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Temporally Aliased Video Microscopy: An
Undersampling Method for In-Plane Modal Analysis

of Microelectromechanical Systems
Christophe Yamahata, Marc Stranczl, Edin Sarajlic, Gijs J. M. Krijnen, Member, IEEE, and Martin A. M. Gijs

Abstract—A simple optical method is proposed for performing
in-plane experimental modal analysis of micromachined struc-
tures with a conventional charge-coupled device (CCD) camera.
The motion of a micromechanical device actuated by high-
frequency sinusoidal forces (kilohertz range) is recorded at the
fixed sampling rate of a camera (typically, 28 frames/s) which is
configured with a short shutter aperture time (1/5000 s). Provided
a CCD sensor with sufficient sensitivity, much information is
contained in the video on the dynamics of the vibrating system
despite the limited frame rate. Taking advantage of the theory
of undersampling, we show that the dynamics of the systems
with several-kilohertz bandwidth can be retrieved very easily. For
demonstration purposes, we first study a push–pull electrostatic
comb-drive actuator, which is a well-known damped harmonic os-
cillator system. Then, we show that our measurement method also
provides useful information on the behavior of nonlinear systems.
In particular, we can characterize the systems’ superharmonic and
subharmonic resonances in a straightforward way. [2011-0281]

Index Terms—Folding frequency, image analysis, in-plane
vibration, microelectromechanical systems (MEMS) characteriza-
tion, modal analysis, Nyquist criterion, optical measurement, res-
onant frequency, subharmonic, superharmonic, undersampling,
video microscopy.

I. INTRODUCTION

M ICROMACHINED devices usually have a functionality
that is directly dependent on their static and dynamic

mechanical properties. On the other hand, downscaling is in-
evitably accompanied with an increasing dependence of phys-
ical characteristics to material imperfections and to variability
in manufacturing. This raises the question of how to reconcile
miniaturization with the finiteness of process capabilities. Let
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us consider, for instance, the cantilever in an atomic force
microscope (AFM). Experiments performed with an AFM are
based on measuring the deflection of a thin cantilever whose
spring constant must, in turn, be known with ultimate accuracy.
However, the mechanical stiffness of thin films is most sensitive
to the variation of thickness, which is also a parameter that
is difficult to control in fabrication. Nevertheless, the spring
constant of a cantilever can be indirectly estimated from its
frequency response function. The “thermal tune method” is a
well-established calibration method that is routinely used for
that purpose. It consists in measuring the cantilever’s out-of-
plane dynamic response to thermal noise [1]. This example is
an illustration that manufacturing of microelectromechanical
systems (MEMS) not only requires perfect control of fabrica-
tion technologies but also involves systematic testing of the
microfabricated devices, including their dynamic mechanical
behavior [2]–[5].

As MEMS technology had its origin in microelectronics in-
dustry, it is not surprising that a large variety of instruments can
be found to test their electrical characteristics. On the opposite,
relatively few tools are available to measure the mechanical
behavior of microfabricated devices. We only mention here
the Micro System Analyzer developed by Polytec Inc. [6], [7].
This product combines three different optical techniques that
enable noncontact measurement of topography as well as 3-D
dynamics of microstructures. Static characterization of surface
topography is achieved by white-light interferometry. Out-of-
plane vibration modes up to 24 MHz are extracted by a laser
vibrometer which performs measurements on a grid of scan
points [8], [9]. In-plane motion is computed by image analysis
of videos taken with a standard charge-coupled device (CCD)
camera combined with stroboscopic illumination [10]. Although
its price remains prohibitive for most research laboratories,
the performance of this state-of-the-art commercial instrument
encompasses the specifications of most MEMS devices. It is
also representative of recent noncontact techniques developed
for measuring static and dynamic behaviors of MEMS, which
are essentially based on optical methods [3]–[5], [11]–[17].

As this paper concerns in-plane motion analysis, we shall
give a brief overview of the main optical methods used for in-
plane measurements [3], [5], [13]. First, as a method not based
on image analysis, one may consider using a laser-based prin-
ciple. This can be achieved, for example, with a laser Doppler
vibrometer (LDV) which uses the Doppler effect to measure
the amount of vibration at a single point on an object’s surface.
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More precisely, it measures the projected component of the
surface vibration vector along the direction of the incident laser
beam. Thus, if aligned orthogonally to the surface under test,
LDV measures exclusively the out-of-plane vibrations. While
LDV is the most sensitive in this configuration, it can also
be used to measure in-plane vibrations if the surface is tilted
with respect to the laser beam. However, when in-plane am-
plitudes are larger than tens of nanometers, video microscopy
associated with image processing techniques is more powerful
[3]. Here, we may distinguish the existing techniques based on
experimental parameters like: the video frame rate fs, the light
exposure duration δt, and the phase delay of the shutter φ with
respect to the driving signal. With these parameters, we can
essentially categorize these techniques as follows:

1) high-speed cinematography (fs very large, δt very short,
and φ = 0) [18];

2) stroboscopic video microscopy (fs small, δt very short,
and φ = φ(t));

3) recording with a conventional camera to measure the
following:
a) slow motion (fs small, δt long, and φ = 0) [19], [20];
b) motion blur envelope (fs small, δt very long, and φ =

0) [21].

