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Abstract

The geometric approach to autonomous classical mechanical systems in terms of a canonical first-order system on the
Whitney sum of the tangent and cotangent bundle, developed by Skinner and Rusk, is extended to the time-dependent frame-
work. 0 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction w = pr; wg, With wg the canonical symplectic form
on 7*Q, one can consider the following equation:

In 1983, it was shown by Skinner and Rusk that
the dynamics of an autonomous classical mechanical 2% = 4 @
system, with configuration spag, can be properly  \here 1 := (pr;, pr,) — L o pr,, and { , ) denotes
represented by a first-order system on the Whitney ne natural pairing between the dual bundiEsQ
sumT*Q & T Q [1-3]. If the system under considera-  andr Q. If the given Lagrangiard is regular, analy-
tion admits a Lagrangian description, with Lagrangian sjs of (1) shows that there exists a unique solu-
L € C*(T Q), the corresponding first-order system on  tion 7 which is tangent to the graph of the Legendre
T*Q @ T Q is a Hamiltonian system with respectto @ map Leg :7Q — T*Q, (g4, vA) > (g4, dL/dv ™),
canonical presymplectic structure. The Skinner—Rusk \yhere they# are local coordinates o@ and(g#, v4)

formulation can be briefly summarized as follows. De- genote the corresponding bundle coordinate® ¢h
noting the projections of *Q & T Q onto T*Q, re-

spectivelyT'Q, by pr, respectively ps, and putting Remark. Here and in the sequel we will adopt the

following definition for thegraph of a bundle map-
mspond,ng author ping. Let E1 and E» denote two fibre bundles over the
| u . .
E-mail addresses:cortesmonforte@math.utwente.nl same base spacd, and letf: Ey — E, (m, e) >

(J. Cortés), s.martinez@imaff.cfmac.es (S. Martinez), (m, fu(e)) be afibre bundle mapping over the identity.
frans.cantrijn@rug.ac.be (F. Cantrijn). Then we define the graph of as the image of the
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mappingf x yidg, : E1 — E2Xxpy Eq1, (m, e) € E1 +— cal system. Although it is quite common in treatments
(m, fin(e),e). of time-dependent mechanics to fix a trivialization of
7, i.e.,towork on a direct product spaRex Q (= E),
we will not select such a trivialization here. The nat-

The equations of motion induced by the vector ural space to consider then for the treatment of time-
field Z are equivalent to the Euler—Lagrange equations dependent Lagrangian mechanics is the first jet space
for the system under consideration (see [2]). The Jlx, with the Lagrangian of the system being given
important point now is that this equivalence between as a functionL € C*®(J1x). The immediate candi-
a Lagrangian system and the corresponding first- date for replacing the direct sufi*Q & T Q in the
order system (1) orf*Q & T Q also holds if the Skinner—Rusk model for autonomous systems, seems
given LagrangianL is singular. In that case, in to be the fibred productiz* xg Jlx, whereJin*
order to extract a consistent system of differential is the “dual” of the affine bundlg/lz (for this no-
equations from (1), one will have to invoke a constraint tion of dual, see, e.g., [12]). It turns out, however, that
algorithm. In fact, one of the main motivations for this is not an appropriate choice for the following rea-
the work of Skinner and Rusk was precisely to sons. First, there does not exist a natural pairing be-
show that the Dirac—Bergmann approach to singular tweenJ'z andJz*, needed for the construction of
Lagrangian systems can be properly described on thethe time-dependent analogue of the “Hamiltonign”
Whitney sum of the tangent and cotangent bundle appearing in (1) and, secondly, there is no canonical
of the configuration space, thereby avoiding some 2-form onJlz* to take over the role of the symplec-
ambiguities occurring in the literature on the subject. tic form w¢ in the autonomous picture. To overcome

