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Abstract

The geometric approach to autonomous classical mechanical systems in terms of a canonical first-order system on the
Whitney sum of the tangent and cotangent bundle, developed by Skinner and Rusk, is extended to the time-dependent frame-
work.  2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In 1983, it was shown by Skinner and Rusk that
the dynamics of an autonomous classical mechanical
system, with configuration spaceQ, can be properly
represented by a first-order system on the Whitney
sumT ∗Q⊕ TQ [1–3]. If the system under considera-
tion admits a Lagrangian description, with Lagrangian
L ∈ C∞(TQ), the corresponding first-order system on
T ∗Q⊕ TQ is a Hamiltonian system with respect to a
canonical presymplectic structure. The Skinner–Rusk
formulation can be briefly summarized as follows. De-
noting the projections ofT ∗Q ⊕ TQ onto T ∗Q, re-
spectivelyTQ, by pr1, respectively pr2, and putting
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ω = pr∗1ωQ, with ωQ the canonical symplectic form
onT ∗Q, one can consider the following equation:

(1)iZω= dH,

whereH := 〈pr1,pr2〉 − L ◦ pr2, and 〈 , 〉 denotes
the natural pairing between the dual bundlesT ∗Q
andTQ. If the given LagrangianL is regular, analy-
sis of (1) shows that there exists a unique solu-
tion Z which is tangent to the graph of the Legendre
map LegL :TQ → T ∗Q,(qA, vA) �→ (qA, ∂L/∂vA),
where theqA are local coordinates onQ and(qA, vA)
denote the corresponding bundle coordinates onTQ.

Remark. Here and in the sequel we will adopt the
following definition for thegraph of a bundle map-
ping. LetE1 andE2 denote two fibre bundles over the
same base spaceM, and letf :E1 → E2, (m, e) �→
(m, f̃m(e)) be a fibre bundle mapping over the identity.
Then we define the graph off as the image of the
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mappingf ×M idE1 :E1 →E2×ME1, (m, e) ∈E1 �→
(m, f̃m(e), e).

The equations of motion induced by the vector
fieldZ are equivalent to the Euler–Lagrange equations
for the system under consideration (see [2]). The
important point now is that this equivalence between
a Lagrangian system and the corresponding first-
order system (1) onT ∗Q ⊕ TQ also holds if the
given LagrangianL is singular. In that case, in
order to extract a consistent system of differential
equations from (1), one will have to invoke a constraint
algorithm. In fact, one of the main motivations for
the work of Skinner and Rusk was precisely to
show that the Dirac–Bergmann approach to singular
Lagrangian systems can be properly described on the
Whitney sum of the tangent and cotangent bundle
of the configuration space, thereby avoiding some
ambiguities occurring in the literature on the subject.

The Skinner–Rusk formalism has been applied by
several authors in various contexts [4–7]. As one
of the benefits of the formalism it turns out that it
provides an appropriate setting for a geometric ap-
proach to constrained variational optimization prob-
lems. The latter are frequently encountered, for in-
stance, in mathematical economics and in engineering.
This has been demonstrated, in particular, for some
optimal control problems in [6], and for the so-called
vakonomic dynamics in [7] (see also [8]). The fact that
it would be interesting to extend those results to the
time-dependent framework, allowing for systems with
an explicit time-dependence of the “forces” and/or
the constraints, is the main motivation underlying the
present work. More precisely, we will develop here a
time-dependent version of the Skinner–Rusk formula-
tion of dynamics, using the language of jet bundle the-
ory [9] and cosymplectic geometry [10]. Among the
virtues of this new formulation of time-dependent me-
chanics, we would like to stress the possibility it offers
to model a large class of systems, also in areas such as
economics and control theory. Applications for which
this framework seems to be particularly well-suited in-
clude stabilization and trajectory tracking of mechan-
ical systems by means of time-dependent transforma-
tions (see, e.g., [11]).