Aside from the critical frequency fM or bandwidth of the
oscillation signal, the choice of either of these methods depends
on the nature of the phenomenon to be measured. High-speed
cinematography is rather reserved for observing nonperiodic
or nonrepeatable transient processes on a very short period of
time [18], [22]. Conversely, stroboscopic video microscopy is
suitable for measuring high-frequency periodic or reproducible
transient responses. The current performance achieved with this
technique typically allows measuring signal responses with up
to 1-MHz bandwidth [6]. Fortunately, if the dynamic response
is limited to several tens of kilohertz, the use of a conventional
CCD camera is likely to be sufficient. In the motion blur
technique proposed by Burns and Helbig [21], the amplitude
of motion of a vibrating part can be obtained by comparing
the blurry image recorded with continuous illumination (or long
light exposure) with a reference image recorded at rest position.
Measurement can be done on a sharp edge—where the contrast
between the moving structure and the background is high—by
fitting the brightness profile with an arcsine function. Although
quantitative data can be obtained with the motion blur method
(e.g., see [21], [23], and [24]), it is primarily a qualitative
method that is mostly used to estimate the resonant frequency
of MEMS devices [25].

To understand the role of each of the parameters introduced
earlier, we come back to the working principle of stroboscopic
imaging. A typical timing diagram illustrating the stroboscopic
method is shown in Fig. 1 [10]. The device under test is
excited with a sinusoidal actuation signal and oscillates at a
frequency fM = 1/TM . The actuation signal generator—and
thus the object motion—is synchronized with a stroboscopic
light source. The duration of the strobe flash pulses δt is chosen
sufficiently short to record unblurred images (δt � TM ). The
camera shutter is, in turn, synchronized with the excitation
and remains open until enough light has been collected. In the
example in Fig. 1, two “frozen” images are used for each frame

Fig. 1. Working principle of stroboscopic video microscopy. A sample is
excited with a sinusoidal waveform generator which is synchronized with a
strobe source. The sample vibrates at a frequency fM = 1/TM , which is much
larger than the frame rate of the camera (fs = 1/Ts). As the strobe generates
ultrashort flashes of light (duration δt) synchronously with the phase position
of the excitation signal (φ), the response signal can be perfectly reconstructed.
In this timing diagram, the phase delay of the strobe illumination with respect
to the response signal is incremented by ∆φ = 60◦ after each frame shot.

shot. In order to reconstruct the motion of the moving object,
after each frame shot, the flash pulses are shifted in time with a
defined phase angle increment ∆φ. For example, in the timing
diagram in Fig. 1, the motion is sampled at phase angles φ = 0◦,
60◦, 120◦, 180◦, 240◦, and 300◦. As the camera has a limited
frame rate (fs = (1/Ts) � fM ), the device is seen to move
with an apparent slow motion.

As emphasized in Fig. 1, the possibility of using multiple
flash pulses of short duration to reconstruct a single shot is
an important feature of the stroboscopic method. This allows
one to keep a short integration time per sample, which is
an essential parameter to be considered for large vibration
frequencies (since the sampling duration acts as a low-pass filter
of the signal). However, this capacity is obtained at the cost of
an increased complexity due to the need for strobe lighting. For
this reason, in what follows, the term “stroboscopy” is delib-
erately restricted to methods and instruments that intrinsically
make use of a strobe, i.e., a shutter or an illumination source
synchronized with the sample under test.1

While we have highlighted that high-frequency oscillating
motions can be analyzed with a conventional camera (fs �
fM ) and an appropriate illumination scheme (δt, φ), it should
be noticed that one illumination scheme has not been exploited
so far: short light exposures (with short or ultrashort delays δt)
without any phase shifting (φ = 0). This configuration is the
opposite view of motion blur imaging and can be implemented
very easily, simply by setting the camera shutter to a short
aperture time. This case is the subject of this study. Hereafter,
we demonstrate that a very simple and cost-effective video
system, based purely on the theory of undersampling, can be
used to extract in-plane amplitude responses of MEMS devices

1Following that logic, the “wagon-wheel effect” observed, for example, in
a western movie would be simply described as a result of “temporal aliasing”
because of being a direct consequence of the limited frame rate of the recorded
media. Otherwise, if observed under stroboscopic conditions (e.g., flickering
light), it would be explicitly called “stroboscopic effect.”
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for vibration frequencies of a few kilohertz. In the following
sections, we explain the working principle of our method called
“temporally aliased video microscopy” and demonstrate that it
is suitable for experimental modal analysis of devices having
either linear or nonlinear dynamic behavior. We start with
a summary of the underlying theory of bandpass sampling
(Section II). Next, we explain the principle of our undersam-
pling method (Section III). Finally, we discuss the potential use
of this method for the in-plane characterization of nonlinear
systems (Section IV).

