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Abstract. Wireless networks are created by the communication links between a collection of radio

transceivers. The nature of wireless transmissions does not lead to arbitrary undirected graphs but to

structured graphs which we characterize by the polynomially bounded growth property. In contrast

to many existing graph models for wireless networks, the property of polynomially bounded growth

is defined independently of geometric data such as positional information.

On such wireless networks, we present an approach that can be used to create polynomial-time ap-

proximation schemes for several optimization problems called the local neighborhood-based scheme.

We apply this approach to the problems of seeking maximum (weight) independent sets and minimum

dominating sets. These are two important problems in the area of wireless communication networks

and are also used in many applications ranging from clustering to routing strategies. However, the

approach is presented in a general fashion since it can be applied to other problems as well.

The approach for the approximation schemes is robust in the sense that it accepts any undirected

graph as input and either outputs a solution of desired quality or correctly asserts that the graph

presented as input does not satisfy the structural assumption of a wireless network (an NP-hard

problem).
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49:2 T. NIEBERG ET AL.

1. Introduction

This article looks at the construction of some basic structures needed for effi-

cient communication and organization strategies in large-scale wireless networks,

namely, independent and dominating sets.

Wireless ad-hoc networks are advancing rapidly into our everyday life. The

devices themselves get smaller and more embedded to the point where they are no

longer visible to the eye; they receive into the background of our lives and perform

tasks unattended and without much interaction from users. Numerous small battery-

operated devices sense and interact with the environment and form a collaborative

network by means of wireless multihop communication. Such a network realizes

the vision of ubiquitous computing by creating a smart environment.

These ad-hoc and sensor networks, as well as other wireless networks, are mod-

eled by communication graphs which give the communication links between the

devices that are equipped with wireless transceivers. The characteristics of packet

transmissions over a wireless medium create a network with certain structural prop-

erties. In this article, we look at graph models proposed for wireless communication

networks in various degrees of granularity with respect to reality. While most graph

models in the literature follow a geometric intuition, the unifying structure given in

all these models is the polynomially bounded growth property, which we define and

then use to characterize wireless networks. Generally speaking, bounded growth is

defined and used independently of any metric.

In the context of efficient wireless networking, certain subgraphs play a prominent

role. In this article, we consider independent and dominating sets. A subset of nodes

is called independent if no two nodes from this set are connected, that is, no two

nodes can communicate with one another directly. A subset is called dominating if

all nodes of the network are in reach of at least one node from this subset. In other

words, the notion of domination in a graph represents the fact that a broadcast from

a communication device is received by all its neighbors. At the lowest level that

is concerned by the actual internode communication, nodes in an independent set

do not interfere with each other during simultaneous transmissions, and nodes in

a dominating set of small cardinality can, for example, be used to efficiently reach

the entire network by broadcasts from only these nodes.

We are interested in the problem of finding independent sets of maximum cardi-

nality (and weight) and dominating sets of minimum size. A general solution ap-

proach for these problems is introduced which we call a local neighborhood-based
scheme. The bounded growth property used to characterize wireless networks allows

for strong results on the performance of the presented algorithms. Particularly, we

show that the local neighborhood-based scheme applied to the maximum (weight)

independent set and minimum dominating set problems results in polynomial-time

approximation schemes (PTAS) on this graph class. The approximation schemes

presented here have a runtime of nO(1/ε log 1/ε).

Existing approaches for these and other problems in wireless networks usually re-

quire additional information like the exact positions of the devices in the Euclidean

plane (see, e.g. Li [2003]). However, in many cases, such geometric information

cannot be computed easily. Furthermore, assuming that the radio characteristics

are equal diameter disks is quite idealistic. In reality, radio transceivers do not

have omnidirectional antennas, and even small obstacles change the communica-

tion characteristics. Therefore, approaches that do not explicitly exploit geometric
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information (e.g., positions of the nodes) and that do not idealize the network

structure (e.g. unit disk transmission ranges) are preferred. Our approach does not

require geometric information nor does it idealize the wireless network structure.

Additionally, our approach is robust in the sense that the resulting algorithms ac-

cept any undirected graph as valid input, and then return a solution that meets

the required bound on the approximation ratio or correctly assert that the in-

put graph does not reflect a wireless communication structure. Especially when

looking at applications in networks that are driven by unreliable communication

links, robustness is an important property since it ensures meaningful output in any

case.

The remainder of the article is organized as follows. Next we give some definitions

needed later on and present some related work. In Section 2, we discuss graph

classes used to model wireless communication networks and establish their common

structure called polynomially bounded growth. Section 3 introduces the technique

used to obtain approximation schemes in these graphs, and, in Section 4, we show

how to modify the approach towards robust schemes. The article ends with a short

conclusion.

1.1. PRELIMINARIES. Generally speaking, communication networks are mod-

eled as undirected graphs G = (V, E). The vertices V represent the communication

devices or nodes, and two nodes are connected by an edge in E if they can com-

municate directly with one another.

Additionally, the vertices of the communication network may be weighted, that

is, every vertex v ∈ V has an assigned weight wv , and we assume these weights

to be positive values. In the context of wireless ad-hoc networks; these weights

usually reflect residual energy or capabilities of a node for a specific task.