Our starting point is a fibre bundleπ :E → R,
with E representing the evolution space of a mechani-

cal system. Although it is quite common in treatments
of time-dependent mechanics to fix a trivialization of
π , i.e., to work on a direct product spaceR×Q (=E),
we will not select such a trivialization here. The nat-
ural space to consider then for the treatment of time-
dependent Lagrangian mechanics is the first jet space
J 1π , with the Lagrangian of the system being given
as a functionL ∈ C∞(J 1π). The immediate candi-
date for replacing the direct sumT ∗Q ⊕ TQ in the
Skinner–Rusk model for autonomous systems, seems
to be the fibred productJ 1π∗ ×E J 1π , whereJ 1π∗
is the “dual” of the affine bundleJ 1π (for this no-
tion of dual, see, e.g., [12]). It turns out, however, that
this is not an appropriate choice for the following rea-
sons. First, there does not exist a natural pairing be-
tweenJ 1π andJ 1π∗, needed for the construction of
the time-dependent analogue of the “Hamiltonian”H
appearing in (1) and, secondly, there is no canonical
2-form onJ 1π∗ to take over the role of the symplec-
tic form ωQ in the autonomous picture. To overcome
these difficulties we will show that the appropriate
space to consider is the fibred productT ∗E ×E J 1π .

Two final remarks are in order here. First of all, al-
though we will restrict ourselves to Lagrangian sys-
tems, it is clear that, in analogy with the autonomous
case (cf. [1]), the treatment can be easily extended
to more general time-dependent mechanical systems,
with forces not necessarily derivable from a potential.
Secondly, it is interesting to note that the ideas devel-
oped here also admit a further extension to classical
field theory, as has been demonstrated in a recent pa-
per by de León et al. [13].

The present Letter is organized as follows. In the
next section we briefly recall the jet bundle approach
to time-dependent Lagrangian and Hamiltonian me-
chanics, including the description of the constraint al-
gorithm in case of a singular Lagrangian. In Section 3
we then develop the Skinner–Rusk formalism for
time-dependent systems. We end with some conclu-
sions and an outlook on future work along these lines.

2. Non-autonomous Lagrangian systems

2.1. The regular case

Let π :E → R be a fibre bundle (the evolution
space), with dimE = n + 1 and local bundle coordi-
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nates(t, qA), A= 1, . . . , n. Consider the correspond-
ing 1-jet spaceJ 1π , with coordinates(t, qA, q̇A)
and associated projectionsπ1 :J 1π → R and π1,0 :
J 1π → E. Given a time-dependent LagrangianL :
J 1π → R, the Euler–Lagrange equations read in lo-
cal coordinates

(2)
d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= 0.

These equations can be rewritten in geometrical terms
as follows. Define the Poincaré–Cartan 1-form and 2-
form

ΘL = Lη̃+ S̃∗(dL), ωL = −dΘL,

whereη̃= π∗
1 (dt) andS̃ = (dqA − q̇A dt)⊗ (∂/∂q̇A)

is the canonical vertical endomorphism onJ 1π (see
[9]). The action ofS̃ on 1-forms is denoted bỹS∗.
Eqs. (2) can then be expressed as

(3)iXωL = 0, iXη̃= 1.

If the given Lagrangian is regular, thenωL has
maximal rank and the pair(ωL, η̃) determines aco-
symplectic structureon J 1π , i.e., both forms are
closed and satisfy the conditionsωnL∧ η̃ �= 0,ωn+1

L = 0
(cf. [10]). It then follows that (3) admits a unique
solution, called theEuler–Lagrange vector fieldfor L,
and which we will denote byXL. It is a second-
order vector field, i.e.,S̃(XL) = 0 and iXLη̃ = 1,
and a direct computation shows that integral curves
of XL determine solutions of the Euler–Lagrange
equations (2) and vice versa.

