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In the literature, computational puzzle schemes have been considered as a useful tool for a number of
applications, such as constructing timed cryptography, fighting junk emails, and protecting critical infras-
tructure from denial-of-service attacks. However, there is a lack of a general security model for studying
these schemes. In this paper, we propose such a security model and formally define two properties,
namely the determinable difficulty property and the parallel computation resistance property. Further-
more, we prove that a variant of the RSW scheme, proposed by Rivest, Shamir, and Wagner, achieves both
properties.
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1. Introduction

A computational puzzle scheme [13,19,20,30] enables a prover to prove to a verifier that a certain
amount of resources has been dedicated to solve a puzzle. To motivate our discussions, consider
the following two toy examples.

(1) Let H be a one-way hash function. The verifier selects a random number x and set the puzzle
to be H(x), while the prover searches for a number x ′, where H(x) = H(x ′), as the puzzle
solution. The verifier verifies a submitted puzzle solution x ′ through checking the equality
H(x) = H(x ′).

(2) Let H be a one-way hash function. The verifier selects d random numbers ri (1 ≤ i ≤ d) as
the puzzle, while the prover computes H(ri)(1 ≤ i ≤ d) as the puzzle solution. The verifier
verifies a submitted puzzle solution hi(1 ≤ i ≤ d) through checking the equalities H(ri) =
hi(1 ≤ i ≤ d).

In the first scheme, the verifier only needs to compute one hash in order to verify the solution,
regardless of the amount of computation that the prover needs to perform. In contrast, in the second
scheme, the verifier needs to perform the same amount of computation as that of the prover in
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order to verify the solution. Intuitively, the first scheme seems to be the preferred one, but it still
has some drawbacks.

• First, the amount of computation the prover needs to perform is probabilistic. Suppose x is
chosen from the domain [1, N ]. In the best case, the prover only needs to compute one hash,
while in the worst case, it needs to compute N hashes until we find the right answer. As a
consequence, the verifier never knows what is the exact amount of computation required to
solve a puzzle, although the average is (N/2) hashes.

• Second, if a prover has access to more than one computer, then it can speed up the puzzle
solving process by having all of them work in parallel. For example, client A, which has
access to x computers, could be x − 1 times faster in finding a solution than client B, which
has access to one computer. In practice, it is very difficult for a verifier to determine the
amount of computing resources a prover can access, especially in the presence of malicious
provers which control a large number of Zombie computers. In some cases, such as timed
cryptography [5,17,30], this will create an unfair situation for different provers. Arguably, in
many other cases, such as fighting against denial-of-service (DoS) attacks [20], the parallelism
property of a computational puzzle scheme may also be undesirable.

1.1 Contribution

Most of the existing computational puzzle schemes, as surveyed in Section 2, possess similar
drawbacks. In fact, there is a lack of a general security model for formally studying relevant
properties. In this paper, we propose a security model for computational puzzle schemes in general.
In particular, in correspondence to the above drawbacks, we formally define two properties, namely
determinable difficulty and parallel computation resistance.

• The determinable difficulty property implies that the verifier can precisely determine the
required resource required from the prover in solving a puzzle.

• The parallel computation resistance property implies that the prover cannot accelerate the
puzzle-solving process by letting more than one computer work in parallel.

These two properties describe the fundamental characteristics of computational puzzles. This is
the first model of this kind, though there are security models for some specific categories of com-
putational puzzle schemes [9]. In addition, we also provide discussions on some other properties
such as computation disparity between the verifier and a prover, puzzle hardness granularity, and
puzzle statefulness.

We prove that a variant of the RSW computational puzzle scheme, proposed by Rivest, Shamir,
and Wagner, achieves the determinable difficulty and parallel computation resistance properties.
This not only shows that the defined security properties are achievable but also solves the open
issue about analysing the security of the well-known RSW scheme in a rigorously defined secu-
rity model. To our knowledge, most existing computational puzzles do not achieve the parallel
computation resistance property.

