boundary CP at both ends
x = ±1 of the domain.

The boundary conditions at CP are given by

/ðxþ Lx; z; tÞ ¼ /ðx; z; tÞ;

with Lx denoting the length of the periodic domain in the
x-direction. Faces at CP are considered internal faces,
which connect the external part of CP to the interior of
the domain X. At the bottom of the domain z = �1 we
consider a homogenous Neumann boundary condition.
As initial free-surface we use the projection of the analytic
solution onto the finite element basis functions. The ana-
lytic solution of this problem is given by

/ ¼ /0 coshðkðzþ 1ÞÞ cosðxt � kxÞ; ð7:1Þ

where /0 denotes the maximum amplitude of the velocity
potential, k the wave number, which is related to the wave-
length k as k = 2p/k, and x the frequency of the oscilla-
tions. The frequency and wave number satisfy the
following dispersion relation:

x2 ¼ k tanhðkÞ:
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All quantities considered here are in dimensionless form.
The initial conditions for the wave height at z = 0 is

f ¼ /0x coshðkÞ sinðkxÞ: ð7:2Þ
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Fig. 16. Wave profile after 20 periods, harmonic wave in an unbounded
domain.
For all our examples in this section we choose a mesh of
quadrilateral elements with random (up to a maximum of
30% of the edge length) displacement of vertices, the
approximating polynomial order p up to 3, and /0 such
that the maximum amplitude of the free-surface height is
5% of the water depth. Note that with the higher order
velocity recovery technique this requires p = 6 on the
coarse mesh with 2h mesh size.

As a first step we check the accuracy achieved in the
computation of the free-surface height. To have an error
only influenced by the space-discretization (and negligible
effects from the time-discretization) we choose Dt =
0.0001. We consider polynomial degrees ranging from
p = 1 to p = 3. We compute the error after the first time
step and the mesh size h is chosen as 1/8, 1/16, 1/24 and
1/32 for all p. To keep the L2 error within reasonable
bounds for p = 1,2,3 we take k as 1,1/2,1/3, respectively.
Figs. 14 and 15 show the h-convergence on a log–log scale
for the velocity potential and the free-surface height. The
convergence for the velocity potential is slightly less than
the optimal rate of O(hp+1). Without higher order velocity
recovery the convergence rate for the free-surface height
cannot be higher than O(hp). However, using the L2 projec-
tion based gradient recovery technique the minimum con-
vergence achieved for the free-surface height is O(hp+1)
(in fact towards ultra-convergent for p = 1 and p = 3).

As a next step we choose the time step Dt = 0.1, the
mesh size h = 0.1, and the wave length k = 1. Fig. 16 shows
the free-surface height after 20 periods. The dispersion
error for p = 1 is large and the wave is moving slower than
the actual wave. The dissipation for p = 1 and p = 2 are
almost the same, which confirms the observation of the
semi-discrete analysis. The dissipation for p = 3 is further
reduced and is quite small. For p = 2 the wave appears
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Fig. 14. h-convergence for the velocity potential of a wave in an
unbounded domain.
to be moving a little faster than the actual wave, however,
for p = 3 the dispersion error is almost negligible.
7.2. Waves generated by a wave-maker