There also exists an alternative Hamiltonian de-
scription of the problem. Consider the Legendre map
LegL :J 1π → T ∗E, defined by LegL(j

1
t φ)(v) =

(ΘL)j1
t φ
(ṽ) for j1

t φ ∈ J 1π , v ∈ Tφ(t)E and for any

ṽ ∈ Tj1
t φ
J 1π such thatπ1,0∗(ṽ) = v. Let V π denote

the subbundle ofT E consisting ofπ -vertical tangent
vectors, and denote its annihilator inT ∗E by (V π)0.
Consider the quotient bundleJ 1π∗ = T ∗E/(Vπ)0,
which is called the dual ofJ 1π , with associated pro-
jectionsν :T ∗E → J 1π∗, π̃1,0 :J 1π∗ → E and π̃1 :
J 1π∗ → R. Finally, denote by legL :J 1π → J 1π∗ the
composition legL = ν ◦ LegL. If L is regular, then
LegL is an immersion and legL is a local diffeomor-
phism.

Assume now that the LagrangianL is hyperregular,
that is, legL is a global diffeomorphism. Consider then

the maph = LegL ◦ leg−1
L . The mappingh :J 1π∗ →

T ∗E is a section of the projectionν, i.e., ν ◦ h =
idJ 1π∗ and is called a Hamiltonian of the system. Next,
denote byωE the canonical symplectic two-form on
T ∗E and letωh = h∗ωE be its pull-back toJ 1π∗
under h. If η1 := (π̃1)

∗ dt , then (ωh, η1) defines a
cosymplectic structure onJ 1π∗. In addition, one has
that leg∗L(ωh) = ωL and leg∗L η1 = η̃. It then easily
follows that the solutionX of (3) is legL-related to the
(unique) solutionY of the equations

(4)iY ωh = 0, iY η1 = 1.

Note that, always under the assumption of (hyper)reg-
ularity of L, the vector fieldsXL, respectivelyY , are
precisely the Reeb vector fields corresponding to the
cosymplectic structures(ωL, η̃), respectively(ωh, η1).

2.2. The singular case: the constraint algorithm

Suppose now that the given LagrangianL is de-
generate, in the sense that the Hessian matrix(∂2L/

∂q̇A∂q̇B) is singular. We confine ourselves to the case
where this matrix has constant rank everywhere, sayr.
The pair(ωL, η̃) then satisfies the following relations
(cf. [14,15]):

ωrL ∧ η̃ �= 0, ωr+1
L ∧ η̃= 0, ωr+2

L = 0.

It follows that 2r � rankωL � 2r + 2. In general,
Eqs. (3) will not admit a global solutionX. More-
over, if a solution exists it will not be unique. There-
fore, in order to determine a consistent dynamics for
such a system (if it exists) one has to apply a con-
straint algorithm which, at least in the case of La-
grangian mechanics, should be supplemented with the
“second-order equation condition”. For completeness,
we will now briefly sketch the constraint algorithm de-
scribed in [14,15], which is an adaptation to the time-
dependent setting of the well-known geometric con-
straint algorithm for presymplectic systems developed
by Gotay and Nester [16,17].

With a view on its application later on, we will
describe the constraint algorithm here in the general
framework of a structure(M,Ω,η) consisting of a
smooth manifoldM, a closed 2-formΩ and a closed
1-formη, satisfying

Ωr ∧ η �= 0, Ωr+1 ∧ η= 0, Ωr+2 = 0,
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for some r < dimM. On M we then consider the
equations

(5)iXΩ = 0, iXη= 1.

One can prove that there exists a vectorXx ∈ TxM

satisfying these equations at the pointx iff rankΩx =
2r (see [14]). In particular, it follows that (5) admits
a global (but not necessarily unique) solutionX iff
Ω has constant rank 2r, in which case the given pair
(Ω,η) defines a so-calledprecosymplectic structure
onM. If this is not the case, the constraint algorithm
proceeds as follows. PutP1 :=M and consider the set

P2 := {
x ∈M | ∃Xx ∈ TxM such that

iXxΩx = 0, iXxηx = 1
}
.

