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Performance changes of a grated waveguide at
resonance wavelengths next to its band-edges due

to modified edge sections
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An efficient numerical scheme developed on the basis of Green’s function method is applied to the investigation
of structural effects on the performance of planar grated waveguide at the first resonance wavelengths next to
the band-edges. Restricting ourselves to the transverse-electric waves, this study is focused on the effects in-
duced by variations of the grating cell number and the depths of its four outer grooves on both sides. The dif-
ferent patterns of groove depth gradation or apodization considered in this study are all characterized by de-
creasing depth toward the ends while retaining the longitudinal grating symmetry. The effects of the
modifications are expressed in terms of changes in the modal transmittance, reflectance, and out-of-plane scat-
tering loss as well as the group velocity and resonant field enhancement. The most favorable result character-
ized by 15% transmittance enhancement and 85% loss reduction is achieved for the case with the most gradual
changes in the groove depth. It is further shown that, for the investigated range of parameters, both the group
velocity and field enhancement can best be improved by increasing the length of the uniform grating, without
introducing any modification. © 2010 Optical Society of America
OCIS codes: 050.2770, 230.7400.
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. INTRODUCTION
he results of early studies on photonic crystals (PhCs)
nd their potential functionalities [1–3] have led to world-
ide research activities for the development of a new gen-
ration of photonic devices. To that end, a large variety of
hree-dimensional (3D), two-dimensional (2D), and one-
imensional (1D) PhC structures have been considered,
nd their promising applications as building blocks of
ovel and high performance photonic devices have been
emonstrated both numerically [4–9] and experimentally
4,10–15]. Unfortunately, the technology for precisely con-
rolled fabrication of reproducible 3D device at the
ubmicron- and nano-feature size has yet to be fully de-
eloped. On the other hand, the fabrication of quasi-2D
lanar PhC structure considered in the grated waveguide
GWg) systems is more amenable to the existing fabrica-
ion technology [16]. As a result, more reliable experimen-
al verification of the numerical models can be performed
n these systems as reported in [16–20]. This type of
tructures, while relatively simplified, still offer a large
nough room for the exploration of a wide ranging appli-
ations with enhanced and new functionalities [19].

Studies of planar GWg systems and their promising ap-
lications have been reported previously by a number of
esearch groups [17–22], and different numerical tools
ave been developed by different research groups such as
0740-3224/10/122743-7/$15.00 © 2
he method of lines, finite difference time domain, eigen-
ode expansion, etc. [8,23]. Aside from the desirability for

urther exploration of the system functionalities, one has
o address the ubiquitous problems concerning the out-of-
lane scattering loss due to mode mismatch between the
odal fields of the un-grated section and that of the

rated section of the structure. Previous studies aiming at
he reduction of loss and enhancement of planar GWg
unctionalities have been mostly restricted to the consid-
rations of a variety of uniform grating structures of dif-
erent geometries such as different duty cycles, mark-
pace ratios, and different index contrasts [22,23].
ossible effects of more detailed local structural varia-

ions in the graded structures have been for some reason
argely left unexplored.

The graded grating structures have also been consid-
red extensively for improving the performance of fiber
ragg grating (FBG) systems, leading to what is known
s apodized FBG. The gradation of the grating structure
as studied in detail for optimizing the spectral and dis-
ersion characteristics of FBG in the design of optical
ave filters used in wavelength division multiplexing

WDM) system [24]. The general and efficient differential
nverse scattering formulations implemented with genetic
lgorithm [5] and layer-peeling algorithm [6,7] have been
eveloped for the synthesis of FBG. The apodized grated
010 Optical Society of America
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tructure designed by those methods can be tailored to
eet the required spectral characteristics for specific ap-

lications.
In the present study, a numerical scheme implemented

n the basis of rigorous ab initio Green’s function method
ollowing Dyson formulation [25–27] is employed to inves-
igate the local structural effects of planar GWg. Com-
ared to the other methods used for the study of planar
Wg [8,23] and FBG systems [4–7], this formulation has

he advantage of being quite efficient for handling pertur-
ations due to local structural variations in a limited
mall area. Further, the computational window can be
ade relatively small owing to the built-in perfectly

ransparent boundary condition, which is typical for the
reen’s function method.
We consider in this work a number of GWg systems

ith uniformly grated central parts of various lengths
nd systematically modified edge sections of four grating
eeth. The results reported here describe the effects of
hose structural variations on the device performance pa-
ameters such as its transmittance �T�, reflectance �R�,
nd loss �L�, as well as the group velocity and the confined
nergy stored inside the GWg. The study will be focused
n the device performance at the first resonance wave-
engths next to the band-edges, since the operation at
hese wavelengths will help to meet the very much
ought-after merits of high wavelength selectivity and
ensitivity for high performance optical filters, resona-
ors, and optical sensors.

