
Entertainment Computing 4 (2013) 157–169
Contents lists available at SciVerse ScienceDirect

Entertainment Computing

journal homepage: ees .e lsevier .com/entcom
AsapRealizer in practice – A modular and extensible architecture for a
BML Realizer q
1875-9521/$ - see front matter � 2013 International Federation for Information Processing Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.entcom.2013.05.001

q This paper has been recommended for acceptance by Matthias Rauterberg.
⇑ Corresponding author.

E-mail addresses: d.reidsma@utwente.nl (D. Reidsma), hvanwelbergen@techfa-
k.uni-bielefeld.de (H. van Welbergen).
Dennis Reidsma a,⇑, Herwin van Welbergen b

a University of Twente, Human Media Interaction Group, Netherlands
b University of Bielefeld, CITEC, Sociable Agents Group, Germany

a r t i c l e i n f o a b s t r a c t
Article history:
Received 15 April 2012
Revised 23 April 2013
Accepted 4 May 2013
Available online 20 May 2013

Keywords:
Elckerlyc
AsapRealizer
Behavior Markup Language
Virtual human
Embodied conversational agents
Architecture
System integration
Customization
Building a complete virtual human application from scratch is a daunting task, and it makes sense to rely
on existing platforms for behavior generation. When one does this, one needs to be able to adapt and
extend the capabilities of the virtual human as offered by the platform, without having to make invasive
modifications to the platform itself. This is not trivial to support, and not all existing platforms facilitate
this equally well. This paper describes how AsapRealizer (successor to Elckerlyc and ACE), a novel plat-
form for controlling virtual humans, offer these possibilities.
� 2013 International Federation for Information Processing Published by Elsevier B.V. All rights reserved.
1. Introduction

Virtual humans (VHs) are commercially used in many educa-
tional and entertainment settings: serious gaming, interactive
information kiosks, kinetic and social training, tour guides, story-
telling entertainment, tutoring, entertaining games, motivational
coaches, and many more. Researchers work with VHs to investigate
the impact of specific social and communicative behaviors on the
perception that users have of the VH, and the impact of a VH on
the effectiveness and enjoyability with which tasks are completed.
Building a complete VH from scratch is a daunting task, and it
makes sense to rely on existing platforms, for researchers and com-
mercial developers both.

However, when one builds a novel interactive VH application,
using existing platforms has its own drawbacks. One often needs
to be able to adapt and extend the capabilities of the VH offered
by the platform, and not all existing platforms facilitate this
equally well. Specific additional gestures and face expressions
might be needed; the application might need to run distributed
over several machines; an experimenter might need detailed logs
of everything that the VH does; one might want to replace the
graphical embodiment of the VH, or its voice; the graphical
embodiment of the VH might need to reside in a custom game en-
gine; and one might need to plug in completely new custom
behaviors and modalities for a specific usage context. Furthermore,
all of these extensions and adaptations should be made without
having to make invasive modifications to the platform itself. This
last point is crucial, and will be worked out in more detail in the
next chapter.

AsapRealizer, successor to Elckerlyc and ACE, is a state-of-the-
art Behavior Realizer for virtual humans. Elsewhere, we described
Elckerlyc’s mixed dynamics capabilities, that allow one to combine
physics simulation with other types of animation, and its focus on
continuous interaction, which allows it to monitor its own perfor-
mance and allows for on-the-fly modification of behavior plans
with respect to content and timing, which makes it very suitable
for VH applications requiring high responsiveness to the behavior
of the user [1]. AsapRealizer [2] has been developed to combine
these advantages of Elckerlyc with the incremental scheduling
and co-articulation capabilities of ACE [3]. In this paper, we will fo-
cus on the role of AsapRealizer as a component in a larger applica-
tion. We discuss how one can adapt AsapRealizer to suit the needs
of a particular application, without giving up the level of abstrac-
tion offered by the BML Realization interface, and without having
to modify the core AsapRealizer system itself.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.entcom.2013.05.001&domain=pdf
http://dx.doi.org/10.1016/j.entcom.2013.05.001
mailto:d.reidsma@utwente.nl
mailto:hvanwelbergen@techfak.uni-bielefeld.de
mailto:hvanwelbergen@techfak.uni-bielefeld.de
http://dx.doi.org/10.1016/j.entcom.2013.05.001
http://www.sciencedirect.com/science/journal/18759521
http://ees.elsevier.com/entcom


Fig. 1. An example BML script with two BML behavior elements.

1 Section 4.1 discusses how Ports can be used, e.g., to integrate AsapRealizer with
various distributed messaging systems.