1.2 Organization

The rest of the paper is organized as follows. In Section 2, we present a brief literature review
on computational puzzle schemes and present a formal definition. In Section 3, we propose a
general security model and define the properties. In Section 4, we present a variant of the RSW
computational puzzle scheme and prove its security. In Section 5, we conclude the paper.
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2248 Q. Tang and A. Jeckmans

2. Preliminary of computational puzzles

In this section, we briefly review the literature of computational puzzle schemes, and then present
a general and formal definition of such schemes to facilitate our following discussions.

2.1 Literature review

Merkle [27] was the first to introduce the notion of puzzle which led to the invention of public
key cryptography. In this context, the puzzle is required to be unsolvable by any polynomial-time
entity. Dwork and Naor [13] proposed the concept of pricing function to combat junk emails.
Rivest et al. [30] proposed the concept of timed-lock puzzle, which serves as a tool to realize the
concept of timed-release crypto. Juels and Brainard [20] proposed the concept client puzzle and
suggested to use it to prevent DoS attacks. Regardless of the different notations, pricing function,
timed-lock puzzle, proof of work, and client puzzle share the same characteristic: they can be
regarded as another type of puzzle (different from that of Merkle [27]) which is moderately hard
in the sense that a polynomial-time entity can successfully find a solution by spending a certain
amount of resources. Without loss of generality, we use the term computational puzzle to refer to
the second type of puzzle.

Roughly speaking, there are two types of computational puzzle schemes. One type is CPU-
bound, where the computation is measured by the amount of CPU cycles needed to solve a puzzle.
Some examples are those in [4,9,13,19,20,30,32,36], which form the majority of the existing
computational puzzle schemes. Abadi et al. [1] first noticed the fact that CPU power varies a
lot for different computers (such as PC, PDA, and Workstation), and introduced memory-bound
computational puzzle schemes, where the computation is measured by the amount of memory
look-ups needed to solve a puzzle. The schemes in [11,12] fall into this category. Regardless of
the nature of different forms of computations involved in solving puzzles, the essence is the same,
namely the prover needs to spend a certain amount of resources (either CPU cycles or memory
look-ups) in finding a solution.

Computational puzzle schemes have been explored to realize a number of secure functionalities,
such as timed encryption [30], timed bit commitment [5], timed release of digital signatures [17],
uncheatable benchmarks [8], trustworthy website usage metering [15], and generating delays in
lottery applications [18]. The rationale is that the process of spending resources in solving a puzzle
automatically results in a time delay, which enables the verifier to control when the prover is able
to access the functionalities. In other words, the functionalities are masked by puzzles, which
need to be solved first before the prover can access the functionalities. Besides realizing various
security functionalities, researchers have also applied computational puzzle schemes to mitigate
a wide range of DoS attacks, such as fighting junk emails [12,13], protecting authentication
protocols [2,23,29], protecting IP networks [10,14,16,20,33–35], protecting wireless networks
[24,26], and preventing Sybil attacks [6]. With a computational puzzle scheme implemented, the
server (playing the role of verifier) can mitigate an attack by asking every client (playing the role of
prover) to solve a puzzle before allocating any required resource. The rationale is that the number
of ‘valid’ requests from a malicious client will drop to some extent, because the client has only a
limited resource to find puzzle solutions. In the literature, there has been some debate on whether
computational puzzle schemes are really helpful to detect DoS attacks. Based on the collected
results from ISPs in UK, Laurie and Clayton [21] claimed that computational puzzle schemes are
hardly effective in combating junk emails in practice, while Liu and Jean Camp [25] argued that
computational puzzle schemes could be helpful if such schemes are used in combination with
reputation systems.

Chen et al. [9] proposed a security model for computational puzzle schemes tailored for
defeating DoS attacks. In particular, their definition has focused on the unforgeability and difficulty
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of puzzles. However, their definition of puzzle difficulty implies neither the determinable difficulty
property nor the parallel computation resistance property.

2.2 Definition of computational puzzle schemes

In the design and analysis of computational puzzle schemes, we typically do not directly talk about
how many CPU cycles or memory lookups are required for puzzle generation, puzzle solving, and
puzzle solution verification. Instead, we often use the number of some generic operations (such
as a hash or a multiplication in some group) as a puzzle complexity metric. For the purpose of
notation, we assume the generic operation to be denoted as Func.