The rest of this paper is organized as follows. In Section
the Green’s function formalism and its numerical imple-
ented scheme are discussed. In Section 3 the basic grat-

ng structure is introduced along with the structural
odifications considered, as well as the performance pa-

ameters to be evaluated. The computational results and
he related discussion are presents in Section 4. The pa-
er ends with a summary given in Section 5.

. GREEN’S FUNCTION AND ITS
UMERICAL FORMULATION

n the following explanation of the Green’s function
ethod, we suppress the time dependent factor of exp�
i�t� in the electric field expression. The basic three-layer
tructure of the system considered is shown in Fig. 1. For
his system, the zz component of the transverse-electric
TE)-mode Green’s tensor is obtained from the following
mplicit equation [25]:

G�r,r�� = GB�r,r�� +�
A

GB�r,r��k0
2���r��G�r�,r��dA�,

�1�

here �r ,r��= �x ,y ,x� ,y��, k0=� /c is the free-space wave
umber, ��=�−�B is the contrast between the permittivi-

Fig. 1. Basic uniform GWg.
ies of the scatterer ��� and background ��B�, while A is
he area of integration covering the entire computational
omain. The background Green’s function GB in Eq. (1)
or the corresponding three-layer background medium is
etermined as follows in terms of its Fourier components,
l, pertaining to the lth layer [26]:

Gl
B�r,r�� =

i

4�
�

−�

�

dkx exp�ikx�x − x���ml�kx;y,y��, �2�

here y and y� denote the observation point and the po-
ition of the unit source, respectively. The ml function is
xpressed as a combination of the up-going �Al� and down-
oing �Bl� wave amplitudes:

ml =
kx

2

kl,y
�Al�y,y��exp�ikl,yy� + Bl�y,y��exp�− ikl,yy��, �3�

ith kl,y=�kl
2−kx

2 �Re�kl,y��0� and l=1,2,3 as labels for
he air, slab, and substrate layers, respectively. Further,
ach of those amplitudes is decomposed into its two com-
onents: Al=Al

I+Al
D, Bl=Bl

I+Bl
D, with the superscripts I

enoting the indirect contributions of the source via re-
ection or refraction and D denoting the direct contribu-
ion of the source in the l-layer. The integral in Eq. (2) is
o be evaluated in the complex kx-space. By following the
rocedure given in [26,27], we obtain the following ex-
ressions for the Al and Bl amplitudes for layer l in the
ase where the source and the observation points are lo-
ated in the same layer:

A1
I = exp�− ik1,yh�� f1,2 + f2,3 exp�2ik2,yh�

1 + f1,2f2,3 exp�2ik2,yh��exp�ik1,yy��,

A1
D = ��y − y��exp�− ik1,yy��, �4�

B1
I = 0,

B1
D = ��y� − y�exp�ik1,yy��, �5�

A2
I =

f2,3 exp�ik2,yh�

1 − f2,1f2,3 exp�2ik2,zh�
�f2,1 exp�ik2,yh�exp�− ik2,yy��

+ exp�ik2,yy���,

A2
D = ��y − y��exp�− ik2,yy��, �6�

B2
I =

f2,1 exp�ik2,yh�

1 − f2,1f2,3 exp�2ik2,yh�
�f2,3 exp�ik2,yh�exp�ik2,yy��

+ exp�− ik2,yy���,

B2
D = ��y� − y�exp�ik2,yy��, �7�

A3
I = 0,

A3
D = ��y − y��exp�− ik3,yy��, �8�

B3
I = exp�− ik3,yh�� f3,2 + f2,1 exp�2ik2,yh�

1 + f f exp�2ik h��exp�− ik3,yy��,

3,2 2,1 2,y
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B3
D = ��y� − y�exp�ik3,yy��, �9�

here h denotes the slab thickness, while � represents
he step function. Note that there are no indirect contri-
utions to B1 and A3 due to the semi-infinite structure of
he two outer layers.
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For the case where the observation points are located
n different layers, the corresponding amplitudes can be
erived by using transfer matrix taking into account the
ontinuity conditions. The result for y	y� is given as
ollows:
	Al