The Skinner—Rusk formalism has been applied by these difficulties we will show that the appropriate
several authors in various contexts [4-7]. As one space to consider is the fibred prod@¢tE x ; J 1.
of the benefits of the formalism it turns out that it Two final remarks are in order here. First of all, al-
provides an appropriate setting for a geometric ap- though we will restrict ourselves to Lagrangian sys-
proach to constrained variational optimization prob- tems, it is clear that, in analogy with the autonomous
lems. The latter are frequently encountered, for in- case (cf. [1]), the treatment can be easily extended
stance, in mathematical economics and in engineering.to more general time-dependent mechanical systems,
This has been demonstrated, in particular, for some with forces not necessarily derivable from a potential.
optimal control problems in [6], and for the so-called Secondly, it is interesting to note that the ideas devel-
vakonomic dynamics in [7] (see also [8]). The factthat oped here also admit a further extension to classical
it would be interesting to extend those results to the field theory, as has been demonstrated in a recent pa-
time-dependent framework, allowing for systems with per by de Ledn et al. [13].
an explicit time-dependence of the “forces” and/or The present Letter is organized as follows. In the
the constraints, is the main motivation underlying the next section we briefly recall the jet bundle approach
present work. More precisely, we will develop here a to time-dependent Lagrangian and Hamiltonian me-
time-dependent version of the Skinner—Rusk formula- chanics, including the description of the constraint al-
tion of dynamics, using the language of jet bundle the- gorithm in case of a singular Lagrangian. In Section 3
ory [9] and cosymplectic geometry [10]. Among the we then develop the Skinner—Rusk formalism for
virtues of this new formulation of time-dependent me- time-dependent systems. We end with some conclu-
chanics, we would like to stress the possibility it offers sions and an outlook on future work along these lines.
to model a large class of systems, also in areas such as
economics and control theory. Applications for which
this framework seems to be particularly well-suited in- 2. Non-autonomous L agrangian systems
clude stabilization and trajectory tracking of mechan-
ical systems by means of time-dependent transforma-2.1. The regular case
tions (see, e.g., [11]).

Our starting point is a fibre bundle : E — R, Let 7 : E — R be a fibre bundle (the evolution
with E representing the evolution space of a mechani- space), with dinE = + 1 and local bundle coordi-
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nates(t,¢4), A=1,...,n. Consider the correspond-
ing 1-jet spaceJ'x, with coordinates(r, g%, %)
and associated projectiona:Jln — R and m10:
Jim — E. Given a time-dependent Lagrangidn
Jlr — R, the Euler-Lagrange equations read in lo-
cal coordinates

d(aL aL

dr an> ~ 9gh

—0. @)
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the maph = Leg; oleg; . The mapping:: J1z* —
T*E is a section of the projection, i.e.,vo h =
id;1,+ and is called a Hamiltonian of the system. Next,
denote bywg the canonical symplectic two-form on
T*E and letw, = h*wg be its pull-back toJlr*
underh. If n1:= (71)*dt, then (wy, n1) defines a
cosymplectic structure orilz*. In addition, one has
that leg (wn) = wr and led n1 = 7. It then easily
follows that the solutiorX of (3) is leg -related to the

These equations can be rewritten in geometrical terms (unique) solutiort’ of the equations

as follows. Define the Poincaré—Cartan 1-form and 2-
form

Op =Lij+S*(dL), wp=-dOp,

wherefi =} (dt) andS = (dg* — ¢4 dt) ® (3/3¢™)
is the canonical vertical endomorphism dhr (see
[9]). The action ofS on 1-forms is denoted by*.
Egs. (2) can then be expressed as

3

If the given Lagrangian is regular, then; has
maximal rank and the paifw., 77) determines ao-
symplectic structureon J1z, i.e., both forms are
closed and satisfy the condition$ A7 # 0, w”“ =0
(cf. [10]). It then follows that (3) admits a unique
solution, called th&uler-Lagrange vector fielfbr L,
and which we will denote byX;. It is a second-
order vector field, i.e..S(X.) = 0 and ix,n =1,
and a direct computation shows that integral curves
of X; determine solutions of the Euler-Lagrange
equations (2) and vice versa.