A computational puzzle scheme consists of four (probabilistic) polynomial-time algorithms
(Setup, PuzzleGen, PuzzleSol, PuzzleVer).

• Setup(�, D): Run by the verifier, this algorithm takes a security parameter � and an upper
bound D on the puzzle hardness (see the definition below) as input, and outputs the public
system parameter params and a private key mk. The public system parameter params should
also include a specification about the metric function Func. This system parameter is implicitly
part of the input to other algorithms, and we omit it in the descriptions for simplicity reasons.

• PuzzleGen(mk, d, req): Run by the verifier, this algorithm takes the private key mk, a hardness
parameter d, and some additional information req as input, and outputs a puzzle puz and some
relevant information info. The hardness parameter d is an integer which indicates the total
number of Func operations required. The verifier sends puz to the prover, and keeps info for
verifying the solution.

• PuzzleSol(puz): Run by a prover, this algorithm takes a puzzle puz as input and outputs a
puzzle solution sol.

• PuzzleVer(mk, info, sol): Run by the verifier, this algorithm takes the private key mk, the
puzzle information info, and the solution sol as input, and outputs 1 if sol is correct or 0
otherwise.

It is worth noting that a prover may not follow the PuzzleSol algorithm to find a solution,
and in fact it can use any means to find the solution. But the properties determinable difficulty
and parallel computation resistance, which will be defined in the next subsection, imply that
a prover need to perform d operations of Func in order to find a solution whether or not it
follows the PuzzleSol algorithm. In addition, in some schemes, a long-term private key mk may
be unnecessary or the additional information req may not be required as part of the input. In
some application scenarios, such as timed cryptography [5,17,30], a puzzle verification algorithm
PuzzleVer is not explicitly required. Nonetheless, the above definition is meant to be general
enough to cover the most existing computational puzzle schemes.

3. Property formulations for computational puzzles

Similar to other types of cryptographic schemes, soundness is a basic requirement for a com-
putational puzzle scheme. In our case, soundness is defined to be that, given a puzzle with the
hardness parameter d , the prover can find a correct solution by performing a total number of d

operations of Func.
In the following, we formalize the properties determinable difficulty and parallel computation

resistance. It is worth noting that, as in the case of most cryptographic formulations, we only
consider a polynomial time adversary in our formulation and define that a property is achieved if
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2250 Q. Tang and A. Jeckmans

an adversary has only a negligible advantage in the attack. The notion of negligibility is defined
as follows.

Definition 1 The function P(k) : Z → R is said to be negligible with respect to k if, for every
polynomial f (k), there exists an integer Nf such that P(k) < (1/f (k)) for all k ≥ Nf .

3.1 The determinable difficulty property

Informally, the determinable difficulty property implies that the verifier can precisely determine
the required resource from the prover in solving a puzzle. Basically, this has two implications.

• One is that puzzles, generated by the verifier, are independent from each other in the sense that
solving one puzzle does not help solve another puzzle. In other words, any puzzle generated
by the verifier will require the prover to perform d Func operations.

• The other is that puzzles, generated by the verifier, are unpredictable in the sense that any puzzle
generated by the verifier looks fresh so that the prover is unable to pre-compute the solution.

An attack succeeds if, after receiving a puzzle of hardness d, the adversary finds a solution by
performing less than d Func operations. As a standard practice, attacks against the determinable
difficulty property is simulated through the following three-phrase game between an adversary
and a challenger, as depicted in Figure 1. In the attack game, the adversary plays the role of a
malicious prover and the challenger plays the role of the verifier.

In practice, the only information to a prover is the puzzles generated by the verifier and the
public system parameter. It is straightforward to check that the adversary has all the same privi-
leges as a malicious prover in practice. Formally, the determinable difficulty property is defined
as follows.