According to the previous observation, this set can be
equivalently characterized byP2 = {x ∈ P1 | rankΩx

= 2r}. We then assume thatP2 is an embedded
submanifold ofP1 (= M) and we denote the natural
inclusion byj2 :P2 ↪→ P1. We are then assured that
Eqs. (5) admit a solutionX defined at all points of
P2, but X need not be tangent toP2 and, hence,
does not necessarily induce a dynamics onP2. We
therefore have to continue the constraint algorithm by
considering the subset

P3 := {
x ∈ P2 | ∃Xx ∈ TxP2 such that

iXxΩ(x)= 0, iXxη(x)= 1
}

= {
x ∈ P2 | ηx ∈ ,(TxP2)

}
,

where, is the bundle morphism defined by

, :TM → T ∗M, v ∈ TxM �→ ivΩx + (ivηx)ηx.

AssumingP3 is a submanifold ofP2, with inclusion
mapj3 :P3 ↪→ P2, it follows that there exists a vector
field X on P2, which satisfies (5) at points ofP3.
Again, however, such anX need not be tangent toP3,
and one may have to repeat the above procedure. In
this way, a descending sequence of submanifolds

· · · j-+1
↪→ P-

j-
↪→ ·· · j4

↪→ P3
j3
↪→ P2

j2
↪→ P1 (=M)

is generated, with

(6)P- := {
x ∈ P-−1 | ηx ∈ ,(TxP-−1)

}
(-� 2),

and whereP- is called the--ary constraint submani-
fold. If this sequence terminates at a nonempty set, in
the sense that for some finitek � 1 we havePk+1 =

Pk , but Pk �= Pk−1, thenPk is called thefinal con-
straint submanifold, which we denote byPf . Now, it
may still happen that dimPf = 0 (i.e.,Pf is a discrete
set), in which case the given problem admits no proper
dynamics. However, if dimPf > 0, then we know by
construction that there exists a vector fieldX on M,
defined alongPf , which is tangent toPf and satisfies
the equations

iXΩ|Pf = 0, iXη|Pf = 1,

i.e., the given dynamical problem admits a consistent
solution onPf . In general, however, this solution will
not be unique: given a solutionX, for any smooth
sectionY of the bundle(kerΩ ∩ kerη) ∩ T Pf over
Pf , X + Y is also a solution.

If we are dealing with a time-dependent Lagrangian
system, i.e., withM = J 1π , Ω = ωL, η = η̃ (= dt),
this is not the full story. First of all, we then also
have to impose the so-called “second-order differential
equation” condition, i.e., we are only interested in a
solutionX which determines a system of second-order
ordinary differential equations. Secondly, as in the
autonomous case, one can develop a similar constraint
algorithm on the Hamiltonian side (i.e., onJ 1π∗)
and, under a suitable assumption regarding the given
Lagrangian, one can show that both descriptions are
equivalent. For more details, we again refer to [14,15].

In the next section we will show how the above can
be translated into a Skinner–Rusk type formulation for
time-dependent Lagrangian systems.

3. Skinner–Rusk formulation

We start again from a fibre bundleπ :E → R, with
n-dimensional fibre, and its first jet spaceJ 1π . Bundle
coordinates onE and J 1π are denoted by(t, qA)
and (t, qA, q̇A), respectively. Canonical coordinates
on T ∗E will be written as (t, qA, τ,pA) and the
canonical symplectic form onT ∗E then readsωE =
dqA ∧ dpA + dt ∧ dτ . We now consider the fibred
product of the bundlesT ∗E and J 1π over E, i.e.,
T ∗E ×E J 1π , with projections pr1 :T ∗E ×E J 1π →
T ∗E, pr2 :T ∗E ×E J 1π → J 1π and pr :T ∗E ×E