There also exists an alternative Hamiltonian de-
scription of the problem. Consider the Legendre map
Leg, :Jir — T*E, defmed by Leg(jle)(v) =
(O1) j14(0) for jte € Jin, v e Ty E and for any

veT, 1¢J1n such thatry o, (7) = v. Let Vr denote
the subbundle of E consisting ofr -vertical tangent
vectors, and denote its annihilator T E by (Vr)°.
Consider the quotient bundlglz* = T*E/(Vr)?,
which is called the dual of *z, with associated pro-
jectionsv:T*E — Jin*, #10:J'n* — E and71:
Jiz* — R. Finally, denote by leg: J1zr — Jiz* the
composition leg = v o Leg;. If L is regular, then
Leg; is an immersion and legis a local diffeomor-
phism.

Assume now that the Lagrangidris hyperregular,
thatis, leg is a global diffeomorphism. Consider then

ixwr =0, ixn=1

=0, 4)

Note that, always under the assumption of (hyper)reg-
ularity of L, the vector fieldsX, respectivelyy, are
precisely the Reeb vector fields corresponding to the
cosymplectic structure®y , 77), respectivelywy, n1).

iywp iym=1

2.2. The singular case: the constraint algorithm

Suppose now that the given Lagrangianis de-
generate, in the sense that the Hessian madix./
3g404%) is singular. We confine ourselves to the case
where this matrix has constant rank everywherersay
The pair(wr, 17) then satisfies the following relations
(cf. [14,15]):

wp A1 #O, oA =0, w2 =0.

It follows that 2 < rankw; < 2r + 2. In general,
Egs. (3) will not admit a global solutioX. More-
over, if a solution exists it will not be unique. There-
fore, in order to determine a consistent dynamics for
such a system (if it exists) one has to apply a con-
straint algorithm which, at least in the case of La-
grangian mechanics, should be supplemented with the
“second-order equation condition”. For completeness,
we will now briefly sketch the constraint algorithm de-
scribed in [14,15], which is an adaptation to the time-
dependent setting of the well-known geometric con-
straint algorithm for presymplectic systems developed
by Gotay and Nester [16,17].

With a view on its application later on, we will
describe the constraint algorithm here in the general
framework of a structurg€M, §2, n) consisting of a
smooth manifoldV, a closed 2-fornf2 and a closed
1-formp, satisfying
Qr+2 =0,

2" An#0, 2 Ap=0,



J. Cortés et al. / Physics Letters A 300 (2002) 250-258 253

for somer < dimM. On M we then consider the P, but P, # Py_1, then P; is called thefinal con-
equations straint submanifoldwhich we denote by;. Now, it
may still happen that dil?; =0 (i.e., Py is a discrete

ix$2=0, ixn=1 ®) set), in which case the given problem admits no proper
One can prove that there exists a veckore T, M dynamics. However, if dinPs > 0, then we know by
satisfying these equations at the poiriff rank 2, = construction that there exists a vector fieddon M,

2r (see [14]). In particular, it follows that (5) admits ~ defined alongPy, which is tangent ta°s and satisfies

a global (but not necessarily unique) soluti@niff the equations

£2 has constant rankr-2in which case the given pair
(£2,n) defines a so-callegrecosymplectic structure
on M. If this is not the case, the constraint algorithm i.e., the given dynamical problem admits a consistent
proceeds as follows. P# := M and consider the set  solution onPy. In general, however, this solution will
not be unique: given a solutioX, for any smooth
Py:={x € M |3X, € T.M such that sectionY of the bundle(kers2 N kery) N T P; over
ix,2:=0, ix,ne =1}. Py, X +Y is also a solution.
If we are dealing with a time-dependent Lagrangian
system, i.e., Wit = J1r, 2 =wy, n =i (=d1),
this is not the full story. First of all, we then also
have to impose the so-called “second-order differential
equation” condition, i.e., we are only interested in a
solutionX which determines a system of second-order
ordinary differential equations. Secondly, as in the
autonomous case, one can develop a similar constraint
algorithm on the Hamiltonian side (i.e., aflz*)
and, under a suitable assumption regarding the given
Lagrangian, one can show that both descriptions are
P3:={x € P2|3X, € T P; such that equivalent. For more details, we again refer to [14,15].
iy 200)=0,ix.n(x)= 1} In the next _sect|0n we will show how the aboye can
* * be translated into a Skinner—Rusk type formulation for
= {xe P2l nx en(Tx P2}, time-dependent Lagrangian systems.