Definition 2 Suppose that the adversary has performed d† Func operations in the Response
phase of the attack game (defined in Figure 1). A computational puzzle scheme achieves the
determinable difficulty property if the probability d† < d∗ is negligible with respect to the security
parameter �. The probability is computed based on the (random) coin tosses of the challenger
and the adversary.

Figure 1. The attack game.
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3.2 The parallel computation resistance property

As illustrated by the example schemes in Section 1, if a prover has access to a number of computers,
it is able to solve a puzzle much faster than others by dividing the workload and letting the
computers work in parallel. Informally, the parallel computation resistance property implies that a
prover cannot accelerate the puzzle-solving process by exploiting the parallelism. More concretely,
the parallel computation resistance property requires that, after receiving a puzzle of hardness d

from the verifier, a prover needs to sequentially perform d Func operations to find a solution. It
means that the prover is unable to speed up the process by letting more than one computer work
in parallel. This also implies that the best strategy for the prover is to use its fastest computer to
solve the puzzle. We first introduce the notion of sequential computing time as follows.

Definition 3 Suppose that a prover has access to a number of computers which can work in
parallel, and the Func function is implemented as a program in every computer. Let the each
evaluation of the Func function be denoted as an event, marked by the starting time and ending
time of the evaluation, and the set of events be denoted by gt (1 ≤ t ≤ N) in a computation task.
Consider all sequences of the events of the following form:

Seqx = {q1, q2, . . . , qx},
where, 1 ≤ x ≤ N and for all 1 ≤ i ≤ x − 1, the qi+1th Func evaluation is started by a computer
after the qi th Func evaluation has ended (by any computer). The sequential computing time of
the computation task is the maximum value of the sequence indexes, namely maxx .

Formally, the parallel computation resistance property is defined as follows.

Definition 4 Suppose that the sequential computing time of the computation task of finding a
correct solution sol∗ is d† in the Response phase of the attack game (defined in Figure 1). A com-
putational puzzle scheme achieves the parallel computation resistance property if the probability
d† < d∗ is negligible with respect to the security parameter �. The probability is computed based
on the (random) coin tosses of the challenger and the adversary.

According to our definition, the parallel computation resistance property implies the deter-
minable difficulty property. However, the reverse is clearly not true.

Parallel computation resistance is a very desirable property when we want to limit the disparity
of computing powers of potential provers of a computational puzzle scheme. Moreover, in some
cases, this property is crucial to mitigate attacks from malicious provers which control a cluster
of Zombie computers. However, the determinable difficulty property is of independent interest in
evaluating the security of computational puzzle schemes when the property parallel computation
resistance is unnecessary. There are straightforward ways to convert a scheme, which achieves the
parallel computation resistance property, into a scheme which achieves determinable difficulty
and yet supports parallelism. For example, to generate a puzzle of hardness d, the verifier generates
x independent sub-puzzles {puz1, . . . , puzx} such that each of the sub-puzzle has the hardness
(d/x). By doing so, the total hardness is still d = (d/x) · x, but a prover can solve the sub-puzzles
in parallel.

3.3 Further remarks

When designing computational puzzle schemes, a naturally desirable property is the computation
disparity between the verifier and a prover: it should take very little resource for the verifier
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2252 Q. Tang and A. Jeckmans

to generate a puzzle and verify a solution, while it should take the prover a certain amount of
resources (determined by the verifier) to find a solution. Formally, this property can be evaluated
by a ratio parameter (v/d), where v is the total number of Func operations required in generating
a puzzle and verifying a solution, and d is the puzzle hardness.

With respect to puzzle hardness d , it is desirable that a computational puzzle scheme provides
finer granularity support. Take the hash-based client puzzle scheme as an example1: a puzzle is
in the form of (h, x2), where h = H(x1||x2), H is a collision-resistant hash function, and x1 has
bit-length k; a solution is a k bit x ′

1 such that h = H(x ′
1||x2). Clearly, the puzzle hardness can only

be set exponentially with respect to k in this case. However, in the RSW computational puzzle
scheme [30] and the variant in Section 4, the puzzle hardness can be set linearly in the number
of multiplications. Clearly, with the latter, the verifier can more flexibly set d according to the
requirements of the underlying applications.