Two vertices of a graph are called independent if they are not adjacent to one

another. A subset I ⊆ V is called independent if all vertices are not connected.

In other words, I is an independent set if the subgraph Gi induced by I contains

no edges. When seeking such independent sets of maximum cardinality (or overall

weight), we obtain the maximum (weight) independent set (MIS) problem.

A subset D ⊆ V is called dominating if every vertex from V is contained in

this subset or adjacent to a vertex from D. The resulting minimum dominating set
(MDS) problem then asks for such a dominating set of minimum cardinality.

Note that a subset can be both independent and dominating. Such a set is then

called a maximal independent set. Formally, an independent set is called maximal
if it cannot be extended by the addition of any other vertex from the graph without

violating the independence property. It is easy to verify that a maximal independent

set is also dominating.

A polynomial-time approximation scheme (PTAS) is an algorithm which, in

addition to an input instance, requires a parameter ε > 0, which then returns a

solution with a relative error of at most 1 + ε with respect to an optimal solution.

The running time of such algorithms is allowed to depend on ε but should be

polynomial in n := |V | for fixed ε > 0. For example, a PTAS for the MDS

problem returns a dominating set of cardinality at most (1+ε) times the cardinality

of a minimum cardinality dominating set.

Let V ′ ⊆ V be a subset of vertices in G. In the following, we use G[V ′] to denote

the the subgraph induced by V ′. In case of a weighted graph, we define the weight

of a subset V ′ by W (V ′) := ∑
v∈V ′ wv .
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49:4 T. NIEBERG ET AL.

Furthermore, we denote by �(v) the closed neighborhood of a vertex v ∈ V ,

that is, �(v) := {u ∈ V | (u, v) ∈ E} ∪ {v}. Analogously, for V ′ ⊆ V , let

�(V ′) := ⋃
v∈V ′ �(v). For r ∈ N, we call �r (v) := �(�r−1(v)) the recursively

defined r -th neighborhood of v ∈ V , with �0(v) := {v}.
1.2. RELATED WORK ON GEOMETRIC INTERSECTION GRAPHS. Most work on

optimization algorithms for wireless networks has been done using geometric in-

tersection graphs as underlying models for the communication network [Nieberg

and Hurink 2004]. In this context, unit disk graphs are probably the most prominent

class of graphs used [Li 2003]. These graphs are defined by looking at the inter-

sections of equal diameter disks in the plane. Several variants and modifications

to this basic model exist (see Section 2). The MIS and MDS problems considered

here remain NP-hard on unit disk graphs [Clark et al. 1990].

An important detail when using disk graphs is the encoding of the input instance.

Basically, there are two ways of describing a geometric intersection graph, by its

adjacency and by its geometric information. While the first presents the graph as

an undirected graph, the latter conveys more information that can be exploited ex-

plicitly by respective algorithms. Note that this is a significant distinction because

determining for a given graph whether it is a disk graph is an NP-complete problem

[Breu and Kirkpatrick 1998; Kratochvil 1997], and therefore computing a repre-

sentation that gives feasible positions to each node in a disk graph (of which we

have adjacency information only) is an intractable problem.

In case geometric information is available, we can use geometric separation and

a shifting strategy to obtain a PTAS for many problems on (unit) disk graphs. This

strategy gives, for example, a PTAS for the MIS, MDS, and vertex cover problems

on UDGs [Chan 2003; III et al. 1998] and the minimum connected dominating set

problem on UDGs [Cheng et al. 2003]. Combined with a dynamic programming

approach, the shifting strategy also gives a PTAS for the MIS problem on disk

graphs with arbitrary radii [Erlebach et al. 2005]. Also using separation alongside

the geometric positions of the vertices, a constant-factor approximation algorithm

for the minimum weight dominating set problem is presented in Ambuehl et al.

[2006].

Without geometric information, a robust PTAS for the MIS and MDS problems

on unit disk graphs are presented in Nieberg et al. [2004] and Nieberg and Hurink

[2005]. These schemes are the basis for the approach presented here.

2. Wireless Graph Models

A wireless network is created by the communication links between a collection of

radio transceivers. The nature of wireless transmissions does not lead to an arbitrary

undirected graph but to a structured graph. In this section, we introduce the class

of graphs with polynomially bounded growth and show that many other classes

of graphs used to model wireless communication networks satisfy the bounded

growth property. While most existing wireless graph models rely on geometric

information of the nodes and their transmission ranges, bounded growth is defined

independently of any geometric information as follows.

Definition 2.1. Let G = (V, E) be a graph. If there exists a function f (.) such

that every r -neighborhood in G contains at most f (r ) independent vertices, then
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G is f -growth-bounded. Furthermore, we say that G has polynomially bounded

growth if for some constant k ≥ 1, f (r ) = O(rk) holds.