whereb is the bundle morphism defined by

llx.Q|Pf=0, ixmple,

According to the previous observation, this set can be
equivalently characterized b, = {x € P; | rank$2,

= 2r}. We then assume thaP, is an embedded
submanifold ofP; (= M) and we denote the natural
inclusion by jo: P, — P;. We are then assured that
Egs. (5) admit a solutiorX defined at all points of
P>, but X need not be tangent t& and, hence,
does not necessarily induce a dynamics ®n We
therefore have to continue the constraint algorithm by
considering the subset

b:TM—T*M, veET M iy2x+ (iyn)ny. 3. Skinner—Rusk formulation

Assuming P3 is a submanifold ofP,, with inclusion

map jz: P3 — P», it follows that there exists a vector
field X on P,, which satisfies (5) at points ofs.
Again, however, such aki need not be tangent 3,

and one may have to repeat the above procedure. In
this way, a descending sequence of submanifolds

We start again from a fibre bundte: E — R, with
n-dimensional fibre, and its first jet spaéér . Bundle
coordinates onE and J1x are denoted byr,g*)
and (¢, g%, ¢*), respectively. Canonical coordinates
on T*E will be written as (t,¢%, 7, pa) and the
canonical symplectic form off* E then readsvg =
dg* A dpa + dt Adt. We now consider the fibred
product of the bundle§*E and Jx overE, i.e.,
is generated, with T*E xg Jm, with projections py: T*E x g Jim —

T*E, pty:T*E xg Jim — Jln and prT*E xg
Pei={x e Pea|nx e0(TiP-n)} (€22), ©) Jix —>p§. The natural bundle coordina?es’ﬁhE X g
and whereP; is called the¢-ary constraint submani-  J1z are(t, ¢4, 7, pa, ¢4).
fold. If this sequence terminates at a nonempty set, in ~ On T*E xg Jlz we define the 2-formw as
the sense that for some finite> 1 we haveP;1 = the pullback of the canonical symplectic form on

Je+1 Je Jja J3 J2
PSS B Py PSS P (=M)
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T*E, i.e., o = prywg, and the 1-formn = (7 o
pn*(dt) = pryn. For simplicity we will sometimes
write = dr. Recall that the affine bundlglzr can
be identified with an affine subbundle &fE whose
underlying set is given byfv € TE | (dt,v) = 1}.
In coordinates, the natural embeddipg/1n < TE
reads; (1, g%, ¢*) = (1,9*, 1,¢™).

Given a Lagrangiai € C*(J1x), we can define
the following function ol E x g J1x:

H = (pry, jopry) —pr; L,

where(, ) denotes the natural pairing between vectors
and covectors oI . In coordinates this becomes=
pag* + 1 —L(t, g%, ¢*). Putting

oy=w+dH An,

we can then consider the following equations:

(@)

Let us try to find out, in coordinates, what kind of
dynamics is encoded by (7). For that purpose, we
write Z as

iZwHZO, izn=l.

7=2247, 2 179, O
I AR 7 N PR P
+ZqA3q

From the second equation in (7) we deduce that
1, and the first equation then becomes

izon =iz0+ Z(H)dt —dH

L
=<Z(H)+¥—Zr)dl
L 4
{57~ Zr ) da
L
—(p ¥ A)dq + (2,0 — ") dpa

=0.