2 Section 4.4 discusses how to add custom BML behavior elements, and how to
register them with the Parser.

3 Section 4.5 discusses how to add new Engines.

158 D. Reidsma, H. van Welbergen / Entertainment Computing 4 (2013) 157–169
2. Requirements for a modular and extensible virtual human
platform

A virtual human does generally not function in isolation: rather,
they need to fulfill a role in a larger application context. The SAIBA
framework [4] provides a good starting point for integrating inter-
active VHs in a larger system. Its Behavior Markup Language (BML,
see Fig. 1) allows an application to specify the form and relative
timing of the behavior (e.g., speech, facial expression, gesture) that
a BML Realizer should display on the embodiment of a VH.

Although this level of abstraction, and the existence of several
modern BML Realizers, saves a tremendous amount of effort when
building new VH applications, BML does not provide the level of con-
trol over all details of the VH that is required by many applications.
To those who need access to such details the BML Realizer should
therefore not be a black box system, but allow access to such details.
Yet, these details, configuration options and possibilities for exten-
sion should not add complications for people who do not need them.

2.1. Extensions and modifications should be non-invasive

Developing extensions or alternative configurations of a BML
Realizer should be possible without requiring changes to the core
system (that is, extensions should not require recompilation of
the BML Realizer source). After all, if extensions lead to a modifica-
tion of the BML Realizer itself, then this would essentially lead to a
separate source code fork for every application using the BML Real-
izer. This would make it difficult to share new extensions with the
community. Also, once the BML Realizer code has been forked to
accomodate a new modality engine or behavior type, it becomes
difficult to take advantage of improvements in the original ‘core’
source: they need to be painstakingly merged into the fork.

Ideally, a non-invasive extension or modification to a BML Real-
izer only involves adding new run-time libraries or new resources to
the classpath, and should not require compile time dependencies
for the BML Realizer on new code. This requirement is the driving
force behind many of the architectural choices described later in
this paper.

2.2. Requirements for extensibility and configurability

Below follows a number of extensibility requirements for BML
Realizers that should be implemented as non-invasive modifica-
tions. In the next chapter we will explain each requirement in
more detail and show how each was solved in Elckerlyc and Asa-
pRealizer; after that, we will compare our solutions to related
state-of-the-art systems.

� It should be possible to integrate new renderers.
� It should be possible to integrate new speech synthesizers.
� It should be possible to integrate new physics simulators.
� Transport of the BML stream to the realizer should be flexible
and configurable.
� It should be possible to adapt the BML stream with capabilities

for filtering and logging.
� The realizer needs a transparent and configurable mapping

from input (BML behavior elements) to output (control of the
VHs embodiment).
� It should be easy to add new behavior types or output

modalities.
� The realizer needs the capability to be integrated as a compo-

nent in application, independent of variables such as the OS
and programming language on which the application is
developed.
� It should be easy to run the realizer as part of a setup distrib-

uted over multiple machines.
� The realizer requires the possibility (and tools) to add new

assets such as new 3D models or new behavior repertoire
(e.g., animations and face expressions).

The BML Realizer Elckerlyc facilitates all these possibilities for
modification and extension without requiring invasive modifica-
tion to Elckerlyc itself. Its successor AsapRealizer additionally
meets the following requirements:

� It should be possible to change the BML Scheduler, as BML
Scheduling is non-trivial, especially when one wants to allow
on-the-fly modification of plans [5]; we need flexibility to
experiment with new scheduling algorithms and compare them
with the existing ones.
� It should be possible to hook up different lipsync modules to the

same TTS system, allowing lipsynch on different embodiments
(e.g., robot, avatar or jpeg picture) and allowing one to experi-
ment with different lipsync algorithms (e.g., various co-articula-
tion solutions, visual emotional speech).
� It should be possible to configure the whole setup of a virtual

human in run-time, preferably through easy-to-use configura-
tion files (determining, e.g., which embodiments to use, which
gesture repertoire to load, which lipsynch solution to apply,
and many other things).

3. AsapRealizer: Basic architecture

Before going into detail concerning the possibilities for exten-
sion and configuration, this chapter introduces the basic architec-
tural concepts behind AsapRealizer. Fig. 2 shows a simplified
view of its SAIBA architecture. The behavior planner controls the
VH by sending a stream of BML blocks (cf. Fig. 1) to AsapRealizer
through a BMLRealizerPort.1 The BML blocks describe what behav-
ior the VH should display. AsapRealizer, as the BML Realizer, controls
the embodiment of the virtual human to make this happen, and
sends back feedback about the progress.

Fig. 3 shows the parsing and routing of BML blocks in more de-
tail. The Parser parses the BML stream, and provides the Scheduler
with a list of behaviors and time constraints between these behav-
iors.2 The Scheduler generates an execution plan based on these ele-
ments and constraints. Different Engines (e.g., a speech engine, an
animation engine, a face engine) keep track of, and manage, uni-
modal plans for their specific modality. The Scheduler uses a config-
urable mapping to determine which Engine must handle which of
the behaviors.3



Fig. 2. Global overview: Simplified SAIBA architecture [4]. A behavior planner constructs BML scripts that describe what behavior the VH should display; the BML Realizer
controls the embodiment to make this happen; progress feedback is sent back to the behavior planner.