According to the definition of a computational puzzle scheme given in Section 2, the verifier
may store some state information info for each puzzle. In this case, the scheme is said to be
stateful. In practice, a stateful computational puzzle scheme may be considered to be inefficient
because the verifier needs to store a piece of information for every unverified puzzle. Nevertheless,
it is straightforward to turn a stateful scheme into a stateless one by sending both puz and info
to the client, which should send sol and info back to the server for verification. In the case
that info compromises the determinable difficulty property or the parallel computation resistance
property, the verifier can protect info with a symmetric key encryption algorithm and a message
authentication code algorithm. It is worth noting that a completely stateless computational puzzle
scheme may be prone to replay attacks, in which an adversary replays a puzzle and its solution to
the verifier. A more detailed discussion of this issue is beyond the scope of this paper, and should
be addressed in the deployment of a computational puzzle scheme.

4. Analysis of a variant of the RSW scheme

In this section, we analyse a variant of the RSW computational puzzle scheme and show that it
achieves the parallel computation resistance property. In the literature, Tritilanunt et al. [32] pro-
posed a scheme towards achieving the parallel computation resistance property, but they did
not give a rigorous security proof. It is unclear whether their scheme can be proven in our
security model.

4.1 Description of the scheme

The algorithms of the new scheme are defined as follows.

• Setup(�, D): This algorithm selects two random large primes p, q and a cryptographic hash
function H : {0, 1}∗ → Z

∗
pq . The public parameter is (�, D, pq), and the master key is mk =

(p, q). In addition, the metric function Func is multiplication in Z
∗
pq . Given �, the prime

numbers p, q should be chosen in such a way that the required assumptions hold, as stated in
the next subsection.

• PuzzleGen(mk, d, req): This algorithm chooses r ∈R Zpq and computes g = H(r||req), and
outputs the puzzle puz = (g, d). The related puzzle information is info = (r, d, req).

• PuzzleSol(puz): This algorithm outputs sol = g2d

mod pq.
• PuzzleVer(mk, info, sol): This algorithm returns 1 if sol ≡ (H(r||req))2d mod φ(pq) (mod pq),

and returns 0 otherwise.

In this scheme, g is computed as g = H(r||req), which can be regarded as a randomly chosen
element of Z

∗
pq if H is modelled as a random oracle (as shown in our security proof). By doing so,
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if needed, this element can be bound to situational information (such as the identity information
of the prover) contained in req. Furthermore, the modification also facilitates the proof in our
security model. Note that, in [30], g is directly assumed to be a randomly chosen element of Z

∗
pq .

We further note that the hah function H can be replaced with any function that maps r||req to a
random element in Z

∗
pq .

The puzzle hardness d can be set linearly in the number of multiplications in the group Z
∗
pq .

It is clear that the workload of the verifier is constant regardless of the puzzle hardness. With
respect to the verification complexity of the verifier, we omit the computation 2d mod φ(pq)

for two reasons. One is that it could be pre-computed and stored by the verifier. The other is
that, in many cases, multiple puzzles might share the same hardness so that the computation
only needs to be done once. As a consequence, it is straightforward to calculate that the average
verification complexity for the verifier is approximately (3L/2) multiplications in Z

∗
pq , where L

is the bit-length of φ(pq). The computation disparity ratio parameter is (3L/2d).

4.2 Security analysis

Leander and Rupp [22] model Zpq as a generic ring structure in order to prove the equivalence
of RSA and factoring. In this paper, we assume the same structure. For our purpose, we only
describe a generic algorithm according to the multiplication operation in Z

∗
pq in the following. It

is worth noting that there are different ways of giving the definition [28,31], and we follow that
of Shoup [31].