II. UNDERSAMPLING OF BANDPASS SIGNALS

Prior to detailing the principle of the proposed optical
measurement method, it is worth recalling some basics of
baseband- and bandpass-sampling theories. As we will see later,
the “fanfold paper” representation presented in this section is
particularly helpful in understanding frequency aliasing.

Baseband sampling: The Nyquist–Shannon sampling theorem
states that, for a baseband signal x(t) of bandwidth B, i.e.,
a signal whose continuous Fourier transform X(f) occu-
pies the interval of frequencies f ∈ [−B,B], a sufficient
condition for exact reconstructability of the signal from
its digitized version is that the uniform sampling rate fs

must be chosen such that fs > 2B [26]. Thence, for a given
sampling frequency fs, the Nyquist criterion is respected as
long as the signal occupies the positive baseband interval
[0, fs/2). Here, it should be noticed that the dc component
can be recovered because it contains trivial phase informa-
tion [27]. The frequency fs/2, sometimes denoted as fN ,
is called the Nyquist frequency or folding frequency.

Bandpass sampling (undersampling): The Nyquist–Shannon
theorem can be generalized to bandpass signals [27].
In that case, the condition for signal reconstructability
is that X(f) = 0 outside the frequency bands (−(n +
1)(fs/2),−n(fs/2)) ∪ (n(fs/2), (n + 1)(fs/2)) for all
n ∈ N

∗. The positive frequency band, expressed as the
interval f ∈ [fL, fH ], must be confined to the open interval
(n(fs/2), (n + 1)(fs/2)) since a frequency component at
a multiple of the folding frequency fs/2 would be impos-
sible to retrieve.

Having noticed that the major difference between the sam-
plings of baseband and bandpass signals is that baseband sam-
pling can include the lowest frequency component (fL = 0),
we can give a general formulation of the Nyquist sampling
criterion. For a band-limited signal x(t) of bandwidth B =
fH − fL, its continuous Fourier transform is such that

X(f) = 0 ∀f �∈ [−fH ,−fL] ∪ [fL, fH ]. (1)

The sufficient condition for acceptable uniform sampling rates
can be written [27]

fH

n
<

fs

2
<

fL

n − 1
, with n ∈ N

∗; n ≤
⌊

fH

B

⌋
. (2)

A simple representation of the Nyquist criterion is that of the
“fanfold paper” shown in Fig. 2 [28]. The magnitude |X(f)|
of the positive frequency spectrum is “printed” on fanfold

Fig. 2. Undersampling causes aliasing of the signal. This is best illustrated
with the fanfold paper method [28]. In this illustration, the sampling frequency
is fs. All positive signal frequencies above the folding frequency fs/2 are
folded down into the band between zero and fs/2.

paper sheets which fold down at multiples of the frequency
fs/2, the so-called “folding” frequency. Signals above fs/2 are
folded down into sheet number 1, aliasing all the frequencies
between zero and fs/2. If the positive frequency spectrum
of a bandpass signal entirely fits into a single sheet (either
odd or even), excluding its edges, the sampled spectrum is
just a low-frequency alias of the original spectrum, and signal
reconstruction is possible. What Fig. 2 also shows is that, for
even sheets number 2m (m ∈ N

∗), the downward frequency
translation is further accompanied with a spectral reversal.

The fanfold representation of the negative frequency spec-
trum is the mirrored version of Fig. 2, in which the negative
frequencies below −fs/2 are folded into the band between
−fs/2 and zero. The signal frequencies in the open interval
(−(fs/2), fs/2)—and, in particular, the dc component—are
not folded down. Thus, the fanfold paper method suitably
illustrates the Nyquist sampling criterion for both baseband and
bandpass signals.

III. TEMPORALLY ALIASED VIDEO MICROSCOPY

We call our measurement method “temporally aliased video
microscopy” because it takes advantage of the theory of un-
dersampling (summarized in Section II) to perform in-plane
experimental modal analysis of MEMS with a conventional
CCD camera. Unlike stroboscopic methods, which, by defini-
tion, require the use of a synchronized stroboscopic shutter or
light source, temporally aliased video microscopy only makes
use of the embedded shutter of a CCD camera.2 This simplifies
considerably the experimental setup since no synchronization
is needed between the excitation signal generator and the video
recording equipment.