Fig. 3. The parsing and routing of BML in AsapRealizer in more detail: Incoming BML blocks are parsed; the scheduler maintains the multimodal plan, distributing the
behaviors and constraints over the various unimodal engines.

D. Reidsma, H. van Welbergen / Entertainment Computing 4 (2013) 157–169 159
Fig. 4 shows that Engines are responsible for translating the
behaviors and constraints to a form that is actually displayed on
the Embodiment of the VH. Ultimately, behaviors are displayed
on an Embodiment by accessing the control primitives of that
Embodiment. A FaceEmbodiment is controlled by setting MPEG4
values; a SkeletonEmbodiment is controlled by rotating joints;
etc. There may be multiple implementations of a specific Embodi-
ment interface, offering exactly the same control primitives. For
example, Fig. 5 shows two implementations of the FaceEmbodi-
ment interface: a 3D graphical face where MPEG4 values (the con-
trol primitives of FaceEmbodiments) result in mesh deformations,
and a 2D cartoon face where MPEG4 values lead to modification of
the Bezier curves defining the elements of the face.

The control primitives of the Embodiments are accessed by En-
gine specific Plan Units; an Engine will indirectly control the
embodiments by translating the behaviors and constraints into
an unimodal plan of these Plan Units.4 A FaceEngine maintains a
4 Section 4.2 discusses how this mapping from abstract behavior element to
concrete forms can be reconfigured.
plan of FacePlanUnits; each FacePlanUnit will modify the MPEG4
values of a FaceEmbodiment while it is being played. An Animatio-
nEngine, in comparison, maintains a plan of AnimationMotionUnits;
these will control a SkeletonEmbodiment by modifying its joint rota-
tions.5 An overview of various Engines, their Plan Units, and the
types of Embodiment they control, can be found in Appendix A.
4. Solutions for a flexible and extensible BML Realizer

The figures in the previous chapter already indicate a few points
where AsapRealizer allows for easy configuration and extension. In
this chapter we discuss in more detail the elements in AsapRealiz-
er’s architecture that facilitate configuration, extension, and adap-
tation of the system. For each topic we first sketch a ‘user need’;
subsequently, we show which elements of AsapRealizer are de-
signed to meet that user need.
5 Section 4.3 discusses various types of embodiments available in AsapRealizer, and
how to add new ones. Section 4.6 shows how graphical embodiments can reside in
any render engine.



Fig. 4. Realizing the behaviors on an Embodiment: A unimodal Engine is respon-
sible for translating the behaviors into a form that can be displayed on the
embodiment of the virtual human.

160 D. Reidsma, H. van Welbergen / Entertainment Computing 4 (2013) 157–169
4.1. Ports, pipes, and adapters

User need 1: Connecting the application to AsapRealizer

AsapRealizer is designed to be used as component in a larger
application context. The application may need to run
distributed over several machines, platforms, and
programming languages. The developer may want to log all
interactions for post-hoc analysis. Nevertheless, the interface
between AsapRealizer and application should remain as simple
as possible: BML goes in; feedback comes out. Adding logging,
network transport, and such, should not be noticable in how
AsapRealizer and the application communicate with each
other.
Fig. 5. A FaceEngine can control any kind of FaceEmbodiments by
A minimal interface between application and BML Realizer has
functionality to (1) send a BML string to the Realizer and (2) regis-
ter a listener for Realizer feedback. This is the BMLRealizerPort in
Fig. 2—displayed in isolation in Fig. 6. The behavior planner and
the BML Realizer are connected to the front and back end of such
a BMLRealizerPort. The adapter pattern [6] allows one to change
the exact transport of BML and feedback to and from a BML Real-
izer, with no impact on the behavior planner and BML Realizer.

AsapRealizer implements the BMLRealizerPort interface. We
have implemented Adapters that plug into BMLRealizerPorts and
transport their messages over various messaging frameworks
(Fig. 8). Pipes are used to intercept the BML messages and the feed-
back, allowing one to measure it, let it go through slightly modi-
fied, or at a different rate. We have developed a pipe that logs
the BML and feedback passing through (Fig. 7), and one that buffers
BML messages for a BMLRealizerPort that can only handle one BML
message at a time.

4.2. Gesture binding and other bindings

User need 2: Transparently Mapping requested Behaviors to
PlanUnits

BML provides BML elements to steer the behavior of a VH. A
specific BML Realizer is free to make its own choices
concerning how these abstract behaviors will be displayed on
the VH’s embodiment. For example, in AsapRealizer, an
abstract ‘beat gesture’ is by default mapped to a procedural
animation from the repertoire of the Greta realizer by
Pelachaud and her team (see also Section 5). The developer
may want to map the same abstract behavior to a different
form, e.g., to a motion captured gesture.