This immediately givesZ . = ¢* and Z,,, = L/
dg”, together with the following constraint equations:
pa = 0L/3¢*. These constraints determine a sub-
manifold of 7*E x z J1z which, for convenience, we
will denote by M. With the above expressions for
Z,a, Zp, andZ,, we see that the remaining condition
Z(H)+ 0L/ot — Z, = 0 is identically satisfied at all

J. Cortés et al. / Physics Letters A 300 (2002) 250-258

points of M, irrespective of the value of the compo-
nentszZ, andZC-[A. Note that the reIatiquA =g¢%re-
flects the second-order differential equation property.

The previous analysis already shows that (7) locally
admits a solutiorZ, defined in points of the subman-
ifold M, of T*E xg J1x. In fact, we have a whole
family of solutions since the componerfis andZéA
can still be chosen arbitrarily.

In order to obtain consistent equations of motion,
however, we have to impose the condition tiabe
tangent to the submanifoltf, , that is, the functions
Z(pa — dL/34*) should vanish at points a¥f; for

al A=1,...,n. We now have that
. L\ AL 9L 9°L
PAT 548 ) T 9gA 91944 9¢B9g A
9%L

Clearly, if L is regular, the vanishing of (8) fixes all the
component¥,. as functions ofz, g*, ¢*) on M. If
not, one will have to apply a constraint algorithm.

3.1. The regular case

Let us assume that the given Lagrangiais reg-
ular. The previous analysis tells us that the system (7)
admits a solutiorZ on My and it follows from the
expression for the componeris, Z 4, Zp,,, Z;4 that
any integral curve oZ on M; determines a solution
(g2 (1)) of the corresponding Euler—-Lagrange equa-
tions of motion

a,A

oL
9G4 dq

However, the solutionZ is not unique since the
componentZ, is still undetermined. This, of course,
is not surprising sincé/dt belongs to kew;, Nkern,
i.e.,iyprwy =0 andiy/s.n = 0. In order to obtain

a unique dynamics, we now impose an additional
constraint

d
dt

aL
=0 (A=1,...,n).

Together with the constraints, = dL/3¢%, these
are (locally) the defining equations of a submanifold
of T*E xg Jw, namely the graph of the (extended)
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Legendre map
Leg, : Jin — T*E,
(t.q". ¢~ (t,qA,

(for the intrinsic definition of Leg, see, e.g., [12], and
for the notion of graph considered here, see the remark
in the Introduction). We denote the graph of L.elgy
graph . Clearly, graph C M and if we now require
that Z should be tangent to graphit readily follows

4 OL

that
1 aTA)’

which uniquely fixesZ,. Note that the differential
equation corresponding to the-component of Z
represents the so-called “energy-balance” equation
from time-dependent mechanics.

The above construction was carried out on an
arbitrary natural bundle chart @ E x g J'x. Using a
standard argument it then follows thais in fact well-
defined on the whole of graphDefining the mapping

AL AL

A A A - A
(t’q »q )'_)<t’q ,L_l] 8q.A78q.A’q )7

we see that IrfLeg; xgid;1,) = graph and it is
not difficult to verify that the unique solutio of
(7), defined on graph and the Euler-Lagrange vector
field X, on J1x are related by

Z, = Z(L - 9)

Leg, xgid1, :Jir — T¥E xg Jix,

(LegL XE idjln)*(XL)x =Zz,

wherex = (Leg; xgid;1,)(x), forallx € J1x.
The previous discussion can now be summarized
by the following proposition.

Proposition 3.1. For a regular LagrangianL, system
(7) admits a unique solutioZ defined on, and tangent
to, graph , and the induced vector field ograph
is (Leg; xgid; i, )-related to the Euler-Lagrange
vector field on/1x.