We now present the numerical simulation of waves gen-
erated by a wave-maker in a model basin. For experimental
and other numerical results the reader can refer to [11]. The
domain is considered as [0,10] · [�1,0] and the wave-
maker is at x = 0. We assume homogenous Neumann
boundary conditions at the bottom z = �1 and at the wall
opposite to the wave-maker at x = 10. The initial free-sur-
face height and the velocity potential are zero, and a time
periodic Neumann boundary condition, governing the nor-
mal velocity, is applied at the wave-maker. The normal
velocity profile is linear, starting with zero at the bottom,
and has a maximum amplitude of 0.02. The frequency of
the time-harmonic motion is 1.8138. Fig. 17 shows the
wave profile at T = 20, when the wave starts approaching
the wall against the wave-maker. The waves with p = 2
and p = 3 are identical whereas p = 1 shows a small
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Fig. 17. Wave profile at T = 20, wave generated by a wave-maker.
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difference with the remaining two. Fig. 18 shows the wave
profile at T = 38.2, when the wave gains full height against
the wall opposite to the wave-maker. The waves with p = 2
and p = 3 are still almost identical and for p = 1 the effect
of the damping becomes visible at X = 10. Fig. 19 shows
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Fig. 18. Wave profile at T = 38.2, wave generated by a wave-maker.
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Fig. 19. Wave profile at T = 84.1, wave generated by a wave-maker.
the wave profile at T = 84.1, when the wave is traveling
back into the domain and affects the pattern of the gener-
ated wave. The waves with p = 2 and p = 3 are still close
but the wave for p = 1 clearly shows a different pattern.
The results presented here with Dt = 0.1 show an excellent
agreement with the results in [9], where Dt = 0.02 and for
p = 2 and p = 3 the accuracy of the scheme in [9] has a
strong dependence on the time step since this method is
only second order accurate in time.
8. Conclusions

We have presented an alternative approach based on an
explicit Runge–Kutta DG method for linear free-surface
gravity waves compared to the implicit DG method dis-
cussed in [9], which is only second order accurate in time.
To ensure the stability of the scheme it is required to add
a small stabilization term to the free-surface condition.
Using a higher order velocity recovery technique and a
suitable choice of stabilization constants the damping of
the wave amplitude can be made negligibly small to guar-
antee a sufficiently accurate simulation over a long period
of time. For the nonlinear problem the algorithm requires
only a straight-forward extension of the free-surface
boundary condition without compromising the symmetry
or positive-definiteness of the DG discretization matrix.
Hence, most of the efficient iterative solvers can be applied
to solve the resulting system of algebraic equations. In fact,
the core of the method, i.e. the solution of the Laplace
problem, is entirely unchanged for the nonlinear problem,
and only the free-surface boundary conditions are changed.
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Appendix A. Derivation of discrete Dirichlet to Neumann

operator

In this appendix we introduce the various matrix nota-
tions and give the equations for the expansion coefficients
of the velocity potential. Subsequently, we define the
matrix ND, the discrete Dirichlet to Neumann operator,
which is required for the representation of the expansion
coefficients of the velocity field in terms of the expansion
coefficients of the velocity potential at the free-surface.
A.1. Computation of the local lifting operator RF

First, we consider the computation of the local lifting
operator RF (2.4). We approximate RFðs/htÞ and vh for
a given element K using the polynomial basis functions
NK;j as follows:
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RF;K;kd ðs/htÞ ¼
XpK

j¼0

eRK;kd ;jNK;jðxÞ;

vK;kd ;h ¼
XpK

j¼0

~vK;kd ;jNK;jðxÞ; x 2 K;

where eRK;kd ;j;~vK;kd ;j are the expansion coefficients for the
kdth component of RF;K and vK,h, respectively, in element
K. Using the definition of the trace operators and the
polynomial approximation into (2.4) and the notations
introduced above, after some algebraic manipulations, we
get

eRL;kd ;n ¼
1

2

XpL

j¼0

F LL
njkd

~/L;j þ
XpR

j¼0

F LR
njkd

~/R;j

 !
;

eRR;kd ;n ¼
1

2

XpL

j¼0

F RL
njkd

~/L;j þ
XpR

j¼0

F RR
njkd

~/R;j

 !
;

where

F MN
njkd
¼
XpM

i¼0

½DM
ni �
�1EMN

ijkd
: ðA:1Þ

For a Dirichlet face of an element K this will be reduced to

eRK;kd ;n ¼
XpK

j¼0

F KK
njkd

~/K;j:

We now show that a further simplification of RF terms is
possible. First, we introduce FLMR 2 RpL�pR , which will be
needed in the sequel:

FLMR
ij ¼

Xd

kd¼1

XpM

n¼0

EML
nikd

Xd

kd¼1

XpM

i0¼0

½DM
ni0 �
�1EMR

i0jkd

 !
: ðA:2Þ

We demonstrate the simplification of the computation of
the RF terms by considering the following term:Z

F

RF;Rðs/htÞ � wL;hnL ds

¼ 1

2

XpL

i¼0

~wL;i

Z
F

Xd

kd¼1

NL;inL;kd

 !