Let g ∈R Z
∗
pq and σ be an encoding function of G = {gi |i ∈ N} on {0, 1}|pq|, where N is the

set of integers and |pq| means the bit-length of pq. Suppose O is a multiplication oracle, which,
for any r ∈ G, computes σ(r) as follows: if r has been calculated before, then the same value of
σ(r) is returned; otherwise, it sets σ(r) to be a random value from {0, 1}|pq| \ S, where S is a set
initialized to be {σ(g)}. A generic algorithm A is a probabilistic algorithm, which takes S and
pq as input, and behaves as follows. At any time, A can send a query with the input (x, y, b),
where x, y ∈ S and b ∈ {1, −1}, to O, and will receive σ(x · yb) as the reply. After every query,
the result is added to the set S.

Remark 1 The concept of generic algorithms, which traces back to Babai and Szemeredi [3],
has been extensively used to model algebraic objects, such as groups and rings. It has made
it possible to prove the security of many cryptographic protocols. Note that this methodology
does possess an inherent limitation, namely a lot of attacks against cryptographic protocols have
actually been subject to the successful exploit of the structures of the underlying algebraic objects.
Nevertheless, a security proof can still provide a certain level of confidence in the security of the
studied protocols.

To complete our proof, we further need the following computational assumption associated
with the multiplication group Z

∗
pq . This assumption is similar to the representation assumption in

groups of prime order made by Brands [7].

Definition 5 Let p, q be two prime numbers. The extended discrete logarithm assumption holds
for Z

∗
pq if the following event only occurs with a negligible probability with respect to a security

parameter �: Given (pq, g, gi (1 ≤ i ≤ V )), where g, gi (1 ≤ i ≤ V ) are chosen uniformly at
random from Z

∗
pq and V is any polynomial in the security parameter, a polynomial-time adversary

finds x 	= 0, xi (1 ≤ i ≤ V ) ∈ N such that

gx ≡
1≤i≤V∏

xi∈N

g
xi

i (mod pq).
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2254 Q. Tang and A. Jeckmans

In the following theorem, we prove that the variant scheme achieves the parallel computation
resistance property (and certainly also the determinable difficulty property).

Theorem 1 If the adversary is modelled as a generic algorithm as defined above, then the
variant scheme achieves the parallel computation resistance property based on the extended
discrete logarithm assumption (given in Definition 5) in the random oracle model.

Proof sketch In order to prove the theorem, we need to show that the adversary’s advantage in
the attack game (defined in Figure 1) is negligible according to Definition 4. Since the adversary
is modelled as a generic algorithm, there are two types of oracle queries it may issue. One is the
PuzzleGen query which can be issued to the challenger, and the other is multiplication oracle
query which can be issued to the generic group oracle O.

We first consider a simple situation where the adversary does not issue any PuzzleGen query
in the game. In this situation, the best strategy for the adversary to issue oracle queries to O in
the Response phase is the following.

(1) At the beginning, the adversary issues two queries with the inputs (σ (g∗), σ (g∗), 1) and
(σ (g∗), σ (g∗), −1). Clearly, until it receives the replies, namely σ((g∗)2) and σ(1), from the
oracle O, it does not make sense for the adversary to send any other query.

(2) After obtaining the replies, the set S becomes {σ(1), σ (g∗), σ ((g∗)2)}. Then the adversary
issues queries with the following inputs:

(σ (g∗), σ ((g∗)2), 1), (σ ((g∗)2), σ ((g∗)2), 1),

(σ (1), σ (g∗), −1), (σ (1), σ ((g∗)2), −1).

Clearly, until it receives the replies, namely σ((g∗)3), σ((g∗)4), σ((g∗)−1), and σ((g∗)−2)

from the oracle O, it does not make sense for the adversary to send any other query.
(3) After obtaining the replies, the set S becomes

{σ(1), σ (g∗), σ ((g∗)2), σ ((g∗)3), σ ((g∗)4), σ ((g∗)−1), σ ((g∗)−2)}.
Then the adversary issues queries with (x, y, b), where x, y ∈ S, b ∈ {1, −1}, and σ(x · yb) /∈
S. Clearly, until it receives the replies, it does not make sense for the adversary to send any
other query.

(4) The adversary continues the above process until it sends the response to the challenger.

Note that, we have enlarged the adversary’s ability here, by allowing it to issue potentially an
exponential number of queries to the oracle O. In fact, a polynomial-time adversary can only
issue a polynomial number of queries. Nonetheless, if such an extensively empowered adversary
cannot win the game, then a polynomial-time adversary can neither.