2Note that several architectures are possible for implementation of the CCD
image sensor, for which distinct approaches correspond to the problem of
shuttering (i.e., either with a mechanical or an electronic shutter). Here, we
assume a global shuttering approach in which the entire frame is exposed for
the same time window.
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Fig. 3. Principle of the in-plane translation measurement method [20]. A CCD camera attached to a microscope simultaneously records periodic patterns of a
reference and of a moving structure (spatial periods λref and λsens, respectively). The motion-induced change in gray scale of pixels yields the displacement ∆x,
as calculated using DFT phase shifting. The dashed and full lines in the upper right panel correspond to the phase obtained from the pixel gray values at times t0
and t1, respectively. The displacement ∆x is directly obtained from the phase change φλsens calculated at the spatial frequency 1/λsens.

TABLE I
CONFIGURATION OF THE OPTICAL MEASUREMENT SETUP

A. Image Processing Algorithm and Optical
Measurement Setup

Temporally aliased video microscopy may be applicable with
any image processing algorithm capable to retrieve position
or orientation data from an image. Hereafter, we have used
a simple algorithm that we have recently proposed for static
characterization of MEMS [20], [29]. For the sake of clarity,
the working principle of that method is shown in Fig. 3. Briefly,
a MEMS device featuring periodic micropatterns is observed
with a CCD camera attached to an optical microscope. Transla-
tion of the microstructure in the x-direction is retrieved from the
comparison of two images by discrete Fourier transform (DFT)
analysis using phase-shift computation.

For all the experiments presented in this paper, the videos
were recorded with a digital microscope VHX-600 (Keyence
Corporation, Japan) whose main parameters are summarized in
Table I. Their analysis was performed with the DFT measure-
ment method, using the graphical user interface (stand-alone
MATLAB GUI) freely downloadable from our institutional
Web site [29], [30].

B. Push–Pull Electrostatic Actuator

The experiments discussed in Section III were performed
on push–pull electrostatic comb-drive devices using the driving
circuit shown in Fig. 4. It is noteworthy to mention that this is

Fig. 4. Schematic of a push–pull comb-drive actuator and its driving scheme.
Two dc power supplies (U+, U−) are connected to the left and right fixed
combs (potentials UL and UR, respectively), while an ac power supply
(U0 sin(ωt)) is connected in the center to the moving combs (potential UC ).

probably the most commonly used type of microactuator for the
design of silicon-based MEMS devices [25], [31]–[34]. While
several driving schemes are possible for such a device (see,
in particular, [34]), our driving circuit is particularly suitable
for dynamic analysis. Indeed, it only requires two dc power
supplies and one ac function generator. The driving potentials
on the left and right fixed combs are denoted as UL and UR,
respectively. They were set precisely to UL = U+ and UR =
−UL = U− using a multiple-output dc power supply (GPS-
3303, GW Instek, Taiwan). The moving combs were set to
the same ac potential UC(t) = U0 sin(ωt), using an arbitrary
waveform generator (Agilent 33250A) driving a high-voltage
amplifier (WMA-280, Falco Systems, The Netherlands).

The electrostatic force Fx(t) associated with this driving
circuit is

Fx(t) =
1
2

∂C

∂x

(
(UR − UC)2 − (UL − UC)2

)

= 2
∂C

∂x
U+ · U0 sin(ωt) (3)
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Fig. 5. Illustration of the frequency aliasing caused by undersampling. In this
experiment, the motion of a push–pull actuator oscillating at 2007 Hz was
recorded at a frame rate of 14.976 frames/s, setting the shutter aperture time
to 1/5000 s. As a result, the device motion was observed with an apparent
frequency of 0.176 Hz.

where x is the lateral displacement of the structure and C is
the capacitance of each pair of comb drives (assumed to be
perfectly balanced, and identical for x = 0). For interdigitated
comb electrodes and small displacements, ∂C/∂x is a constant
[31]. As a result, the force is directly proportional to the ac
driving voltage UC(t) and can be rewritten as

Fx(t) = F0 sin(ωt), with F0 = 2
∂C

∂x
U+ · U0. (4)

Assuming linear spring and damping, the equation of motion
of the push–pull electrostatic actuator is given by the linear
differential equation

ẍ + 2ξω0ẋ + ω2
0x =

F0

M
sin(ωt) (5)

where ξ is the damping ratio, M is the effective mass of the
moving structure, ω0 is the undamped angular frequency, and
F0 is the amplitude of the driving force given in (4).

C. Frequency Aliasing

In signal sampling theory, aliasing refers to the phenomenon
whereby a periodic signal is not faithfully represented in the
sampled signal due to undersampling. Let us describe aliasing
mathematically considering a sinusoidal signal of frequency
fM . When sampled at a frequency fs < 2fM , while ensuring
that fM is not a multiple of the folding frequency fs/2 (see
Fig. 2), the resulting samples become indistinguishable from
those of another sinusoidal signal of frequency

falias(n) =
∣∣∣∣fM − n

fs

2

∣∣∣∣ ∀n ∈ N. (6)