Graphs of bounded growth are sometimes also called graphs of bounded (local)

independence. Note that the growth function f (.) only depends on the radius of

the neighborhood and not on the number of vertices in G. Thus, for constant r , the

number of independent vertices in �r (v) is bounded by a constant for any v ∈ V . It

is straightforward to verify that the bounded growth property of a graph is closed

under taking vertex-induced subgraphs.

2.1. GEOMETRIC INTERSECTION GRAPH MODELS. A wireless network is cre-

ated by nodes that are equipped with a radio transceiver and that are placed in

the real world. The environment, especially the positions of the nodes, has to be

accounted for, and it is no surprise that most wireless graph models are therefore

defined for the Euclidean space. We present several geometrically inspired graph

models in various degrees of granularity with respect to reality and establish the

polynomially bounded growth property for these. In the following, we use ‖.‖ to

denote the Euclidean distance in R
2.

Usually, the models result from geometric intersection or containment graphs

which give the general idea behind these models. Next, we introduce these graph

models in general, and then specify additional characteristics in order to justify

them for the purpose of modeling wireless communication networks.

We assume that the vertices of the graph, that is, in our case, the wireless nodes,

are placed in the 2-dimensional Euclidean plane. In other words, there exists a

mapping p : V → R
2 which gives each vertex v ∈ V its location pv ∈ R

2.

Furthermore, each wireless node has a certain area which is covered by its radio.

For every v ∈ V , let this area be represented by Av ⊂ R
2. As a consequence,

another vertex u ∈ V can receive a transmission, and thus a message from v , if and

only if pu ∈ Av holds.

To present the possible communication or interference between wireless nodes,

two different graph models are considered. The first one is the containment model,
where the set of edges is characterized by

(u, v) ∈ E ⇐⇒ pu ∈ Av .

This model gives the possible direct communication between nodes and results in

a directed graph model. If we only look at the coverage areas of the models, we can

also define the intersection model as follows:

(u, v) ∈ E ⇐⇒ Av ∩ Au �= ∅.

With this symmetric model, interference during simultaneous transmissions can be

explored. If two nodes transmit at the same time, a node in the nonempty intersection

receives both transmissions simultaneously and may thus not be able to reconstruct

the messages.

The resulting graphs are called intersection and containment coverage area
graphs. If we consider each undirected edge to be a two-way edge between the

respective vertices, it is easy to see that the containment graph is completely con-

tained in the intersection graph for the same set of vertices and coverage areas. In

the following, we refer to a set of positions and corresponding coverage areas as

geometric representation of an intersection or containment graph.
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FIG. 1. Proof of Lemma 2.3.

Throughout the following, we do not differentiate strictly between the contain-

ment and intersection graph models and consider all edges to be undirected. We

now consider specially structured coverage area graphs.

(Unit) Disk Graphs. In practice and real-world settings, the coverage areas

follow the laws of physics, especially the laws of radio wave propagation with

respect to the environment in which the network operates. The most basic model

used for wireless communication is a unit disk graph. Suppose that all wireless

nodes are equal and are placed in an ideal environment, that is, all nodes send with

the same transmission radius and have the same circular coverage area. By proper

scaling, we may assume the diameter of the disks to be of unit length, and then

define a unit disk graph as follows.

Definition 2.2. A graph G = (V, E) is a unit disk graph if there exists a map

p : V → R
2 satisfying

(u, v) ∈ E ⇐⇒ ‖pu − pv‖ ≤ 1.

In other words, a UDG is the intersection graph of unit diameter disks in the

Euclidean plane. Note that Definition 2.2 actually characterizes both intersection

and containment graphs, and all edges are bidirectional. Unit disk graphs have

polynomially bounded growth, which follows from a simple geometric packing

argument given in Figure 1.

LEMMA 2.3. Let G = (V, E) be a unit disk graph. Then, G is of (2r + 1)2

bounded growth.

PROOF. From the Definition 2.2 of a UDG, we conclude that any w ∈ �r (v),

v ∈ V satisfies

‖pw − pv‖ ≤ r.

Let I ⊂ �r (v) denote an independent set in the r -neighborhood of v . The unit disks

corresponding to vertices in I are pairwise disjoint and are all contained in a disk

of larger radius R with R = (r + 1/2) around f (v). This implies

|I | ≤ π R2

π (1/2)2
= (2r + 1)2

as claimed.
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While UDGs as models for wireless networks are quite idealistic, they are the

basis for more realistic models. If the wireless nodes are able to adjust their trans-

mission power, still in ideal settings, then different circular coverage areas emerge,

and we obtain a disk graph.

If the ratio of the diameters of the largest and smallest disks in such a disk

graph are bounded by a constant, we again obtain a graph of polynomially bounded

growth. This can easily be seen by adapting the geometric packing argument used

in the proof of Lemma 2.3.

Quasi-Disk Graphs. While unit disk graphs are widely used to obtain strong

theoretic results for graph algorithms, one might argue that they are not very realistic

since ideal assumptions are made for the radio propagation.

Refining the idea behind disk graphs by no longer limiting the reasons for different

radii to the transmission power, but also to environmental reasons like objects, we

can define a Quasi-Disk Graph (QDG, [Kuhn et al. 2003]) as follows.