In AsapRealizer, unimodal Engines are responsible for mapping
the requested Behaviors to PlanUnits (cf. Fig. 4). In AsapRealizer,
XML files called Bindings are used to allow one to configure this
mapping. AsapRealizer’s AnimationEngine uses the GestureBinding
to achieve a mapping from the behaviors and constraints (deliv-
ered by the Scheduler) to Animation Plan Units that determine
accessing its control primitives (i.e., setting MPEG4 values).



Fig. 6. The BML Realizer and behavior planner are connected directly on a
RealizerPort.

Fig. 7. A LogPipe logs the messages that pass through it to a file.

Fig. 8. The Realizer and BehaviorPlanner are connected through the Semaine API;
they are unaware of this plumbing, they still communicate through RealizerPorts.
Similar implementations already exist for ActiveMQ and for direct TCP/IP transport.

D. Reidsma, H. van Welbergen / Entertainment Computing 4 (2013) 157–169 161
how the behavior will be displayed on the embodiment. The Ges-
tureBinding XML file, clearly illustrated in Fig. 9, can be customized
by the application developer; other Engines provide similar
bindings.

4.3. New Embodiments

User need 3: Adding new Embodiments

A specific Engine should be able to control any new type of VH
body that offers the right type of control, without necessitating
changes to the implementation of the Engine. For example, the
default AnimationEngine could conceivably control any VH
body that allows for joint rotations in an H-Anim hierarchy.
For this to succeed, these bodies all need to offer the same
interface with the same control primitives to the
AnimationEngine.

Each type of Engine in AsapRealizer is designed to control an
Embodiment that implements a specific interface. An Animatio-
nEngine requires its Embodiments to implement the SkeletonEm-
bodiment interface. The control primitives for that type of
Embodiment allow setting joint rotations in an H-Anim joint hier-
archy. Current implementations include one controlling an avatar
in our own OpenGL rendering enviropment, one controlling
(through Thrift [7]) an avatar in Ogre, and one controlling an avatar
residing in a Re-Lion SUIT environment. A FaceEngine requires its
Embodiments to implement the FaceEmbodiment interface, which
offers control primitives for Mpeg-4 facial animation parameters.
Current implementations of this interface include one controlling
avatars in our own OpenGL rendering environment, a Mpeg-4 con-
trolled 2D cartoon face, and an implementation that allows our
FaceEngine to control an XFace talking head [8]. Other Engines
have their own required Embodiments.

For each new implementation of a certain Embodiment inter-
face to be used in our Engines, a loader class needs to be imple-
mented that makes the Embodiment type available in our XML
based virtual human loader system. This loader system will be dis-
cussed in a later section.

4.4. BML elements and plan units

User need 4: Adding new behavior types

The various Engines in AsapRealizer offer a large repertoire of
Plan Unit types that can be mapped in a Binding to give form
to the abstract BML behaviors: physical simulation, procedural
animation, morph target and MPEG-4 face control, Speech
Units, etc. Still, a developer may need completely new Plan
Unit types, for existing or newly developed types of
Embodiments. For example, to make the VH more lively, one
may want to add a PerlinNoise Plan Unit that applies random
noise to certain joints of the VH, as a kind of ‘idle motion’. Such
new Plan Units need to become available in the GestureBinding
(see previous section); furthermore, one might want to extend
the XML format of BML with <PerlinNoiseBehavior>to
allow direct specification of this idle motion by the behavior
planner.

New BML elements are created by subclassing the abstract class
BMLBehaviorElement; they can be registered with the Parser using
a static call: BMLInfo.addBehaviourType(xmltag, Behavior-
ElementClassName);

At initialization of AsapRealizer, the new BML behavior type are
coupled to a single Engine by adding it to the behavior clas-

s? engine mapping (see Fig. 3; note that multiple behavior types
can be coupled to the same Engine). This can also be done through
a static call, or by adding a <Routing> section to the VH loader
XML file (see Fig. 15).

New Plan Units implement the appropriate subinterface of
the PlanUnit interface (for the AnimationEngine: MotionUnits
that rotate joints on the basis of time and animation parameters
[1]). Such Plan Units are initialized from the GestureBinding
through their class name (as a string), using Java’s reflection
mechanism (that is, the ability to construct a new object from
its class name). This ensures that any Plan Unit implementing
the right interface for an Engine can be used in the Binding
for that Engine without requiring additional compile time
dependencies.