J 1π →E. The natural bundle coordinates onT ∗E×E

J 1π are(t, qA, τ,pA, q̇A).
On T ∗E ×E J 1π we define the 2-formω as

the pullback of the canonical symplectic form on
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T ∗E, i.e., ω = pr∗1ωE , and the 1-formη = (π ◦
pr)∗(dt) = pr∗2 η̃. For simplicity we will sometimes
write η = dt . Recall that the affine bundleJ 1π can
be identified with an affine subbundle ofT E whose
underlying set is given by{v ∈ T E | 〈dt, v〉 = 1}.
In coordinates, the natural embeddingj :J 1π ↪→ T E

readsj (t, qA, q̇A)= (t, qA,1, q̇A).
Given a LagrangianL ∈ C∞(J 1π), we can define

the following function onT ∗E ×E J 1π :

H = 〈pr1, j ◦ pr2〉 − pr∗2L,

where〈 , 〉 denotes the natural pairing between vectors
and covectors onE. In coordinates this becomesH =
pAq̇

A + τ −L(t, qA, q̇A). Putting

ωH = ω+ dH∧ η,

we can then consider the following equations:

(7)iZωH = 0, iZη= 1.

Let us try to find out, in coordinates, what kind of
dynamics is encoded by (7). For that purpose, we
write Z as

Z =Zt
∂

∂t
+ZqA

∂

∂qA
+Zτ

∂

∂τ
+ZpA

∂

∂pA

+Zq̇A
∂

∂q̇A
.

From the second equation in (7) we deduce thatZt =
1, and the first equation then becomes

iZωH = iZω+Z(H) dt − dH

=
(
Z(H)+ ∂L

∂t
−Zτ

)
dt

+
(
∂L

∂qA
−ZpA

)
dqA

−
(
pA − ∂L

∂q̇A

)
dq̇A + (

ZqA − q̇A
)
dpA

= 0.

This immediately givesZqA = q̇A and ZpA = ∂L/

∂qA, together with the following constraint equations:
pA = ∂L/∂q̇A. These constraints determine a sub-
manifold ofT ∗E×E J

1π which, for convenience, we
will denote byML. With the above expressions for
ZqA,ZpA andZt , we see that the remaining condition
Z(H)+ ∂L/∂t −Zτ = 0 is identically satisfied at all

points ofML, irrespective of the value of the compo-
nentsZτ andZq̇A . Note that the relationZqA = q̇A re-
flects the second-order differential equation property.

The previous analysis already shows that (7) locally
admits a solutionZ, defined in points of the subman-
ifold ML of T ∗E ×E J 1π . In fact, we have a whole
family of solutions since the componentsZτ andZq̇A

can still be chosen arbitrarily.
In order to obtain consistent equations of motion,

however, we have to impose the condition thatZ be
tangent to the submanifoldML, that is, the functions
Z(pA − ∂L/∂q̇A) should vanish at points ofML for
all A= 1, . . . , n. We now have that

Z

(
pA − ∂L

∂q̇A

)
= ∂L

∂qA
− ∂2L

∂t∂q̇A
− q̇B

∂2L

∂qB∂q̇A

(8)−Zq̇B
∂2L

∂q̇A∂q̇B
.

Clearly, ifL is regular, the vanishing of (8) fixes all the
componentsZq̇A as functions of(t, qA, q̇A) onML. If
not, one will have to apply a constraint algorithm.

3.1. The regular case

Let us assume that the given LagrangianL is reg-
ular. The previous analysis tells us that the system (7)
admits a solutionZ on ML and it follows from the
expression for the componentsZt,ZqA,ZpA,Zq̇A that
any integral curve ofZ onML determines a solution
(qA(t)) of the corresponding Euler–Lagrange equa-
tions of motion

d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= 0 (A= 1, . . . , n).

However, the solutionZ is not unique since the
componentZτ is still undetermined. This, of course,
is not surprising since∂/∂τ belongs to kerωH ∩ kerη,
i.e., i∂/∂τωH = 0 and i∂/∂τ η = 0. In order to obtain
a unique dynamics, we now impose an additional
constraint

τ = L− q̇A
∂L

∂q̇A
.