Definition 2.4. A graph G = (V, E) is a quasi-disk graph if there exist two

values 0 < c− ≤ c+ and a map p : V → R
2, satisfying (u, v) ∈ E , if ‖pu − pv‖ ≤

c− and (u, v) �∈ E if ‖pu − pv‖ > c+.

In such a quasi-disk graph, there are two disks D+ and D− of radius c+ and c−,

respectively, that can be placed around each vertex position such that D− ⊆ Av ⊆
D+ holds for the coverage area Av of that vertex. A more intuitive characterization

of a quasi-disk graph based on transmissions is as follows.

—Two vertices u, v ∈ V, which are sufficiently close to each other, that is, ‖pu −
pv‖ ≤ c− holds, always receive each other’s messages.

—Two vertices ū, v̄ ∈ V that are too far apart, that is, ‖pū − pv̄‖ > c+, cannot

communicate directly.

If c− < ‖pu − pv‖ ≤ c+ holds for two vertices u, v ∈ V , the existence of an edge

is not explicitly defined but depends on the concrete shapes of Av and Au . Further-

more, effects like fading and the resulting unreliable transmission characteristics

can be incorporated into this model.

By slightly adjusting the geometric packing argument in the proof of Lemma 2.3,

it is clear that a QDG also has polynomially bounded growth when the ratio of the

diameters is bounded.

In practice, it may not be possible to give a radius on the transmission range

where coverage can be guaranteed for all wireless nodes, for example, when these

are mounted on concrete walls. Leaving the idea of circles that reflect the coverage

area, we only consider the area itself. We assume that the size (or volume) of

the coverage area of each vertex is bounded and that it does not stretch too far

from each vertex position. Again, the geometric argument can be adapted to show

polynomially bounded growth as it does not depend on disk shapes.

2.2. GRAPHS BASED ON METRIC SPACES. While wireless networks operate in

the Euclidean space, we can extend the previous graph models to intersection graphs

induced by other metrics. Analogously to unit disk graphs, we immediately obtain

the following characterization of unit ball graphs.

Definition 2.5. Let M = (X, d) be a metric space with a distance function

d : X2 → R. A graph G = (V, E) is a unit ball graph (UBG) if there exists a
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mapping p : V → X such that

(u, v) ∈ E ⇐⇒ d(pu, pv ) ≤ 1

holds. The pair (M, p) is called a representation of G.

However, in this context, note that any undirected graph is such a unit ball graph

by taking the shortest-path distance as the metric on V = X . So a UBG is not

necessarily growth bounded.

Nevertheless, further restricting the metric space, we can identify a large class of

metric unit ball graphs with polynomially bounded growth. Such a restriction uses

a bound on the growth of the metric space M , which is defined as follows [Assouad

1983; Gupta et al. 2003].

Definition 2.6. Let M = (X, d) be a metric space. The doubling dimension ρ
of M is the smallest ρ such that every ball of radius r can be completely covered

by at most 2ρ balls of radius r/2. If ρ is bounded by a constant, we say that M is

doubling.

Analogously, we refer to a unit ball graph as doubling if there exists a represen-

tation where the underlying metric space is doubling. The following lemma now

shows that doubling UBGs are growth-bounded.

LEMMA 2.7. Let G = (V, E) be a unit ball graph with a representation (M, p)

such that the metric space M = (X, d) has doubling dimension ρ. Then, G has
f -bounded growth with f (r ) = O(rρ).

PROOF. For a vertex v ∈ V and a radius r ≥ 0, consider the neighborhood

�r (v), and let I ⊂ �r (v) denote an independent set therein.

Both �r (v) and I are contained in a ball {v ′ ∈ V | d(pv , pv ′) ≤ r} of radius

r around pv . Also, for every u ∈ I , the ball with radius 1/2 around pu , given by

{v ′ ∈ V | d(pu, pv ′) ≤ 1/2}, does not contain another vertex from I . In other

words, for all u ∈ I , these balls are mutually disjoint.

The number of balls of radius 1/2 needed to cover the ball of radius r around pv
and thus �r (v) is at most 2ρ log(2r ) = O(rρ), and the claim follows.

Also, the geometric graph models can be generalized to a doubling metric space.

This more general characterization allows us to use a distance function not only

based on geometric distance, but also on characteristics of the wave propagation of

the wireless medium. We can thus relate signal strength, distance, and transmission

characteristics to obtain a suitable metric intersection graph model for the wireless

communication network.

In the remainder of this article, we assume the graph to be of polynomially

bounded growth. With respect to the problems of this article, in Clark et al. [1990],

it is shown that both the MAX-IS and MIN-DS problems remain NP-hard even on

unit disk graphs, and thus on graphs of bounded growth, as well.

3. Local Neighborhood-Based Approximation Schemes

In this section, we present an approach for approximation schemes that does not

rely on positional information of the vertices but assumes only knowledge of the

adjacency of each vertex in the graph. We assume the graph G = (V, E) to be of
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polynomially bounded growth, thus completely abandoning any underlying geo-

metric structure. Let p denote the growth polynomial of G.