Bl

 = 
y	y�	 exp�idl�kl+1,y − kl,y�� fl,l+1 exp�− idl�kl+1,y + kl,y��

fl,l+1 exp�idl�kl+1,y + kl,y�� exp�− idl�kl+1,y − kl,y�� 
	Al+1

Bl+1

 , �10�

nd for y�y�,

	Al

Bl

 = 
y�y�	 exp�idl−1�kl−1,y − kl,y�� fl,l−1 exp�− idl�kl−1,y + kl,y��

fl,l−1 exp�idl−1�kl+1,y + kl,y�� exp�− idl−1�kl−1,y − kl,y�� 
	Al−1

Bl−1

 , �11�
here the coefficients 
’s are defined as 
y	y�= �kl+1,y
kl,y� /2kl+1,y, 
y�y�= �kl,y+kl−1,y� /2kl−1,y, and the param-
ters d1 and d2 are chosen to be d1=h, d2=0 as specified
ater in Fig. 2. The Fresnel coefficients fl,l±1 in Eqs.
4)–(11) are given by

fl,l±1 =
kl,y − kl±1,y

kl,y + kl±1,y
. �12�

iven the analytical expressions for the amplitudes with
ll the coefficients defined above, the integral in Eq. (2)
an be computed numerically and efficiently by using the
auss–Kronrod quadrature [27].
Having obtained the numerical result for GB�r ,r��, the

reen’s function G�r ,r�� in Eq. (1) can be determined nu-
erically by solving the discretized equation:

Gij = Gij
B + �

i=1,j=1,
i�k,j�k

P

Gik
B k0

2��k�AkGkj + Mik0
2��iGij − L

��i

�B
Gij,

�13�

here Gij�G�ri ,rj��, the summation runs over all P mesh
oints, while the Mi and L parameters are introduced to
andle the Green’s function singularity according to the
xpressions given in [28]. However, instead of solving Eq.
1) directly, we adopt the simpler scheme introduced in
25] in which the contribution of each scatterer mesh is
dded one by one recursively.
With the result for the Green’s function at hand, the

lectric field can be determined from the following explicit
yson equation:

3g

Core Section w

4g1g 2g

�1�n

98.1�n
44.1�n

Edge Section

GL

�zE

ig. 2. GWg structures considered with the modifications at the
nd the number of teeth N in the core section.
Ez�r� = Ez
B�r� +�

A

G�r,r��k0
2���r��Ez

B�r��dr�, �14�

here Ez
B is the electric field of the fundamental TE-mode

f the effective slab waveguide, while A covers the entire
omputational window.

. BASIC STRUCTURE, ITS
ODIFICATIONS, AND CONSIDERED

ERFORMANCE PARAMETERS
he GWg systems considered in this study are composed
f different grating sections etched into a slab having a
hickness of h=160 nm as described in Fig. 2. The core
ection in the middle of the GWg is a uniformly grated
art of N teeth with a 100 nm groove depth �g=100 nm�,
or N=8, 10, or 12. Each of the edge sections consists of
our grooves with depths denoted by gi’s where i
1,2,3,4. We choose the refractive indices of the materi-
ls as denoted in Fig. 2 and a fixed periodicity of �
200 nm with 0.5 duty cycle for all grating sections, while

he electromagnetic field is assumed to propagate in the x
irection with TE polarization along the z direction
s-wave). In this work, the effects of changing the struc-
ural parameters (except �, the duty cycle, and g) on the
perational characteristics will be systematically investi-
ated for cases of different N’s.

The considered structural variations cover 12 different
ombinations specified by the aggregate groove-depth pa-
ameters on the edge sections g1, g2, g3, g4 as arranged in
able 1. Note that the serial numbers have been chosen in

eth

4g 2g3g 1g

Edge Section

02 �� dy

hdy �� 1
y

z x

escribed by the aggregate groove-depth parameters �g1 ,g2 ,g3 ,g4�
ith N te

g

edge d
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he order of increasing total groove area of the edge sec-
ions. Further, the GWg’s structures no. 1 and no. 12 ac-
ually correspond to the regular GWg with N and N+8
eeth, respectively.