By default, the smallest of these frequencies would be used to
reconstruct the signal, leading to an erroneous reconstruction
(or aliasing artifact). An illustrative example is shown in Fig. 5.
For this experiment, a comb-drive microactuator was excited
with a pure sine voltage. The oscillation frequency of the device

was set precisely to fM = 2007 Hz, and the video was recorded
at a rate of fs,1 ≈ 15 frames/s. In order to capture unblurred
images, we have used a shutter aperture time δt = 1/5000 s.
After analysis of the video, we could fit the data with a sine
wave and extract the aliased frequency falias = 0.1758 Hz.
From (6), we deduce that the actual video frame rate was
fs,1 = 14.9763 frames/s (with n = 268).3

In order to perform in-plane dynamic characterization of this
MEMS device, one could imagine repeating the experiment
for various excitation frequencies fM , spanning the frequency
range of interest, except at multiples of the folding frequency

fM ∈ R+ \
{

n
fs

2
, n ∈ N

∗
}

. (7)

As discussed in the following section, we can actually greatly
simplify the video treatment by proceeding, instead, with a
series of band-limited signals that satisfy (1) and (2). That
is, to refer to the fanfold paper representation, the frequency
response function can be retrieved by performing “sheet-by-
sheet” undersamplings.

D. Chirp Signal Undersampling

A chirp is a signal in which the frequency is swept with time,
either upward or downward. The sinusoidal linear chirp u(t) is
defined as

u(t)=

{
U sin

[
2π

(
fL+ ∆f

2T t
)

t
]
, if 0≤ t≤T

0, if t �∈ [0, T ]
(8)

where U is the amplitude, fL is the starting frequency, ∆f is
the frequency bandwidth, T is the chirp duration, ∆f/T is the
chirp rate, and t is the time. The instantaneous frequency of the
chirp function u(t) is

f(t) =
1
2π

d

dt

[
2π

(
fL +

∆f

2T
t

)
t

]
, if 0 ≤ t ≤ T

= fL +
∆f

T
t. (9)

In practice, the sinusoidal chirp of (8) is not band limited
because the signal is time limited. Nevertheless, good interpola-
tion results can be achieved if the chirp duration is much greater
than the sampling period

T 
 Ts, where Ts =
1
fs

. (10)

To satisfy this condition (which is a fortiori satisfied if (1/T )�
(fs/2)) as well as the Nyquist criterion (∆f < (fs/2)),

3The Keyence Digital Microscope VHX-600 used for our measure-
ments is primarily aimed for high-definition imaging. The recording frame
rate—indicated to be 15 frames/s (28 frames/s in higher speed recording
mode) according to technical specifications—was found to be 14.976 frames/s
(27.781 frames/s in higher speed mode) for our equipment. A sales engineer
from Keyence confirmed that the frame rate is a parameter that is not tuned
during factory configuration and can thus vary from one instrument to another.
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Fig. 6. Illustration of the aliasing of a band-limited sinusoidal chirp caused by undersampling. In this experiment, a push–pull actuator was excited with a linear
chirp increasing between 2008 and 2012 Hz in 60 s. The motion was recorded at a frame rate of 14.976 frames/s, setting the shutter aperture time to 1/5000 s. As a
result, the device motion was observed with an apparent frequency increasing between 1.176 and 5.176 Hz. In (a), we show the measurement data extracted from
the video analysis. The results are fitted with (solid line) an aliased sinusoidal chirp. In (b), we show the computed frequency spectrum of these measurements:
To attenuate spectral leakage, the data were temporally windowed with a trapezoidal function prior to fast Fourier transform operation. The aliased and actual
frequency spectrums are given in the lower and upper horizontal axes, respectively.

the chirp rate should be chosen sufficiently low to ensure that

∆f

T
�

(
fs

2

)2

. (11)

To illustrate undersampling of a chirp signal, the push–pull
electrostatic actuator used in the previous experiment was ex-
cited with a sinusoidal linear chirp. In the experimental results
shown in Fig. 6, we have used the following parameters: fL =
2008 Hz, ∆f = 4 Hz (fH = 2012 Hz), T = 60 s, and fs =
fs,1 = 14.9763 frames/s. With these parameters, the excitation
spectrum entirely fits into the odd sheet number 269 in the
fanfold representation in Fig. 2. Also, since the excitation
frequency bandwidth is short and happens to be far from the
resonant frequency of the device, we can approximate the
oscillation amplitude of the microactuator as a constant in this
frequency range.

The results shown in Figs. 5 and 6 illustrate how a priori
knowledge of the frequency range of a band-limited signal
could be exploited for accurate signal reconstruction from its
digitized version. In particular, these results could be used for
plotting the frequency response function of the MEMS device,
i.e., the magnitude of the displacement as a function of the
oscillation frequency.