Denote by P(V ) the set of all subsets of vertices. We then define two functions

I : P(V ) → P(V ) and D : P(V ) → P(V ) which return an independent set of

maximum cardinality and a dominating set of minimum cardinality, respectively,

for the subset given as argument. For a subset V ′ ⊆ V , the set I (V ′) is independent

in V ′, and D(V ′) dominates V ′. For D(V ′), the inclusion D(V ′) ⊆ V ′ needs not to

hold. Therefore, in the following, the function D(.) is always computed with respect

to the entire underlying graph G. However, it is easy to see that V ′ ⊆ �(D(V ′))
and that D(V ′) ⊆ �(V ′) hold.

Using the previous definitions, we are interested in a polynomial time approxi-

mation of I (V ) and D(V ) within a factor of 1 + ε for any given ε > 0.

In order to simplify the notation, for some vertex v ∈ V and its r -th neighbor-

hood �r (v), we use Ir (v) and Dr (v) to denote the independent set I (�r (v)) and the

dominating set D(�r (v)) for �r (v). Further on, in case the vertex v is unambiguous,

we omit indexing the respective neighborhoods and subsets with this central vertex.

Suppose the radius r of a neighborhood �r is bounded. Then by the definition

of bounded growth graphs and the fact that any maximal independent set is also

dominating,

|Dr | ≤ |Ir | ≤ p(r )

holds. With this bound on the cardinality of the locally optimal solutions, it becomes

clear that we can obtain both optimal solutions Ir and Dr in time nO(p(r )) = nO(r )

for this neighborhood �r .

The following algorithms work by creating optimal partial solutions inside neigh-

borhoods of bounded radius, and then combining these partial solutions without

violating feasibility. To describe the approaches taken in a more general way, we

introduce the basic definition of collections of d-separated subsets in G as follows.

Definition 3.1. For a graph G = (V, E), let S = {S1, . . . , Sk} be a collection

of subsets of vertices Si ⊆ V, i = 1, . . . , k with the following property: for any

two vertices s ∈ Si and s̄ ∈ Sj , i �= j,

dG(s, s̄) > d

holds. We refer to S as a d-separated collection of subsets.

It is easy to see that the subsets of any d-separated collection, d ≥ 0 are mutually

disjoint. An example of a 2-separated collection is given in Figure 2. The grey areas

mark the different subsets that make up the collection; vertices which are not part

of it, and thus separate the subsets, are white.

3.1. MAXIMUM INDEPENDENT SET. We now present an approach that gives

the PTAS for the maximum independent set problem on a graph G = (V, E)

of polynomially bounded growth. The basic idea of is simple. We start with an

arbitrary vertex v ∈ V and consider for r = 0, 1, 2, . . . , the r -th neighborhoods

�r and optimal independent sets Ir ⊆ �r therein. We then keep expanding the

neighborhoods as long as

|Ir+1| > (1 + ε) · |Ir |
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49:10 T. NIEBERG ET AL.

FIG. 2. Example of a 2-separated collection S = {S1, . . . , S6}.

holds. Let r̄ denote the smallest r ≥ 0 for which this condition is violated. Such an

r̄ indeed exists, and it is bounded by a constant that only depends on ε.

LEMMA 3.2. Let G = (V, E) be a graph of polynomially p-bounded growth.
There exists a constant c = c(ε) such that r̄ ≤ c.

PROOF. Let r < r̄ . By definition of r̄ , we then have for r

|Ir | > (1 + ε)|Ir−1| > · · · > (1 + ε)r |I0| = (1 + ε)r .

Since the graph G is of polynomial bounded growth, we also have |Ir | ≤ p(r ). By

comparison, that is,

p(r ) ≥ |Ir | > (1 + ε)r ,

the claim follows. Using the inequality log(1 + ε) > 1/2 · ε for sufficiently small

ε, we can bound the constant c by O(1/ε log 1/ε).

To achieve an independent set for the graph G, we iteratively apply this scheme.

Each time the expansion is stopped, we remove the neighborhood �r̄+1 from G and

combine Ir̄ with the partial solution I obtained thus far. A detailed summary of the

approach is given by Algorithm 1, and we now prove its correctness and polynomial

complexity starting with the independence property of the returned solution.

Since Ir̄ ⊆ �r , when we remove �r̄+1, the set �r̄ is 1-separated from all sets to

be calculated in the remaining process. This implies that the created sets �r̄ , at the

completion of the algorithm, form a 1-separated collection. In other words, each

v ∈ V \ �r̄+1 has no neighbor in �r̄ , and thus not in Ir̄ ⊆ �r̄ . A direct consequence

is the following lemma.

LEMMA 3.3. The solution I created by Algorithm 1 forms an independent set
in the graph G.

In order to motivate that all operations can be completed in polynomial run-

time, note that we only need to consider a single iteration as the number of new

central vertices picked in the algorithm is limited by n. Due to the definition of a
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FIG. 3. Algorithm 1: PTAS maximum independent set.

polynomially bounded growth graph and the constant established by Lemma 3.2,

every operation can be completed in polynomial time with the degree depending

only on ε > 0 and not on the size of the graph. It remains to show that the cardinality

of the independent set I meets the desired approximation guarantee of (1 + ε).