4.5. New modality Engines

User need 5: Adding new modality Engines

The Nabaztag is a robot rabbit with ears that are controlled by
servo motors and a body on which colored LED lights are
displayed. We needed to control this rabbit using BML, without
encumbering AsapRealizer itself with Nabaztag specific code
and libraries. To achieve this, we built a new Nabaztag Engine
that was registered for handling all non-speech behaviors. For
example, BML head nods were mapped in the NabaztagBinding
to a NabaztagPlanUnit that would move the ears shortly
forward and back again; a sad face expression was mapped to
a NabaztagPlanUnit that let the ears droop; etc.

To facilitate development of new Engines, a series of default
implementations of many of the necessary components are avail-
able. One generally has to re-implement only very few of these
components to achieve a complete new Engine. As already dis-



Fig. 9. Gesture Binding fragment binding the head element to the nod Plan Unit. Both the nod and shake motion units execute behaviors of type ‘‘head’’. They both satisfy the
constraint action = ‘‘ROTATION’’, but only the nod motion unit satisfies the constraint rotation = ‘‘NOD’’ and is therefore selected to execute the head nod. The Gesture Binding
maps the repeats parameter value in the BML behavior to the value of parameter r specified in the procedural motion unit. The value of parameter a is not defined in the BML
head behavior, therefore the default value of a, as defined in the Gesture Binding, is used in the procedural animation.

162 D. Reidsma, H. van Welbergen / Entertainment Computing 4 (2013) 157–169
cussed in Chapter 3, an Engine needs to maintain a modality-
specific plan. Fig. 10 shows this in more detail. The data struc-
ture for the unimodal plan is maintained by a default PlanMan-
ager that provides several functions to query its state and
modify it. Playing the plan (i.e., executing the PlanUnits on the
embodiment) is coordinated by a Player, that generally delegates
this to one of the default PlanPlayer implementations (a multi
threaded PlanPlayer when calls to the Embodiment’s control
primitives are blocking, and a single threaded Planplayer, other-
wise). Implementing a new Engine usually requires three steps:
implementing PlanUnits specifically for this Engine (cf. Fig. 4),
implementing a Binding to easily define a configurable mapping
from behaviors to these PlanUnits, and implementing a Planner
specialized in constructing plans for this modality. The Anima-
tion Engine and Face Engine in addition require specialized Play-
ers that manage the combination of Plan Units that act
simultaneously on the VH (e.g., physical simulation and key-
frame animation), but can still delegate most of their playback
functionality to a PlanPlayer. A DefaultEngine implementation
of the Engine interface encapsulates these elements, connects
them to each other, and provides the BMLRealizer with access
to their functionality to the BML Realizer through the Engine
interface.
4.5.1. The Nabaztag Engine
Building the new Nabaztag Engine involves developing the Plan

Units that implement the basic control for the modality. A Plan
Unit defines a way to control the robot—using one of its control
primitives, see below—over the duration from the start time till
the end of the Plan Unit. The control primitives for the Nabaztag
robot are (1) move the ears of the robot to a specified position,
(2) move the ears forward or backward by a specified amount,
and (3) set one of the LEDs to a certain color. We implemented
two Plan Unit types. The ‘‘MoveEarTo’’ Plan Unit moves the ears
to a specified position by linear interpolation during the duration
of the Plan Unit. The ‘‘WiggleEarTo’’ Plan Unit interpolates the
ear from its current position to the specified target position and
back to the starting point, during the duration of the Plan Unit,
using a sinoid interpolation. Given these Plan Units, and a Nabaz-
tagBinding for mapping BML behaviors to Nabaztag PlanUnits,
the Nabaztag Engine is constructed using the standard available
Engine components. A completely new modality Engine has been
added by implementing two basic control Plan Units and an XML
Binding. Due to the setup of Scheduler and Engines, synchroniza-
tion between the new Nabaztag Units and other modalities—e.g.,
speech—is automatically handled by AsapRealizer and requires
no further implementation effort.



Fig. 10. AsapRealizer’s Engine Interface. Dashed blocks are changeable at initialization.

Fig. 11. The PictureEngine running on an Android smartphone.

D. Reidsma, H. van Welbergen / Entertainment Computing 4 (2013) 157–169 163
4.5.2. Other Engines
We have implemented a variety of other useful engines in Asa-

pRealizer. The TextEngine, for example, can be used to re-route
speech behaviors, so they are not realized by text-to-speech syn-
thesis. Instead, the TextEngine employs TextUnits that display
the text string representing the speech on a TextEmbodiment
(e.g., console output, a text label in the GUI, cartoon text balloons,
etc.). The PictureEngine is particularily useful for building cartoon
agents: it allows one to have BML behaviors realized as a series of
layered pictures, instead of a skeleton animation. The PictureEn-
gine has been employed in the Smarcos project to port the AsapRe-
alizer BML Realizer to an Android Smartphone that did not have
enough processing power for displaying full 3D OpenGL based
graphics (see Fig. 11) [9]. The NaoEngine is implemented in a
way similar to the NabaztagEngine, to control a Nao Robot6 using
AsapRealizer. We are currently working on implementing more En-
gines for various robotic embodiments.