Together with the constraintspA = ∂L/∂q̇A, these
are (locally) the defining equations of a submanifold
of T ∗E ×E J 1π , namely the graph of the (extended)
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Legendre map

LegL :J 1π → T ∗E,
(
t, qA, q̇A

) �→
(
t, qA,L− q̇A

∂L

∂q̇A
,
∂L

∂q̇A

)

(for the intrinsic definition of LegL, see, e.g., [12], and
for the notion of graph considered here, see the remark
in the Introduction). We denote the graph of LegL by
graphL. Clearly, graphL ⊂ ML and if we now require
thatZ should be tangent to graphL, it readily follows
that

(9)Zτ =Z

(
L− q̇A

∂L

∂q̇A

)
,

which uniquely fixesZτ . Note that the differential
equation corresponding to theτ -component ofZ
represents the so-called “energy-balance” equation
from time-dependent mechanics.

The above construction was carried out on an
arbitrary natural bundle chart ofT ∗E×E J

1π . Using a
standard argument it then follows thatZ is in fact well-
defined on the whole of graphL. Defining the mapping

LegL×E idJ 1π :J 1π → T ∗E ×E J 1π,

(
t, qA, q̇A

) �→
(
t, qA,L− q̇A

∂L

∂q̇A
,
∂L

∂q̇A
, q̇A

)
,

we see that Im(LegL×E idJ 1π) = graphL and it is
not difficult to verify that the unique solutionZ of
(7), defined on graphL, and the Euler–Lagrange vector
field XL onJ 1π are related by

(LegL×E idJ 1π)∗(XL)x =Zx̄,

wherex̄ = (LegL ×E idJ 1π )(x), for all x ∈ J 1π .
The previous discussion can now be summarized

by the following proposition.

Proposition 3.1. For a regular LagrangianL, system
(7) admits a unique solutionZ defined on, and tangent
to, graphL, and the induced vector field ongraphL
is (LegL×E idJ 1π )-related to the Euler–Lagrange
vector field onJ 1π .

Recall that there exists a canonical projection
ν :T ∗E → J 1π∗ (= T ∗E/(Vπ)0) which, in coor-
dinates, readsν(t, qA, τ,pA) = (t, qA,pA) (cf. Sec-
tion 2.1 and [12]). Let us assume thatL is hyper-
regular such that the mapping legL := ν ◦ LegL is a

global diffeomorphism. Consider the fibred product
J 1π∗ ×E J 1π , with associated projectionsλ1 andλ2
ontoJ 1π∗ andJ 1π , respectively. We can then define
the following projection:

ν ×E idJ 1π :T ∗E ×E J 1π → J 1π∗ ×E J 1π,(
t, qA, τ,pA, q̇

A
) �→ (

t, qA,pA, q̇
A
)
.

From the discussion above we deduce that, along
graphL, the vertical distribution determined by the
projectionν ×E idJ 1π , i.e., ker(ν ×E idJ 1π )∗, is in-
variant underZ in the sense that[
Z,ker(ν ×E idJ 1π )∗

] ⊂ ker(ν ×E idJ 1π)∗.
Hence, in the hyperregular case, the solution vector
field Z is projectable ontoJ 1π∗ ×E J 1π . Its projec-
tion locally reads

(ν ×E idJ 1π )∗(Z)= ∂

∂t
+ q̇A

∂

∂qA

+Zq̇A
(
t, qA, q̇A

) ∂

∂q̇A

+ ∂L

∂qA

(
t, qA, q̇A

) ∂

∂pA
.

This is the unique vector field onJ 1π∗ ×E J 1π

determined by the equations

iZ̃(λ
∗
1ωh)= 0, iZ̃(λ

∗
1η1)= 1,

where we recall thath= LegL ◦ leg−1
L andωh = h∗ωE

(cf. Section 2.1).
In the general case, however, it is not possible

to represent the dynamics of the non-autonomous
problem corresponding toL by a first-order system on
J 1π∗ ×E J 1π .