THEOREM 3.4. Let I ∗ := I (V ) be a maximum independent set in a graph
G = (V, E). The independent set I computed by Algorithm 1 satisfies

(1 + ε) · |I | ≥ |I ∗|.
PROOF. Suppose inductively that Algorithm 1 computes a (1+ε)-approximate

independent set I ′ ⊆ V \ �r̄+1 for G ′ = G[V \ �r̄+1].

By definition of r̄ , we have

|Ir̄+1| ≤ (1 + ε) · |Ir̄ |.
Since the cardinality of the part of the optimal set I ∗ which lies in G[�r̄+1] is

bounded by the cardinality of Ir̄+1, we get

|�r̄+1 ∩ I ∗| ≤ |Ir̄+1| ≤ (1 + ε) · |Ir̄ |.
Further, by inductive assumption, I ′ is (1+ε)-approximately optimal for G ′. There-

fore,

|V (G ′) ∩ I ∗| ≤ |I (V (G ′))| ≤ (1 + ε) · |I ′|.
Adding the two inequalities, we obtain

|I ∗| ≤ (1 + ε) · (|Ir̄ | + |I ′|) = (1 + ε) · |I |.
Note that Algorithm 1 actually returns a (1 + ε)-approximate independent set

for any undirected graph given as input. We have only used the specific structure

of polynomially bounded growth in Lemma 3.2 in order to bound the radius of the

largest neighborhood we need to consider during execution. However, the crite-

rion to stop expanding a neighborhood is met eventually in any undirected graph,

possibly while considering an O(n)-neighborhood or eventually G itself.

Coming back to the runtime of Algorithm 1, we see that the time needed for

completion of the algorithm is dominated by the constant c = c(ε) of Lemma 3.2.

To be more precise, the runtime is dominated by the time needed to construct an

optimal solution for �r̄+1(v), r̄ ≤ c. The overall runtime of the approach is thus

nO(1/ε log 1/ε).
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Maximum Weight Independent Set. The previous approximation scheme can

easily be adapted for the case that each vertex v ∈ V is given a weight wv . Without

loss of generality, we assume wv > 0 for every v ∈ V . Recall that in this case, we

are interested in an independent set I ⊆ V of high total weight W (I ) := ∑
i∈I wi in

G. We now present the necessary modifications to the previous algorithm in order

to obtain an independent set of weight at least (1 + ε)−1 the maximum total weight

of an independent set in the graph.

The algorithm again follows the idea of expanding the local neighborhood of a

central vertex v . This time, however, the central vertex v is chosen to be a vertex

with maximum weight wv = max{wi | i ∈ V } in the remaining graph G. Then, we

compute an independent set Ir ⊆ �r (v) of maximum weight for increasing radii r
until the criterion

W (Ir+1) > (1 + ε) · W (Ir )

is violated. Let r̄ denote the smallest r ≥ 0 for which this is the case.

LEMMA 3.5. Let G = (V, E) be a polynomially p-bounded growth graph.
There exists a constant c = c(ε) such that r̄ ≤ c.

PROOF. Adapting the proof of Lemma 3.2, for r < r̄ , we get

W (Ir ) =
∑

i∈Ir

wi ≤
∑

i∈Ir

wmax = |Ir | · wmax,

and

W (Ir ) > (1 + ε) · W (Ir−1) > · · · > (1 + ε)r · W (I0) = (1 + ε)r · wmax,

respectively. Since |Ir | ≤ p(r ), combining the two inequalities again yields the

claim.

As a consequence, the running time of this algorithm remains polynomial in the

weighted case with the same time complexity as for the unweighted case. Further-

more, the approximation ratio can be guaranteed by the following theorem.

THEOREM 3.6. The adapted algorithm, that is, choosing a central vertex of
maximum weight in G in each round, creates an independent set I of weight

(1 + ε) · W (I ) ≥ W (I ∗),

where I ∗ denotes an optimal solution to the maximum weight independent set
problem on G.

PROOF. Let V ′ := V \�r̄+1(v) and assume inductively that I ′ ⊆ V ′ is a (1+ε)-

approximate weighted independent set in G[V ′]. Clearly, Ir̄ ∪ I ′ is an independent

set in G.

For the weighted independent set in the neighborhood �r̄+1(v), we have

W (I ∗ ∩ �r̄+1(v)) ≤ W (Ir̄+1) ≤ (1 + ε) · W (Ir̄ )

from the criterion to stop expanding the neighborhoods.
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For the weight W (I ) = W (Ir̄ ∪ I ′) of the overall solution set I returned by the

algorithm, we then get

W (I ∗) = W ((I ∗ ∩ �r̄+1(v) ∪ (I ∗ ∩ V ′))
= W (I ∗ ∩ �r̄+1(v)) + W (I ∗ ∩ V ′)
≤ (1 + ε) · W (Ir̄ ) + (1 + ε) · W (I ′)
= (1 + ε) · W (Ir̄ ∪ I ′)
= (1 + ε) · W (I ).