Recall that there exists a canonical projection
v:T*E — Jiz* (= T*E/(Vn)®) which, in coor-
dinates, reads(t, ¢4, 1, pa) = (t,q*, pa) (cf. Sec-
tion 2.1 and [12]). Let us assume thatis hyper-
regular such that the mapping leg=v o Leg, is a
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global diffeomorphism. Consider the fibred product
Jin* x5 Jir, with associated projectiorig anda;
onto J17* andJ 1z, respectively. We can then define
the following projection:

vxpid, TYE xg Jinm — Jin* xg Jix,

(t.a™. 1. pa.q") — (t.9% pa.g").
From the discussion above we deduce that, along
graph , the vertical distribution determined by the

projectionv x g id;1,, i.e., kev xg id 1, ), is in-
variant undetZ in the sense that

[Z. ker(v xgid;i,).] Cker(w x g id 1y )+.

Hence, in the hyperregular case, the solution vector
field Z is projectable ontd/*z* x g Jix. Its projec-
tion locally reads

. 9,
(v XEId‘]ln)*(Z)ZE +4q 94

0

9g4

L 4 .4 O

—(z, 9", —
This is the unique vector field odlz* xgz Jix
determined by the equations

i;(An1) =1,

where we recall that = Leg; oleg; ! andwy, = h*wg
(cf. Section 2.1).

In the general case, however, it is not possible
to represent the dynamics of the non-autonomous
problem corresponding tb by a first-order system on
Jin* x g Jix.

+ ZqA (t,qA,qA)

iy (Njn) =0,

3.2. The singular case

Returning to the beginning of this section, let us
now assume that is not regular. Observe that, with
w ;= pri og, we have
a)721 oy ANoy)=o Ao+ 20 ANdH A,
and, in general,

a)];1 = + koL AdH Ay,  VE.

Herewith, it is straightforward to check that the pair
(w3, n) satisfies the following relations:

n+2 _
Wy C = 0.

wli, An#0, a)”HH/\n:O,
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Indeed, we have

w;’_l/\n=a)"/\n:(—1)"("+1)/2n!dql/\-~-/\dq”
AdpiA - Ndpy An#D0Q,
n+1 A= (—1)rHDE+2/20, 4 1y
th/\dq A Adg"
Adt Adpr A -+~ Adp, A =0,
2= 0"+ (n+ 20" Tt AdH Adt =0.

This implies, in particular, that2< rankwy < 2(n +
1), where we recall thatdiff =n + 1.

Putting My := T*E xg Jim, we can now apply
the constraint algorithm described in Section 2.2 to the
triplet (M1, wy, n). First of all, we consider the set

My = {x € M1|3Z, € T, M1 such that
iz,wp(x) =0, izn(x) =1},

which can be equivalently characterizedMy = {x €
M1 | rankwy(x) = 2n}. In local coordinates we find

offHx) =" @) + (n 4+ D" AdH A n(x)

=) = (n+ D" A Z—H dt An(x)
T

+(n+1) a)E/\dq An(x)

n

oH

AdpiA - Adpy AdG? An(x),

such thatc € M if and only if
oH

0%~ (”A aq‘f‘).x
Observe thatM2 coincides with the submanifold
M introduced at the beginning of this section. By
construction, there exists a vector fiell on M,
defined alongVfz, which verifies Egs. (7) at points of
M>. But in generalZ will not be tangent taW/> and so
we then have to proceed with the constraint algorithm
by considering the set

aL

M3 ={x € M2 |3Z, € T, M> such that
iz,on(x)=0, iz,nx)=1}.

Assuming thaiM3 is a smooth submanifold, there will
be a vector fieldZ defined alongM3 and tangent to
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M3y, satisfying (7) at each point af73. Continuing

this way, we obtain a descending sequence of subman-
ifolds of M that, in the favorable case, will stop at a
final constraint submanifolslf ; on which there exists

a consistent solution of the given dynamical problem
(cf. Section 2.2). The constraint submanifolds can

still be characterized in an algebraic way similar to (6),
with the map>: T M1 — T* M1 being induced here by
the pair(wx, n).

As in the autonomous case, we thus see that the
constraint algorithm for time-dependent singular La-
grangian systems can be properly developed in terms
of the structure(T*E x g Jim, wy, n). To complete
the picture, we have the following result which shows
that this description is equivalent to the standard one
based on the structutdlr, w;, 7).