Next, we introduce the evaluated parameters relevant
or the device performance, which will be discussed in the
ollowing section. The modal transmittance �T� and reflec-
ance �R� of the system are to be calculated at external po-
itions xi and xt, located at distances of 103 and 3
103 nm from the left end and right ends of the device,

espectively. The chosen positions are sufficiently far from
he grating ends to ensure insignificant contributions
rom the scattered fields. These two quantities are calcu-
ated according to the following definitions:

T =

�
0

h


Ez�xt,y;��
2dy

�
0

h


Ez,0�xi,y;��
2dy

, �15�

ig. 3. Calculated spectral profiles of T��� (dashed-line), R��� (d
o. 1, (b) no. 6, and (c) no. 12 with N=8, as specified in the text.

Table 1. Modified Edge Grating Structures
Corresponding to Aggregate Groove-Depth

Parameters and the Associated Serial Numbers for
the Resulting Structures

No.
g1

(nm)
g2

(nm)
g3

(nm)
g4

(nm)

1 0 0 0 0
2 20 20 20 20
3 40 40 40 40
4 20 40 60 80
5 40 40 60 80
6 40 60 60 80
7 60 60 60 60
8 60 60 60 80
9 60 60 80 80

10 60 80 80 80
11 80 80 80 80
12 100 100 100 100
R =

�
0

h


Ez�xi,y;�� − Ez,0�xi,y;��
2dy

�
0

h


Ez,0�xi,y;��
2dy

, �16�

here Ez�xt ,y ;�� is the total external field at a position xt
nd Ez�xi ,y ;�� is the total field at a position xi, while
z,0�xi ,y ;�� is the guided fundamental modal field at xi.
sing the calculated T and R for each case, one can de-

ermine the out-of-plane scattering loss L by applying the
ollowing relation:

L = 1 − T − R. �17�

ext, the normalized group velocity �vg /c� is determined
n the basis of the following equation [29]:

vg

c
= −

2�LG

�2d�/d�
. �18�

n this expression LG is the total length of the whole
rated structure including the core and edges, while � is
he phase of the following complex transmission coeffi-
ient:

t =

�
0

h

Ez�xR,y;��dy

�
0

h

Ez,0�xL,y;��dy

, �19�

here xL and xR denote the positions of the left and right
rating ends, respectively. In addition to the above pa-
ameters, we also investigate the energy confinement ef-
ect by calculating the total energy confined, W, within a
ertain area A,

W =�
A

�slab
E
2dA, �20�

here A covers the non-GWg area in a fixed core section
f eight teeth for all cases.

ine), and L��� (solid-line) presented for the GWg structures of (a)
olid dots indicate the position of resonance wavelength.
otted-l
The s
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. RESULTS AND DISCUSSION
he computational window chosen for the numerical
tudy is defined along the x-axis by �xl ,xr�= �0,8�
103 nm and by �yl ,yu�= �−0.04,0.2�
103 nm along the

-axis. For the discretization, a rectangular mesh of area
A=2
102 nm2 is chosen, with �x=10 nm and �y
20 nm, which has proved small enough to give conver-
ent results.

The spectral profiles of T���, R���, and L��� are calcu-
ated over the entire wavelength range of the bandgap
nd covering both of its edges for each of the GWg struc-
ures denoted by the numbers from 1 to 12. This calcula-
ion is separately carried out for cases with N=8, 10, and
2. In order to better exhibit the characteristic effects in-
uced by structural changes of the GWg system, the cal-
ulated results are presented in Fig. 3 for only three dis-
inct cases with GWg structures of nos. 1, 6, and 12 with
=8. It is observed that the resonance wavelengths cor-

esponding to maximum transmittance at the left and
ight edges of the bandgap show opposite shifts as the
tructure varies from no. 1 to no. 12 (see Fig. 4). It is im-
ortant to note that L��� attains its remarkably smaller
alues for case no. 6 around the right resonance wave-
ength. On the other hand, L��� appears to increase mo-
otonously with respect to the same order of structural
ariation around the left resonance. It is obvious that its
alues at the left resonances are generally too large to be
f practical interest.

The following discussion will be focused on the
tructure-modification-induced changes in the device op-
rational parameters at resonances. Figure 5 shows the
ariations of T��res� [Fig. 5(a)], R��res� [Fig. 5(b)], and
��res� [Fig. 5(c)] at both the left and right resonances (at

he left and right panels, respectively) as the results of de-
ailed structural changes over the entire range of the edge
rating variation from no. 1 to no. 12. These calculations
re performed separately for the cases with N=8, 10, and
2. We note that all three parameters �T ,R ,L� at each
esonance wavelength display generally consistent pat-
erns of variations for the three cases of different N’s.
owever, it is also clear that the variation patterns at the

eft and right resonances are distinctly different. First,
he reflectance �R� at the right resonance shows a pro-
ounced “immunity” to the structural changes which