3.2. The singular case

Returning to the beginning of this section, let us
now assume thatL is not regular. Observe that, with
ω := pr∗1ωE , we have

ω2
H (= ωH ∧ωH)= ω ∧ω+ 2ω ∧ dH∧ η,

and, in general,

ωkH = ωk + kωk−1 ∧ dH∧ η, ∀k.
Herewith, it is straightforward to check that the pair
(ωH, η) satisfies the following relations:

ωnH ∧ η �= 0, ωn+1
H ∧ η = 0, ωn+2

H = 0.
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Indeed, we have

ωnH ∧ η = ωn ∧ η= (−1)n(n+1)/2n!dq1 ∧ · · · ∧ dqn

∧ dp1 ∧ · · · ∧ dpn ∧ η �= 0,

ωn+1
H ∧ η= (−1)(n+1)(n+2)/2(n+ 1)!

× dt ∧ dq1 ∧ · · · ∧ dqn

∧ dτ ∧ dp1 ∧ · · · ∧ dpn ∧ η= 0,

ωn+2
H = ωn+2 + (n+ 2)ωn+1 ∧ dH∧ dt = 0.

This implies, in particular, that 2n� rankωH � 2(n+
1), where we recall that dimE = n+ 1.

PuttingM1 := T ∗E ×E J 1π , we can now apply
the constraint algorithm described in Section 2.2 to the
triplet (M1,ωH, η). First of all, we consider the set

M2 = {
x ∈M1 | ∃Zx ∈ TxM1 such that

iZxωH(x)= 0, iZxη(x)= 1
}
,

which can be equivalently characterized byM2 = {x ∈
M1 | rankωH(x)= 2n}. In local coordinates we find

ωn+1
H (x)=ωn+1(x)+ (n+ 1)ωn ∧ dH∧ η(x)

=ωn+1(x)− (n+ 1)ωn ∧ ∂H
∂τ

dτ ∧ η(x)

+ (n+ 1)
∂H
∂q̇A

ωnE ∧ dq̇A ∧ η(x)

= (−1)n(n+1)/2(n+ 1)! ∂H
∂q̇A

dq1 ∧ · · · ∧ dqn

∧ dp1 ∧ · · · ∧ dpn ∧ dq̇A ∧ η(x),

such thatx ∈M2 if and only if

∂H
∂q̇A |x

≡
(
pA − ∂L

∂q̇A

)
|x

= 0, A= 1, . . .n.

Observe thatM2 coincides with the submanifold
ML introduced at the beginning of this section. By
construction, there exists a vector fieldZ on M1,
defined alongM2, which verifies Eqs. (7) at points of
M2. But in generalZ will not be tangent toM2 and so
we then have to proceed with the constraint algorithm
by considering the set

M3 = {
x ∈M2 | ∃Zx ∈ TxM2 such that

iZxωH(x)= 0, iZxη(x)= 1
}
.

Assuming thatM3 is a smooth submanifold, there will
be a vector fieldZ defined alongM3 and tangent to

M2, satisfying (7) at each point ofM3. Continuing
this way, we obtain a descending sequence of subman-
ifolds of M1 that, in the favorable case, will stop at a
final constraint submanifoldMf on which there exists
a consistent solution of the given dynamical problem
(cf. Section 2.2). The constraint submanifoldsM- can
still be characterized in an algebraic way similar to (6),
with the map, :TM1 → T ∗M1 being induced here by
the pair(ωH, η).

As in the autonomous case, we thus see that the
constraint algorithm for time-dependent singular La-
grangian systems can be properly developed in terms
of the structure(T ∗E ×E J 1π,ωH, η). To complete
the picture, we have the following result which shows
that this description is equivalent to the standard one
based on the structure(J 1π,ωL, η̃).

Proposition 3.2. Let {P-}-�1, respectively{M-}-�1,
denote the sequence of constraint submanifolds gen-
erated by applying the constraint algorithm to(J 1π,

ωL, η̃), respectively(T ∗E ×E J 1π,ωH, η). Then, for
each i = 1,2, . . . , we have thatϕi+1 ≡ pr2|Mi+1

:
Mi+1 → Pi is a surjective submersion such that the
following diagram commutes:

M1 := T ∗E ×E J 1π

M2

M3

P1 := J 1π

P2

�

� �

��������
�

�

j ′
2

j ′
3

ϕ2

ϕ3

j2

pr2

...
...