3.2. MINIMUM DOMINATING SET. In this section, we present a polynomial time

approximation scheme for the minimum dominating set problem on graphs of

polynomially p-bounded growth. The approach also follows the implicit separation

idea of the PTAS for the MAX-IS problem. Again, we use local neighborhoods of

bounded radius and optimal partial solutions therein to obtain a PTAS. However,

while in the previous section, the separation strategy and the overall approximation

followed by rather simple arguments, for the MIN-DS problem, some attention has to

be paid to the manner in which the local neighborhoods are created and put together.

The main part of the algorithm now consists of iteratively constructing domi-

nating sets for the local neighborhoods �r and to stop if the cardinality of these

dominating sets does not grow much anymore. To be more precise, we stop ex-

panding the radius r of the neighborhoods if

|Dr+2(v)| > (1 + ε) · |Dr (v)|
is violated.

Note the possibility that vertices outside a subset are able to dominate vertices

inside this subset. The local dominating sets are always created with respect to G,

and for neighborhoods �r , we have Dr ⊆ �r+1. Therefore, in order to have sufficient

separation, we need to consider a 2-separated structure given by the neighborhoods.

The approach constructs a 2-separated collection of neighborhoods given by the

�r̄ (v), where r̄ denotes the radius upon stopping to expand the neighborhoods. At

this point, we remove �r̄+2 from G and keep Dr̄+2 as part of the solution. The overall

separation can then easily be seen by inductive argumentation: each neighborhood

removed from the remaining set V of vertices satisfies the separation property with

respect to previously removed neighborhoods and the resulting reduced set V for the

following iteration. The algorithm from the this approach is given by Algorithm 2

(Figure 4).

The following lemma then gives a lower bound for partial dominating sets of

2-separated collections with respect to an optimal dominating set for a graph G.

LEMMA 3.7. Let D∗ := D(V ) be a minimum dominating set in a graph G =
(V, E). For a 2-separated collection S = {S1, . . . , Sk} in G, it is

|D∗| ≥
k∑

i=1

|D(Si )|.

PROOF. For each subset Si ∈ S, consider the neighborhood �(Si ). As a di-

rect consequence of the definition of 2-separated subsets, these neighborhoods are

pairwise disjoint. Furthermore, any vertex outside �(Si ) has distance more than

one to all vertices in Si . Therefore, D∗ ∩ �(Si ) dominates Si . D(Si ) ⊆ �(Si ) also
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FIG. 4. Algorithm 2: PTAS minimum dominating set.

dominates Si using a minimum number of vertices. Therefore, we obtain

|D∗ ∩ �(Si )| ≥ |D(Si )|.
Combining this observation for all subsets of S, we get

|D∗| ≥
k∑

i=1

|D∗ ∩ �(Si )| ≥
k∑

i=1

|D(Si )|,

as claimed.

Looking at such a 2-separated collection together with related subsets and

bounded cardinality dominating sets for these, we extend the Lemma 3.7 to re-

ceive an upper bound.

COROLLARY 3.8. Let S = {S1, . . . , Sk} be a 2-separated collection in G =
(V, E), and let T1, . . . , Tk be subsets of V with Si ⊆ Ti for all i = 1, . . . , k. If there
exists a bound ρ ≥ 1 such that

|D(Ti )| ≤ ρ · |D(Si )|
holds for all i = 1, . . . , k, then the set T := ⋃k

i=1 D(Ti ) satisfies

|T | ≤ ρ · |D∗|,
where D∗ denotes a minimum dominating set in G.

PROOF. | ⋃k
i=1 D(Ti )| ≤ ∑k

i=1 |D(Ti )| ≤ ρ · ∑k
i=1 |D(Si )| ≤ ρ · |D∗|.

The partial solutions taken from the respective (r̄ + 2)-neighborhoods �r̄+2 in

each iteration thus satisfy the desired approximation guarantee. Furthermore, the

following lemma establishes the overall domination property for the partial solu-

tions D(�r̄+2).

LEMMA 3.9. The set D returned by Algorithm 2 dominates the graph G.

PROOF. Let Ni denote the neighborhoods �r̄+2(v) removed from V in each

iteration i = 1, . . . , k of the algorithm. Then, since we stop the algorithm when
V = ∅ is reached, it is

⋃k
i=1 Ni = V , and each of these neighborhoods Ni is

dominated by D(Ni ). Therefore,
⋃k

i=1 D(Ni ) dominates G.
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So far, we see that the solution set D returned by Algorithm 2 is a global (1+ ε)-

approximate dominating set for the input graph G. At this point, we would like to

recall that this approximation guarantee is valid for any undirected graph G even

if it does not satisfy the bounded growth condition.

It remains to show that the approximation algorithm has polynomial runtime.

Clearly, the number of times we have to pick a new central vertex, and construct

local neighborhoods and dominating sets for these is bounded by n = |V |. We

may thus limit the further discussion to one iteration only. We focus without loss

of generating on the polynomially growth-bounded graph G = (V, E) in the first

iteration and again show that the radius of the largest neighborhood we need to

consider is bounded by a constant.