�
Xd

kd¼1

XpR

n¼0

XpL

j¼0

F RL
njkd

~/L;j þ
XpR

j¼0

F RR
njkd

~/R;j

 !
NR;n ds:

Let T1 denote the first term in the integral on the right-
hand side. Using the definition of F RL

njkd
and rearranging

the terms we have

T 1 ¼
Xd

kd¼1

XpR

n¼0

Z
F

NL;iNR;nnL;kd ds

 !

�
Xd

kd¼1

XpL

j¼0

~/L;j

XpR

i0¼0

½DR
ni0 �
�1

Z
F

NR;i0NL;jnL;kd ds

 !
:

Using the definitions of FLMR
ij from (A.2) we get

T 1 ¼
XpL

j¼0

~/L;j

Xd

kd¼1

XpR

n¼0

ERL
nikd

Xd

kd¼1

XpR

i0¼0

½DR
ni0 �
�1ERL

i0jkd

 !

¼
XpL

j¼0

~/L;jF
LRL
ij :

Similarly, from the definitions of F MN
njkd

, and EMN
ijkd

the other
RF terms can be simplified. This gives usZ
F

RF;Rðs/htÞ �wL;hnL ds¼ 1

2

XpL

j¼0

~/L;jF
LRL
ij þ

XpR

j¼0

~/R;jF
LRR
ij

 !
:

The RF term on the Dirichlet boundary faces in the linear
form can be analogously simplified to take the formZ
F

RF;Kðs/htÞ � wK;hnK ds ¼
XpK

j¼0

~/D
K;jF

KKK
ji :
A.2. Construction of the DG matrix for the velocity potential

In this section we will describe the construction of the
matrix A for the DG discretization of the velocity potential
function /h.

The DG discretization of the velocity potential (3.2a)
can be represented in a matrix form as

A/ ¼ X ; with A 2 RN�N ; /;X 2 RN ; ðA:3Þ

where the matrix A consists of N 2
e blocks ½A� 2

RðpKþ1Þ�ðpKþ1Þ, and the vectors /, X of blocks
½/�; ½X � 2 RðpKþ1Þ, respectively. Before proceeding further
we introduce the following matrices: CK 2 RpK�pK ,
BLR 2 RpL�pR , and ELR 2 RpL�pR , with the components

CK
ij ¼

Z
K
rhNK;i � rhNK;j dx; BLR

ij ¼
Z
F

NL;inL � rhNR;j ds;

ELR
ij ¼

Z
F

NL;iNR;j ds: ðA:4Þ

Now the matrix A is constructed in a way suitable for
unstructured meshes as follows:

ðaÞ Initialize A¼ 0; ðA:5Þ
ðbÞ ½Aij�KK ¼CK

ij ;

ðcÞ ½Aij�LL 
X
F2FI

½Aij�LL�1

2
ðBLL

ji þBLL
ij Þþ

1

4
gFðFLLL

ij þFLRL
ij Þ

	 

;

ðdÞ ½Aij�LR 
X
F2FI

½Aij�LR�1

2
ðBRL

ji þBLR
ij Þþ

1

4
gF FLLR

ij þFLRR
ij

� �	 

;

ðeÞ ½Aij�RL 
X
F2FI

½Aij�RL�1

2
ðBLR

ji þBRL
ij Þþ

1

4
gFðFRLL

ij þFRRL
ij Þ

	 

;

ðfÞ ½Aij�RR 
X
F2FI

½Aij�RR�1

2
ðBRR

ji þBRR
ij Þþ

1

4
gFðFRLR

ij þFRRR
ij Þ

	 