(where j- :P- → P-−1 and j ′
- :M- → M-−1 are the

natural embeddings of the respective constraint sub-
manifolds). Moreover, if there is a final constraint sub-
manifoldMf :=Mk ⊂M1 ( for somek � 2) on which
there exists a consistent solutionZ of (7), thenZ
projects underϕk onto a solution of(3) on the final
constraint submanifoldPf := Pk−1 in J 1π and, con-
versely, any solution of(3), defined onPf , is the pro-
jection of a vector field onMf which is a solution
of (7).
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The proof of this proposition essentially relies on
the following two facts. First of all, the projection
pr2 :T ∗E×E J

1π → J 1π has the appropriate “almost
regularity” properties, that is: (i) pr2 is a surjective
submersion, and (ii) the fibres of this submersion are
connected submanifolds ofT ∗E ×E J 1π , being dif-
feomorphic toRn+1. And, secondly, a straightforward
computation shows that

(
pr∗2ωL

)
(x)=

(
dqA ∧ d

(
∂L

∂q̇A

)
+ dEL ∧ dt

)
(x)

=
(
dqA ∧ d

(
∂L

∂q̇A

)
+ q̇Ad

(
∂L

∂q̇A

)
∧ dt

−
(
∂L

∂qA

)
dqA ∧ dt

)
(x)

= ωH(x),

and, clearly, we also have pr∗
2 η̃ = η. Herewith, the

proof of Proposition 3.2 can be easily completed,
following the same reasoning as in the autonomous
case [2].

The solution generated by the constraint algorithm
(if it exists) is not unique. On the other hand, we
may observe that if the given dynamical problem (7)
admits a consistent solutionZ on a final constraint
submanifoldMf then, by construction, its projection
onto J 1π will automatically verify the second-order
equation condition along a submanifold ofPf . This is
again in full analogy with the situation encountered in
the autonomous case.

Next, assume that the given LagrangianL ∈
C∞(J 1π) is almost regular in the following sense:
(i) LegL(J

1π) is a submanifold ofT ∗E, (ii) LegL,
regarded as a map fromJ 1π onto its image, is a
submersion with connected fibres, (iii) leg−1

L (legL(x))
is a connected set for allx ∈ J 1π . In [15] it has
been shown that, with these assumptions, one can de-
velop a constraint algorithm onJ 1π∗ which is equiva-
lent to the one onJ 1π . Again as in the autonomous
case (see [2]), one can demonstrate that a solution
of the constrained analysis onJ 1π∗ can be related
to a solutionZ of (7), defined on the final constraint
submanifoldMf . This connection is established by
choosing a suitable (local) sectionσ of the projection
ν ◦ pr1 :T ∗E ×E J 1π → J 1π∗ and restrictingZ to
Im(σ ) ∩Mf (recall thatν is the canonical projection
of T ∗E ontoJ 1π∗).

4. Conclusions

We have developed a non-autonomous version of
the Skinner–Rusk approach to (Lagrangian) mechan-
ics and have shown that, both in the regular and in the
singular case, this yields a first-order system on the
fibred productT ∗E×E J

1π which encodes all the in-
formation of the dynamics of the system under consid-
eration. This approach to time-dependent mechanics
possesses the same virtues as in the autonomous case,
such as the fact that the “Hamiltonian”H is defined
without having to solve the relationspA = ∂L/∂q̇A

for (some of) the velocities.
Within the above framework for the description of

time-dependent mechanics, there are several lines of
investigation that seem to be worth pursuing, such as:
the role and the nature of gauge transformations in the
case of singular Lagrangians and the general study of
symmetries of (time-dependent) mechanical systems.
In addition, it would certainly be of interest to use this
formalism for establishing a geometric formulation
of optimal control problems with an explicit time-
dependence, such as in the case of time-dependent
vakonomic dynamics, thereby generalizing the work
presented in [7,8].
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