LEMMA 3.10. Let G = (V, E) be a polynomially p-bounded growth graph.
There exists a constant c = c(ε) such that the radius r of any neighborhood �r (v)

considered in the algorithm is bounded by c, i.e. r ≤ c.

PROOF. It is |D(�0(v))| = |D(�1(v))| = 1 as the central vertex v dominates

itself and all its neighbors. Consider the criterion for stopping to expand the neigh-

borhoods in Algorithm 2, and consider the inequality |D(�r+2)| > (1 + ε) · |D(�r )|
for all r ≤ r̄ . Suppose that r is an even number, we have

p(r + 2) ≥ |D(�r+2)| > (1 + ε) · |D(�r )|
> · · · > (1 + ε)r/2 · |D(�0)| = (

√
1 + ε)r .

If r is odd, the chain ends at D(�1). Since ε > 0, and thus
√

1 + ε > 1,

the inequalities have to be violated eventually in both cases. Thus, the bound c
on the largest radius of the neighborhoods depends only on the approximation

guarantee ε.

If the input graph of Algorithm 2 is of polynomially bounded growth, each itera-

tion has polynomial running time. The complexity of the computation of D(�r (v))

dictates the overall runtime of the algorithm. Since any maximal independent set

is also dominating, this can be achieved in nO(1/ε log 1/ε).

4. Robustness

We now present a simple way to make the previous approximation schemes ro-
bust. In this case, the robust algorithm accepts any undirected graph as valid input

and either returns a desired approximate solution or outputs a polynomial certifi-

cate showing that the input graph does not satisfy the structural assumption of

p-bounded growth. A robust algorithm must produce correct output regardless

of the input [Raghavan and Spinrad 2003]. More precisely, robust algorithms are

defined as follows.

Definition 4.1. Let A be an algorithm defined on G, f be a function on G,

and U ⊂ G. Then A computes f robustly (on G) if, for all instances x ∈ U , the

algorithm A returns f (x), and, for all instances x ∈ G \U , the algorithm A returns

either f (x) or a certificate showing that x �∈ U .

Of course, the notion of a robust algorithm is especially interesting when A has

polynomial running time with respect to the size of the input, and the decision as to

whether an instance belongs to the subclass U ⊂ G is not so easy to decide. In our

situation, G is the set of all undirected graphs and U are all those graphs that have
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polynomially bounded growth. The function f then computes a (1+ε)-approximate

subset of the vertices, depending on the problem.

In the previous section, we have seen that the approximation algorithms intro-

duced actually yield a PTAS when the instance reflects a graph of polynomially

p-bounded growth. We thus continue the discussion only for the case where the

undirected graph G = (V, E) presented to the algorithm does not satisfy the char-

acterization of a polynomially bounded growth graph.

Observe that both approximation algorithms return an independent or dominat-

ing subset, I or D, respectively, for G also in the case where G is a general graph.

We only use specific properties of bounded growth when deriving the polynomial

runtime of the algorithms. In both problems, the polynomial runtime of the approx-

imation algorithms results from the bound p(r ) on the size of any independent set

and an optimal dominating set in the r -th neighborhood, that is, |Dr | ≤ |Ir | ≤ p(r ).

If, during execution of the algorithm, a neighborhood �r contains an independent

set of size larger than p(r ), we can use this neighborhood as a polynomial certificate

showing non-membership in the class of p-bounded growth graphs.

By definition of polynomial bounded growth graphs, any independent set in

�r has to satisfy the given bound on the cardinality. For dominating sets, this

bound obviously does not hold. However, before considering dominating sets for

a neighborhood �r , we can use a simple greedy approach to quickly compute a

maximal independent set as a starting point. This independent set is then used to

guarantee the polynomial runtime of the algorithm, making the approach for the

MIN-DS approximation scheme robust in the prior sense as well.

We can thus apply the approximation schemes to any undirected graph which

is believed to be of polynomially bounded growth without risk of failure, that is,

exponential running time, if this assumption is wrong. In wireless ad-hoc networks,

this gives us the advantage to indirectly account for all the uncertainties and the

dynamic behavior which govern the resulting applications: there may exist wireless

communication graphs in very harsh environments for which the polynomially

bounded growth assumption does not hold. In this case, we at least receive feedback.

Furthermore, robust algorithms can be combined in sequence where the computed

solution is used as input for further algorithms, that is, as building blocks of more

general algorithms. In other words, robustness is preserved by composition. This

is to be contrasted to the non-robust case where an algorithm need not produce

an output or even terminate if the input does not satisfy the additional structural

properties and some produced output may not even be a feasible solution to the

problem at hand.

5. Conclusions

In this article, we presented an approach that yields polynomial-time approximation

schemes for the maximum independent set and minimum dominating set problems

on graphs with polynomially bounded growth. Such graphs can be used to model

wireless communication networks independent of any geometric information. The

approaches presented are robust, making them well-suited for the dynamic and

sometimes unpredictable nature of wireless transmissions.

We believe that the local neighborhood-based approach presented in this article

can be applied to a variety of different, related problems on graphs of polynomially

bounded growth.
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