4.6. Integration with renderers

User need 6: Integration with other rendering environments

By default, AsapRealizer renders the VH in its own OpenGL based
rendering environment. One might, however, want to use
AsapRealizer to animate an embodiment in another rendering
environment such as Half Life, Ogre, or Blender.

Integration of AsapRealizer with any new renderer is simply a
matter of adding an implementation of the SkeletonEmbodiment
interface that communicates joint rotations (as set by AsapRealiz-
er) to the graphical avatar displayed in the renderer, and one for
the FaceEmbodiment (communicating MPEG4 values). The Skel-
etonEmbodiment needs to support functionality to (1) provide
AsapRealizer with the joint structure of the VH at its initialization,
6 http://www.aldebaran-robotics.com.
and (2) provide AsapRealizer with means to copy joint rotations to
the virtual human in the renderer. The FaceEmbodiment needs
only to provide AsapRealizer with means to set MPEG4 values.
These requirements should be satisfied in a manner independent
of renderer and transport (e.g. through TCP/IP, function call, shared
memory). We use the remote procedural call framework Thrift [7]
to achieve this. We have designed a language independent inter-
face (using Thrift’s interface definition language) that a renderer
should implement to achieve connectivity with AsapRealizer. This
interface is automatically compiled to an interface in the target
language of the renderer. The transport mode is chosen at initiali-
zation time. We have made a proof-of-concept implementation for
the Ogre rendering environment, and for Re-Lions7 SUIT
environment.
7 http://www.re-lion.com.

http://www.aldebaran-robotics.com
http://www.re-lion.com


Fig. 12. The interface of a LipSyncProvider and the Viseme value class. Lipsync
motion is requested per speechbehaviour, given the bml block, the TimedPlanUnit
of the accompanying speech and a list of Visemes.

164 D. Reidsma, H. van Welbergen / Entertainment Computing 4 (2013) 157–169
4.7. Text-to-speech generation and speech scripts

User need 7: Integration with Text-To-Speech synthesis
systems

Different applications might have different requirements for the
text-to-speech voices. Another language, another TTS system,
another markup language offering control of exactly the right
voice features at times all need to be integrated with a VH
configuration.

Speech for virtual humans can be generated using various Text-
To-Speech systems. Furthermore, each TTS system may be able to
use several standardized (e.g., SSML) or vendor-specific (e.g., Mary-
TTS, Microsoft Speech API, Fluency TTS) speech description lan-
guages that allow one to change features of the produced speech.

AsapRealizer provides the extensibility to easily hook up new
TTS generators, and new TTS specification languages having their
own XML markup format. To use a certain speech engine, and to
allow it to generate speech using a specific speech description lan-
guage, one should implement a TTSBridge for that language and
engine. This TTSBridge provides a standardized interface to (1)
speak a string, (2) store speech specified in a string to a file, and
(3) get timing information on a to-be-spoken string. These strings
should contain the speech text, specified in the specific language
for that bridge. The speech engine is set up at initialization time
with a TTSBinding that maps a specific extension of a speech
behavior (‘‘markup language’’) to a specific TTSBridge. TTSBridges
are currently implemented for default BML speech in Mary TTS, de-
fault BML speech in Microsoft Speech API, SSML in Mary TTS, SSML
in Microsoft Speech API, SAPI XML in Microsoft Speech API, several
Mary TTS XML formats, and default BML speech using the Android
speech synthesis SDK. Default TTSBindings are also available for
MaryTTS and Microsoft Speech API. These default TTSBindings
map all speech behaviors the TTS generator supports to matching
TTSBridges for that TTS generator. Adding more TTSBridges and
TTSBindings is a matter of implementing the right interfaces and
adding the resulting jar file to the classpath–AsapRealizer will
automatically pick up and make available the new voices and
speech markup languages.

4.8. Lipsync

User need 8: Setting up lipsync

The same TTS-system may have to be used to steer the lips of very
different embodiments (robots, virtual humans, 2D cartoon
figures), using similar control primitives (e.g., visemes).
Additionally, users might want to experiment with different
lipsync algorithms for the same embodiment, or apply a
specialized lipsync strategy on a custom face.

Lip motion can be generated using a wide array of specific
motion engines (e.g., the AnimationEngine, FaceEngine or spe-
cialized engines for motion on robots or 2D characters). Rather
than directly coupling the SpeechEngine to such motion engines,
the SpeechEngine steers one or more LipsyncProviders that are
registered to it. Implementations of a LipsyncProvider (see
Fig. 12 for its interface) then steer lip motion on their specific
engine, with the desired lip sync algorithm. The registration of
selected LipsyncProviders on the SpeechEngine is arranged at ini-
tialization time. In Fig. 13 we illustrate a typical configuration
for a 3D virtual human.
4.9. Loading a complete system

User need 9: Connecting everything together

A system that offers so many ways of extending and modifying
the capabilities of the virtual human may be very confusing to
initialize. How does one connect all the modules together?
Load the correct embodiments? Connect them to the
appropriate Engines?