Suppose, at the end of the game, the adversary performs d∗ − 1 steps as above (which also
means the sequential computing time is d∗ − 1), then the set S is a subset of

{σ((g∗)−2d∗−1
), σ ((g∗)−2d∗−1+1), . . . , σ (1), . . . , σ ((g∗)2d∗−1−1), σ ((g∗)2d∗−1

)}.
In the game, the adversary could choose to submit a value σ((g∗)z) from S or a value r from
{0, 1}|pq| \ S as the response to the challenger.

• In the first case, ifσ((g∗)z) = σ((g∗)2d∗
), then the adversary has actually found 2d∗ − z such that

(g∗)2d∗ −z ≡ 1 (mod pq). Based on the extended discrete logarithm assumption, the probability
is negligible.
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• In the second case, if (g∗)2d∗
has not been queried to the oracle, the probability r = σ((g∗)2d∗

)

is (Q/pq), where Q is the total number of queries issued to the oracle O. Clearly, this prob-
ability is negligible. Otherwise, if (g∗)2d∗

has been queried to the oracle O, the probability
r = σ((g∗)2d∗

) is 0.

To summarize, in this simple situation, the adversary’s advantage is negligible.
Next, we evaluate a more complex situation where the adversary is free to issue PuzzleGen

oracle queries. This reflects the practical situation that a prover can ask the verifier for puzzles
in a computational puzzle scheme. Our analysis will show that such a privilege does not help the
adversary gain any benefit. Let σ(g1), σ (g2), . . . , σ (gV ) be the elements resulted from the replies
of PuzzleGen oracle queries, where g1, g2, . . . , gV are random elements from Z

∗
pq . Certainly, V

is a polynomial in the security parameter. Suppose, at the end of the game, the adversary performs
d∗ − 1 steps in the Response phase, then the set S is a subset of S1

⋃
S2

⋃
S3. The set S1 is the

following:

S1 = {σ((g∗)−2d∗−1
), σ ((g∗)−2d∗−1+1), . . . , σ (1), . . . , σ ((g∗)2d∗−1−1), σ ((g∗)2d∗−1

)}.
The set S2 contains a polynomial number of encodings of the form σ(

∏1≤i≤V
xi∈N

g
xi

i ), and the set
S3 contains a polynomial number of encodings of the form σ(A · B), where σ(A) ∈ S1 and
σ(B) ∈ S2.

In the game, the adversary could choose to submit a value σ((g∗)z) from S1, S2, S3, or a value
r from {0, 1}|pq| \ S as the response to the challenger.

• In the first case, from the analysis in the simple situation, the adversary’s advantage is negligible.
• In the second and the third cases, if σ((g∗)z · ∏1≤i≤V

xi∈N
g

xi

i ) = σ((g∗)2d∗
), then the adversary has

actually found 2d∗ − z such that (g∗)2d∗ −z ≡ ∏1≤i≤V
xi∈N

g
xi

i (mod pq). Based on the extended
discrete logarithm assumption, the probability is negligible.

• In the forth case, from the analysis in the simple situation, the adversary’s advantage is
negligible.

As a result, in this situation, the adversary’s advantage is negligible. The theorem follows. �

5. Conclusion

In this paper, we have revisited the concept of computational puzzle schemes, proposed a security
model and presented formal definitions for two important properties, namely the determinable
difficulty property and the parallel computation resistance property. We have proved that a variant
of the RSW client puzzle scheme achieves both properties. To our knowledge, this is the first
scheme which has been proved possessing the parallel computation resistance property. Compared
with many other schemes such as the hash-based ones [4,20], the RSW scheme is computationally
more expensive for the verifier, which needs to perform one exponentiation in verifying a puzzle
solution. Therefore, an interesting direction is to investigate how to improve the verifier’s efficiency
in pracice. Another interesting direction is to analyse the memory-bound computational puzzle
schemes in our security model.

Note

1. This is a simplied version of the scheme in [20].
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