ig. 4. (Color online) Variations of resonance wavelength show-
ng the qualitatively different and generally opposite trends of
hift with respect to structural variation from no. 1 to no. 12 for
=8 (black circles), 10 (red squares), and 13 (blue diamonds) at

eft (a) and (b) right.
learly does not hold for the left resonance as shown by
omparing the two panels in Fig. 5(b). Second, combining
his R��� with the T��� spectral profiles depicted in Fig.
(a), a remarkably low and relatively flat minimum loss
t the right resonance is found as shown in Fig. 5(c), in-
icating a certain degree of robustness against structural
hanges. In particular, the loss reduction calculated for
Wg structure no. 6 is about 85.3% for N=10, which is
nly slightly different from those for the structures with
=8 and 12. This result is consistent with the increasing

diabatic effect introduced by more gradually varied
roove depth at the edge sections of the device. This effect
s demonstrated by the calculated result presented in Fig.
, where T, R, and L are plotted with respect to the varia-
ion of edge grating section in the order of decreasing the

ig. 5. (Color online) Variations of (a) T, (b) R, and (c) L at left
esonances (left panels) and right resonances (right panels) for
=8 (black circles), 10 (red squares), and 12 (blue diamonds).
ote the consistently flat responses to structural changes of R (b)

n the right panel as compared to the relatively complicated al-
eit consistent responses shown on the corresponding left panel
or different N’s.
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bruptness between neighboring gi’s, namely, 1�. (0, 0, 0,
0) nm, 2�. (0, 0, 60, 80) nm, 3�. (0, 60, 60, 80) nm, and 4�.
40, 60, 60, 80) nm.

We turn next to the variations of group velocity and en-
rgy confinement effect. The calculated results are pre-
ented for the cases of left and right resonances in the left
nd right panels of Fig. 7, respectively. Interestingly, the
ormalized group velocity shown in Fig. 7(a) exhibits
imilar and generally decreasing vg /c at both resonances
or different N’s. Meanwhile, the same structural changes

ig. 6. Variations of (a) T, (b) R, and (c) L at left resonances (le
cations in the sequence marked by edge grating parameters: 1�.
0, 60, 80) nm in increasing smoothness of the �gi� gradation.

(a)

(b)
ig. 7. (Color online) Comparisons between structure-variation-

nduced changes in at left resonances (left panels) and right reso-
ances (right panels) of (a) the normalized group velocity and (b)
he effect of energy confinement, W, for N=8 (black circles), 10
red squares), and 12 (blue diamonds).
lso produce qualitatively similar rising trends of energy
onfinement, W, at both left and right resonances as
hown in Fig. 7(b), although the confinement effect at the
ight resonance is more pronounced. It is worthwhile to
ote that the remarkable loss reduction attained by the
tructural modifications considered here does not produce
oncurrent favorable effects on group velocity and energy
onfinement. Further inspection of Fig. 7 shows, however,
hat a larger N generally gives rise to a more favorable
ffect on both counts. In fact, the lowest vg /c of 0.2707
nd strongest energy confinement effect characterized by
n enhancement factor of 2.21 are simply achieved by the
niform grating with the largest number of grooves con-
idered here, i.e., N=12, or a grating of 20 teeth with uni-
orm groove depths.

. SUMMARY
e have studied, using the Green’s function method, the

hanges in device performances at the first resonance
avelengths next to the band-edges of a grated wave-
uide (GWg) due to modification of the edge grating struc-
ures. The results of the numerical calculations show that
he structure-modification-induced effects on the device
perational characteristics differ distinctly at the left and
ight resonances. An appropriate modification of the edge
rating having the smoothest graded structure has re-
ulted in a most favorable transmittance enhancement of
4.9% and a maximum loss reduction of about 85.3% at
he right resonance for the GWg structure no. 6 with N
10. It is also shown that enlarging the core grating sec-

ion (increasing N) generally improves those two perfor-
ance parameters. On the other hand, the normalized

roup velocity and energy confinement effect are not fa-
orably affected by the changes of the GWg edge struc-
ure. Instead, simply increasing the length of uniform
rating turns out to have significant favorable effects on
oth the group velocity and the energy enhancement ef-
ect.

els) and at right resonances (right panels) with respect to modi-
0, 80) nm, 2�. (0, 0, 60, 80) nm, 3�. (0, 60, 60, 80) nm, and 4�. (40,
ft pan
(0, 0,
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