;

ðgÞ ½Aij�KK 
X

F2FD

f½Aij�KK �ðBKK
ji þBKK

ij ÞþgFF
KKK
ij g:
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Similarly, the right-hand side vector X is constructed as
follows:

ðaÞ Initialize X ¼ 0; ðA:6Þ

ðbÞ ½X i�K  
X

F2FD

XpK

j¼0

~/D
K;jð�BKK

ji þ gFF
KKK
ji Þ;

ðcÞ ½X i�K  
X

F2FN

½X i�K þ
XpK

j¼0

~gN
K;jE

KK
ij

 !
;

where ~/D
K;j 2 RpKþ1 and ~gN

K;j 2 RpKþ1 are the expansion coef-
ficients of /D and gN in element K, respectively. Note that
the Dirichlet and Neumann boundary data are also
approximated using polynomial basis functions, see (4.1).
A.3. Construction of discrete Dirichlet to Neumann operator

An essential ingredient in the analysis of the numerical
algorithm is the discrete Dirichlet to Neumann operator
which links the free-surface potential to the normal velocity
at the free-surface. In this appendix we summarize the con-
struction of ND, the discrete Dirichlet to Neumann
operator.

We rewrite (A.3) asXN

j0¼1

Ai0j0Uj0 ¼ X i0 ; 8i0 ¼ 1; . . . ;N ;

with UðpKþ1ÞðK�1Þþjþ1 ¼ ~/K;j, K 2 {1, . . . ,Ne}, j 2 {0, . . . ,pK}.
The vector X 2 RN depends on the Dirichlet boundary con-
dition /D(x, t) at the free-surface and the Neumann bound-
ary condition which has been set to zero in the stability
analysis. We can express the vector X as X = GD([UD][0])T,
where T denotes the transpose, and 0 2 RN�NF

the zero vec-
tor, UD 2 RNF

the vector of expansion coefficients of the
Dirichlet boundary data, and GD 2 RN�N the associated
matrix. Hence, UD ¼ ð½~/D

1 �½~/D
2 �; . . . ; ½~/D

NF
�ÞT, with ½~/D

K � a
RðpKþ1Þ vector with the expansion coefficients in each ele-
ment. The expansion coefficients of the velocity potential
in the DG discretization can thus be expressed as

U ¼ A�1X ¼ Gð½UD�½0�ÞT; where G ¼ A�1GD: ðA:7Þ

The DG discretization for the kdth component of the veloc-
ity field (4.5) can be similarly written in matrix form as

XNF

j0¼1

Li0j0W j0 ¼ Y i0 ; 8i0 ¼ 1; . . . ;N F ;

with W ðpKþ1ÞðK�1Þþjþ1 ¼ ~wK;j, K 2 {1, . . . ,NF}, j 2 {0, . . . ,
pK}. We also have L 2 RNF�NF

and Y 2 RNF
. Further, since

we need the data from all the neighboring elements for the
integrals ELR

ijkd
in (4.5), the vector Y will have a contribution

from the potential in the elements KF attached to the free-
surface and those elements which are connected to these
elements opposite to the free-surface face. We define
GT 2 R2NF�NF
, the sub-matrix of G related to these 2NF ele-

ments, as

GT ¼ Gð1; . . . ; 2NF ; 1; . . . ;NF Þ:
Hence, the vector Y can be expressed as Y ¼ RUD2 , where
UD2 ¼ GT UD, and R 2 RNF�2NF

is a matrix with its blocks
formed by MK and ELR, see (4.5). We can now express
the expansion coefficients of the kdth component of the
velocity field in terms of UD as

W ¼ L�1RGT ½UD�T: ðA:8Þ

If we define the matrix N D 2 RN F�NF
as ND = L�1RGT we

get the discrete Dirichlet to Neumann operator ND:

W ¼ N D½UD�T: ðA:9Þ
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