E. Sampling Theorem Infringement

So far, we have been cautious to fulfill the Nyquist–Shannon
sampling theorem when selecting the band-limited excitation
signals. More particularly, we have warned the reader that sig-
nal frequencies at multiples of the folding frequency would be
impossible to reconstruct [see (7)]. Let us see what actually oc-
curs when we infringe the sampling theorem. For the following
experiment, we have used a push–pull microactuator with an
integrated differential capacitive sensor. The MEMS device was
excited with a sinusoidal linear chirp, increasing the frequency
between fL = 0 Hz (dc excitation) and fH = 1000 Hz in T =

180 s. The motion was recorded at two different frame rates
fs,1 = 14.976 frames/s and fs,2 = 27.781 frames/s, setting the
shutter aperture time to δt = 1/5000 s. The video measure-
ments are shown in Fig. 7(a) and compared with those of the
solid-state capacitive sensor. The latter were obtained with a
commercial integrated circuit (MS3110 Universal Capacitive
Readout, Irvine Sensors Corporation) [35]. With both measure-
ments, we find that the resonant frequency of the device is
fr = 450 Hz. In addition, we clearly see from the data obtained
by temporally aliased video microscopy that the system behaves
as a driven harmonic oscillator. From the envelopes of the
optical measurement data, we could retrieve the damping ratio
ξ = 0.13 (quality factor Q ≈ 4) and the amplitude of the fre-
quency response, thus finding the parameters of the differential
equation (5). Indeed, the frequency response of a harmonic
oscillator is

X(f)=
X0√(

1−
(

f
f0

)2
)2

+
(
2ξ f

f0

)2

, X0 =
F0

Mω2
0

(12)

where f is the actuation frequency (f = ω/2π), X0 is the
amplitude measured for dc actuation (f = 0), and f0 is the
natural frequency (f0 = ω0/2π).4

The frequency response shown in Fig. 7(a) is not, strictly
speaking, a frequency spectrum (i.e., it is not the result of a
mathematical transformation from time to frequency domain).
Thus, contrary to the windowing operation used to perform
spectral analysis [see Fig. 6(b)], temporally aliased video mi-
croscopy is, by nature, free from spectral leakage. The only
“leakage” that it has to deal with is frequency folding, and we
will see how we can actually take advantage of it.

4Note that we have an underdamped oscillator (ξ < 1). With ξ = 0.13, we
can assume the resonant frequency (driving frequency for which the amplitude
response is maximum) fr to be identical to the natural frequency: fr =

f0

√
1 − 2ξ2 ≈ f0; X(fr) = Q · X0.
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Fig. 7. Dynamic characteristics of a push–pull electrostatic actuator. In (a), (upper graph) the electrical measurements obtained with a solid-state differential
capacitive sensor are compared with (lower graph) those obtained optically by “temporally aliased video microscopy” at frame rates fs,1 = 14.976 frames/s and
fs,2 = 27.781 frames/s. The MEMS device has the linear characteristic of a damped harmonic oscillator, with a resonant frequency at 450 Hz and a damping
coefficient of 0.13 (corresponding to a low Q factor of four). The graph in (b) is a close-up view of the measurement data shown in (a) for the sampling frequency
fs,2 = 27.781 frames/s. Stroboscopic “freezing” is observed for signal frequencies at even multiples of the folding frequency, at f = n(fs,2/2) ∀n ∈ 2N

∗.

To better understand why temporally aliased video mi-
croscopy enables dynamic characterization, we shall examine
more closely the results in Fig. 7(a). In Fig. 7(b), we show
a close-up view of the experimental data measured at frame
rate fs,2 = 27.781 frames/s, around the resonant frequency of
the MEMS device. The graph shows regular nodes: When the
device oscillation frequency approaches a multiple n of the
folding frequency, the sampled signal appears to be “frozen.”
More precisely, we can observe that the sampled signal appears
to be alternatively “bistable” (two distinct levels) and “frozen”
(one single level) at odd and even values of n, respectively.
These stroboscopic artifacts occur because of frequency alias-
ing and are well explained by (6). Even though the signal
cannot be reconstructed at multiples of the folding frequency,
these nodes can be helpful in data treatment. Indeed, since
we use a sinusoidal chirp wave for the excitation, the instan-
taneous frequency of the response is known. Therefore, the
function generator used for the excitation does not need to
be synchronized with the CCD camera because the nodes can
serve to match a given video frame with the corresponding
instantaneous excitation frequency.

Before concluding this section, we need to consider the case
where the critical signal information happens to be exactly at a
multiple of the folding frequency. For example, this happens
if a system with a high Q factor has its resonant frequency
close to the folding frequency. A simple solution to prevent this
occurrence is to use a CCD camera with at least two selectable
frame rates fs,1 and fs,2 which must be such that there is no
overlap of their folding frequencies in the frequency range of
interest [fL, fH ]

n
fs,1

2
�= m

fs,2

2
, with n,m ∈ N

∗ ∀n
fs,1

2
∈ [fL, fH ].

(13)

Obviously, this condition is always satisfied if fs1/fs,2 is an
irrational number.