AsapRealizer offers many ways to extend the system. Add one
library to the classpath, and you have a new type of Embodiment
available that, for example, allows you to control an avatar in the
Half Life rendering environment. Add another library to the class-
path, and you suddenly have a new TTS system available for the
SpeechEngine, are able to control your new robot using BML, etc.
In addition, there are several so-called ‘‘Environments’’ available:
a default render environment in which you can load and render
avatars that are controlled by the various Engines, a physics envi-
ronment that does the physics simulation, an audio environment
that takes care of playing voices and audio for multiple VHs, etc.

In order to facilitate easy initialisation and configuration of the
various Engines and Embodiments, AsapRealizer offers an Environ-
ment package with support for developing Engines and Embodi-
ments and for loading them and connecting them with each
other, and a generic XML based loader package with support for
configuring a complete VH setup using one XML file. The latter de-
pends on the Java reflection mechanism for identifying the loader
classes present in the libraries for every type of Embodiment and
Engine. Fig. 14 shows an example code fragment setting up a VH
in an Environment and Fig. 15 an XML fragment of a VH loader
specification.

4.10. Conflict resolution

User need 10: Conflict resolution

Multiple engines (or the same engine) might steer the same
embodiment simultaneously in different manners. How are
conflicts between such engines managed?

The complete freedom that the above XML Loader mecha-
nism offers, leads to the distinct possibility that there are multi-
ple Engines all claiming to steer the same Embodiment. For
example, the FaceEmbodiment might be steered both by the
FaceEngine for face expressions, and by a WizardOfOzEngine
in which the eye rotations and blinking are controlled based
on the eye movements of a human operator. In AsapRealizer,



Fig. 13. Top: A common lipsync configuration for 3D virtual humans. The
SpeechEngine is hooked up to a LipsyncProvider that connects to the Animatio-
nEngine providing it with jaw joint rotations for lipsync, and with a LipsyncProvider
that connects to the FaceEngine and provides facial animation through blend
shapes. Bottom: The initialization as specified in a loader to achieve this particular
lipsync configuration.

D. Reidsma, H. van Welbergen / Entertainment Computing 4 (2013) 157–169 165
such conflicts are currently handled on one of two ways. Firstly,
the class that implements the Embodiment interface might itself
have mechanisms to recognize conflicting demands, and resolv-
ing them by giving higher priority to certain types of requests,
or actively blending the result of two conflicting requests. The
standard FaceEmbodiment implementation, for example, will
add MEG4 requests from multiple sources to each other, result-
ing in a cumulative effect on the MPEG4 control points. Sec-
ondly, an Embodiment interface might offer a way in which
an Engine can exclusively claim a certain control primitive,
thereby actively disallowing other Engines to use that particular
control primitive. The latter mechanism is used in AsapRealizer
to prevent the AnimationEngine and the WizardofOzEngine
simultaneously attempting to rotate the neck of the virtual
human.
Fig. 14. Example code fragment loading and starting the Environment in which a
Virtual Human will be loaded.
4.11. Conclusion

In this chapter, we described in detail many of the architectural
elements of AsapRealizer that facilitate non-invasive configuration
and extension of the capabilities of a virtual human, that do not re-
quire recompilation of the core of AsapRealizer itself. Some ele-
ments involve only modification of resource files. The other
changes only involve implementing a few interfaces and adding
the resulting jar to the classpath–AsapRealizer will automatically
pick up the new Embodiments, Engines, and capabilites as soon
as they are referred to in the XML Loader file with which a new
VH is loaded. In the next chapter, we will compare these aspects
with the most prominent related work.

5. Comparison with other platforms

Like AsapRealizer, the BML Realizers Smartbody [10], EMBR [11]
and Greta [12] were specifically designed for integration with new
and existing renderers, to allow a wide range of behavior types, to
provide tools for asset creation, and/or to facilitate integration in a
larger application setup. AsapRealizer additionally contributes a
transparent and adjustable mapping from BML to procedural out-
put (rather than the mostly hardcoded mappings in other realiz-
ers), and allows for easy integration of new modalities and
embodiments, for example to control robotic embodiments. In
addition to this, AsapRealizer provides the unique capability to
plug in new lipsync algorithms, lipsync modalities, and scheduling
algorithms, without recompilation of its core.