Proposition 3.2. Let {Pr},>1, respectively{Me},>1,
denote the sequence of constraint submanifolds gen-
erated by applying the constraint algorithm ¢d 7,

wr, 1), respectivel(T*E x g J1m, wy, ). Then, for
eachi = 1,2,..., we have thatp;;1 = P,y -
M1 — P; is a surjective submersion such that the
following diagram commutes

My :=T*E xg Jin

»2
M3 P:=Jlx
Js N }jz
3
M3 P>

(where j,: P — P¢—1 and j,: M, — M,_1 are the
natural embeddings of the respective constraint sub-
manifoldg. Moreover, if there is a final constraint sub-
manifoldM ; := My C M1 (for somek > 2) on which
there exists a consistent solutidh of (7), then Z
projects underp, onto a solution of(3) on the final
constraint submanifolds := Pi_1 in J1z and, con-
versely, any solution of3), defined orP, is the pro-
jection of a vector field onMy which is a solution

of (7).
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The proof of this proposition essentially relies on
the following two facts. First of all, the projection
pr,: T*E x g J'm — J'z has the appropriate “almost
regularity” properties, that is: (i) pris a surjective
submersion, and (ii) the fibres of this submersion are
connected submanifolds @ E x g J'z, being dif-
feomorphic taR"*1. And, secondly, a straightforward
computation shows that

L
(Prswr)(x) = (qu A d(%) +dE; /\dz) (x)

(a2} ()

oL .4, 0L
+qg°d
q q

and, clearly, we also have pj = n. Herewith, the
proof of Proposition 3.2 can be easily completed,
following the same reasoning as in the autonomous
case [2].

The solution generated by the constraint algorithm
(if it exists) is not unique. On the other hand, we
may observe that if the given dynamical problem (7)
admits a consistent solutiod on a final constraint
submanifoldM s then, by construction, its projection
onto J1z will automatically verify the second-order
equation condition along a submanifold Bf. This is
again in full analogy with the situation encountered in
the autonomous case.

Next, assume that the given Lagrangidne
C>®(J1r) is almost regular in the following sense:
(i) Leg, (J17) is a submanifold ofr*E, (ii) Leg; ,
regarded as a map fronilzr onto its image, is a
submersion with connected fibres, (iii) EglegL x))
is a connected set for at € Jx. In [15] it has

257

4. Conclusions

We have developed a non-autonomous version of
the Skinner—Rusk approach to (Lagrangian) mechan-
ics and have shown that, both in the regular and in the
singular case, this yields a first-order system on the
fibred producT*E x g J1z which encodes all the in-
formation of the dynamics of the system under consid-
eration. This approach to time-dependent mechanics
possesses the same virtues as in the autonomous case,
such as the fact that the “Hamiltoniaft is defined
without having to solve the relations, = dL/3¢4
for (some of) the velocities.

Within the above framework for the description of
time-dependent mechanics, there are several lines of
investigation that seem to be worth pursuing, such as:
the role and the nature of gauge transformations in the
case of singular Lagrangians and the general study of
symmetries of (time-dependent) mechanical systems.
In addition, it would certainly be of interest to use this
formalism for establishing a geometric formulation
of optimal control problems with an explicit time-
dependence, such as in the case of time-dependent
vakonomic dynamics, thereby generalizing the work
presented in [7,8].
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been shown that, with these assumptions, one can de-

velop a constraint algorithm ahtz* which is equiva-
lent to the one orlx. Again as in the autonomous
case (see [2]), one can demonstrate that a solution
of the constrained analysis ahtz* can be related

to a solutionZ of (7), defined on the final constraint
submanifoldM ¢. This connection is established by
choosing a suitable (local) sectionof the projection
vopr:T*E xg J'm — Jlz* and restrictingZ to
Im(o) N My (recall thatv is the canonical projection

of T*E onto J17*).
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