IV. DYNAMIC CHARACTERIZATION OF

NONLINEAR SYSTEMS

In the previous section, in the discussion of forced vibrations,
we have assumed that the system’s vibration frequency is the
same as that of the disturbing force. In this section, we discuss
the cases where vibrations may appear at multiples or fractions
of the excitation frequency. These phenomena are known as
superharmonic and subharmonic resonances, respectively [36].

A. Electromechanical Subharmonic Resonant System

Subharmonic resonance may occur in any pronounced non-
linear system with small effective damping [36], [37]. The
system studied in this section is schematically shown in Fig. 8.
It consists of a cantilever of stiffness K with an end mass M
that is made to swing by an electrostatic actuator [excited with
sinusoidal voltage U(t)]. This nonautonomous system has a
damping ratio ξ and is described by the nonlinear differential
equation [38]

ẍ + 2ξω0ẋ + ω2
0x = −Γ sin

(
ωxx − 2π

3

)
U2(t) (14)

where ω0 =
√

K/M , ωx = 2π/λx, Γ = ∆Cωx/2M , and ∆C
is the amplitude of capacitance variations. In this model, we
have made the assumption that the spatial capacitance variation
∂C/∂x can be approximated by a sine with angular wavenum-
ber ωx. Equation (14) is, in fact, the equation of motion of a
frictionless three-phase electrostatic stepper micromotor with
only one phase “on.” A thorough analysis of the dynamics of
this micromotor is presented elsewhere [39].
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Fig. 8. Schematic of the nonlinear electromechanical resonant device. The

mass M can be made to vibrate at angular frequency ω0 =
√

K/M by an
exciting force of lower or higher frequency (respectively ω0/2 and 2ω0 in the
cases described in Section IV).

B. Harmonics and Resonance

As a preliminary to the discussion on harmonic resonance,
let us consider the simple case of a system subjected to an
“impure” sine wave. The excitation signal may be described as a
Fourier series containing harmonics nfexc at multiples n ∈ N

∗

of the fundamental frequency fexc. Thus, we may observe
resonance of the system caused by these higher harmonics.
An easy implementation of this resonance artifact consists in
exciting the system shown in Fig. 8, with a sine wave containing
a dc bias

U(t) = Udc + Uac sin(ωt) (15)

with Udc as the dc bias voltage and Uac as the amplitude of
the sine wave. Since the electrostatic force varies quadratically
with U(t), it is helpful to rewrite U2(t) as

U2(t)=
(

U2
dc +

1
2
U2

ac

)
+ 2UdcUac sin(ωt)− 1

2
U2

ac cos(2ωt).

(16)

From (16), we see that the excitation signal contains two sine
waves with angular frequencies ω and 2ω. In Fig. 9, we show a
typical measurement performed on the microactuator shown in
Fig. 8 and subjected to an excitation of the form given in (16),
with Udc = 1 V and Uac = 0.5 V. Using a waveform generator,
the system was subjected to a linearly increasing sinusoidal
chirp. The natural frequency of the system is found at f0 =
163 Hz, and superharmonic resonance can be observed around
the excitation frequency fexc = f0/2. Although this example is
relatively simple, it demonstrates that temporally aliased video
microscopy can be used to identify resonance peaks occurring
at frequencies distinct from the fundamental frequency of the
excitation.

C. Superharmonics and Subharmonics in Nonlinear Systems

The trivial example described before brings us to the general
characterization of nonlinear systems which are, in essence,
complicated to analyze [40]–[44]. In nonlinear systems, forced

Fig. 9. Dynamic characterization of a microactuator excited with a sinusoidal
signal (angular frequency ω = 2πfexc) containing a harmonic wave at 2ω.
Temporally aliased video microscopy was performed at a frame rate fs,1 =
14.976 frames/s. For this experiment, we have used a linearly increasing
sinusoidal chirp with Udc = 1 V and Uac = 0.5 V. The resonant frequency of
the device is f0 = 163 Hz. Superharmonic vibration occurs for fexc = f0/2.

excitation with a pure sinusoidal waveform may generate
superharmonic and subharmonic resonances [44]. While su-
perharmonic resonance is not specific to nonlinear systems,
subharmonic resonance is clearly a signature of nonlinearity.

Eliminating the dc bias in (16) and introducing Ω = 2ω as
the angular excitation frequency, (14) becomes

ẍ + 2ξω0ẋ + ω2
0x = −Γ

U2
ac

2
sin

(
ωxx − 2π

3

)
(1 − cos(Ωt)) .

(17)

Suppose now that x(t) is a solution with angular frequency
ω [37]. Then, x(t) can be represented by a Fourier series for
all t

x(t) = a0 + a1 cos(ωt) + b1 sin(ωt) + a2 cos(2ωt) + · · ·
(18)

where a0, a1, b1, a2, . . . are constant coefficients. If we substi-
tute this series into (17), the term sin(ωxx(t) − (2π/3)) is also
periodic and so generates another Fourier series. The right term
in (17) may then be developed using the substitutions

sin(nωt) cos(Ωt)=
1
2

(sin(nωt + Ωt) + sin(nωt − Ωt))

cos(nωt) cos(Ωt)=
1
2

(cos(nωt+Ωt)+cos(nωt−Ωt)) (19)

for all n ∈ N
∗. Matching the two sides of (17) then gives a set of

equations for a0, a1, b1, a2, . . . and enables ω to be determined.
An obvious solution is ω = Ω, but the matching may also be
achieved when

ω =
Ω
n

, with n ∈ N
∗. (20)

These are called subharmonics of order 1/n. Such a phe-
nomenon can be clearly observed in the experimental data
in Fig. 10 where, in addition to the superharmonic observed
for Ω = ω0/2, a subharmonic is clearly visible for Ω = 2ω0

(i.e., ω = (Ω/2) = ω0). In the latter case, we expect the re-
sponse signal to consist of two main sinusoidal waves: one
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Fig. 10. Superharmonic and subharmonic resonances are observed on a non-
linear system characterized by temporally aliased video microscopy. The graph
was obtained with a linearly increasing sinusoidal chirp (angular frequency
Ω = 2πfexc) with Uac = 2 V. The resonant frequency of the device is
f0 = 163 Hz. Superharmonic vibration occurs for fexc = f0/2. Subharmonic
vibration can also be observed for fexc = 2f0.

Fig. 11. Aliased frequency spectrum discloses subharmonic resonance. The
measurement was performed with an excitation frequency of fexc = 2f0 =
326 Hz (angular frequency Ω = 2πfexc). The two main peaks are aliased
frequencies corresponding to subharmonic resonance (ω0) and excitation fre-
quency (Ω).

at the excitation frequency (Ω) and the other at the subhar-
monic resonant frequency of order 1/2 (ω = Ω/2). To verify
this hypothesis, we have excited the system at about twice
its natural frequency (fexc = 2f0 = 326 Hz) and performed
temporally aliased video microscopy at a frame rate fs,1 =
14.9763 frames/s. The aliased frequency spectrum is shown
in Fig. 11. Two peaks stand out clearly from the rest of the
spectrum at falias,1 ≈ 1.74 Hz and falias,2 ≈ 3.48 Hz. Remem-
bering the fanfold paper representation in Fig. 2 and using
(6), we can deduce that these peaks correspond to frequencies
fM,1 = f0 = 163 Hz and fM,2 = 2f0 = 326 Hz, respectively.
Note that the other peaks correspond to frequency aliases of
higher harmonics. Similar results could be achieved at frame
rate fs,2 = 27.781 frames/s. Furthermore, we could validate
our hypothesis with a high-speed camera [39].

Before closing the discussion on the characterization of
nonlinear systems, we draw the reader’s attention to the fact
that we have only presented amplitude–frequency responses for
forward frequency sweeps. As we also performed experiments

with backward frequency sweeps, we could observe noticeable
hystereses between forward and backward responses as well
as “jump effects,” particularly in the region of subharmonic
resonance. These features are other typical signatures of nonlin-
ear systems that can be easily evidenced by temporally aliased
video microscopy.

V. CONCLUSION

We have proposed temporally aliased video microscopy as a
powerful optical method for the study of in-plane vibrations in
MEMS devices from videos recorded with a conventional CCD
camera (i.e., having a typical recording frame rate of about
28 frames/s). Quantitative measurements of resonant frequen-
cies, with resolutions better than 1 Hz, could be extracted
from video microscopy of systems having in-plane vibration
modes in the range of hundreds of hertz to a few kilohertz. The
upper frequency limit is not dictated by the frame rate but is
a matter of aperture duration of the shutter and sensitivity of
the CCD image sensor [13]. Thus, while we have performed
our measurements using a relatively long shutter aperture time
(1/5000 s), our method can theoretically be used to analyze
devices with much higher bandwidths than those presented in
this paper. Indeed, as shown in Fig. 5, we succeed to measure
high vibration amplitudes as long as the velocities are low
enough to capture unblurred (or with limited blur) video frames.
Last but not least, our method has proven to be efficient for the
characterization of linear and nonlinear systems. In particular,
we could demonstrate that the method enables the disclosure of
superharmonic and subharmonic resonance features.

Temporally aliased video microscopy advantageously com-
plements current optical methods used for MEMS in-plane
dynamic characterization. For MEMS devices with linear fre-
quency response function in the range of several hundreds of
kilohertz and up to 1 MHz, stroboscopic video microscopy is
certainly the best choice. To observe nonrepeatable transient
processes, high-speed cinematography must be chosen. Fortu-
nately, in all other cases, the use of a conventional camera is
proven to be sufficient. At first, for a quick yet qualitative search
of the resonant peaks in the frequency range of a few kilohertz,
the “blur envelope” approach happens to be sufficient. Then,
if accurate quantitative data are desired, or when nonlinearities
are observed, temporally aliased video microscopy is a more
efficient method.
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