In this section, we discuss if and how various requirements
were solved for the three realizers mentioned above, and shortly
indicate the differences with our solutions. Clearly, there are more
reasons to prefer one realizer over another than just configurability
and ease of integration. For example, a aprticular strong point of
SmartBody is their high quality animations; Greta is well known
for its state-of-the-art face expression control and especially its
emotional visual speech generation; AsapRealizer is particularily
suitable for applications that require anytime, on-the-fly, adapta-
tion of generated behavior; and EMBR offers a detailed specifica-
tion language for procedural animation, facilitating precise
reproduction of annotated gestures. In this paper, though, we focus
mostly on the requirements related to configurability, adaptability,
and ease of integration into larger application contexts, especially
for users who want to use a BML Realizer, but are not developers
of realizers themselves. Table 1 provides an overview of the com-
parison detailed in the rest of this section.8

5.1. Integration with new and existing renderers

When a VH is used in an application, it may need to reside in a
3D world running in any (new or existing) render engine. A BML
Realizer should therefore be able to control avatars in such a ren-
der engine as easily as its ‘standard embodiments’.

Smartbody provides the BoneBus library to connect the Smart-
body realizer to a renderer. BoneBus uses UDP to transport (facial
and skeletal) bone positions and rotations from the realizer to
the renderer. BoneBus is designed to hide the details of the exact
communication protocol used, so that its exact implementation
can be changed at a later stage without changing realizers or ren-
derers that use the library. As the data transport protocol is non-
trivial and due to change, reimplementing BoneBus in program-
8 In this comparison we have made use of the SmartBody version as obtained
through the SmartBody SVN at July 1st 2012, EMBR release 0.5.2 and the articles
describing the system [11,13], the Greta version that was freely available online at
July 1st 2012, the latest version of ACE at July 1st 2012, version 0.9 beta of Elckerlyc
and the latest version of AsapRealizer at July 1st 2012.



Fig. 15. Partial XML specification for loading a VH setup.

166 D. Reidsma, H. van Welbergen / Entertainment Computing 4 (2013) 157–169
ming languages other than C++ or using the BoneBus interface with
other transport mechanisms (TCP/IP, shared memory, etc.) is infea-
sable. SmartBody has been integrated with the Unreal 2.5 and Pan-
da3D (in CADIA’s branch of Smartbody) renderers; partial
integrations are available for Gamebryo, Half-Life 2 and Ogre.9

In EMBR, the renderer is seperated from the realizer, and both
provide a representation of the steered virtual character (e.g., joint
rotations, morphs). A python script is used to synchronize the two
character representations. An implementation of the renderer is
provided in Panda3D.

The output of Greta contains MPEG-4 facial and body action
parameters. By using the MPEG-4 standard, Greta can potentially
be used with any renderer that supports MPEG-4. However,
MPEG-4—especially for body animation—is not widely supported.

AsapRealizer controls animation through the Embodiment inter-
faces discussed in Section 4.3. New renderers are supported through
implementing two interfaces: the embodiment interface through
which one controls a joint hierarchy, plus a loader class for instanti-
ating it. AsapRealizer can control the skeleton in any new render
environment as soon as the library is added to the class path. We
have, so far, made several implementations: one for our own OpenGL
renderer; a simple custom XML based TCP/IP protocol that allows
AsapRealizer to control avatars running in the SUIT render environ-
ment of Re-Lion;10 and a proof-of-concept implementation that al-
9 http://www.unreal.com/, http://www.panda3d.org/, http://www.emergent.net/,
http://www.valvesoftware.com/, and http://www.ogre3d.org/.

10 http://www.re-lion.com.
lows AsapRealizer to control avatars in the Ogre engine. The latter
uses the Thrift remote procedure call (RPC) framework [7] to handle
its communication with the renderer. Unlike the BoneBus library,
Thrift allows us to set up a communication channel that is agnostic
to the programming language used on either side and that allows
one to configure and change the mode of transport (e.g. TCP/IP, shared
memory, pipes). ACE follows a similar design strategy.
5.2. Integration with new and existing Text-To-Speech systems

SmartBody and ACE allow one to replace the Text-To-Speech
(TTS) system without recompilation. To do this one needs to imple-
ment a plugin-module (e.g. as dll) that links the desired text to
speech system to an interface standardized for the realizer. Asa-
pRealizer provides integration with Text-To-Speech systems in a
similar manner. Additionaly, it provides the functionality to hook
up multiple (might be instances of the same, configured diferently)
TTS systems, and to support the use of multiple TTS speech markup
languages in alternation for the same loaded virtual human (e.g.,
MaryTTS script, SSML, MS SAPI).
5.3. BML transport wiring

When a VH is to be integrated into an application, it may be
necessary to be able to control the VH by sending BML from an-
other programming language, a different Operating System, or a re-
mote machine.

http://www.unreal.com/
http://www.panda3d.org/
http://www.emergent.net/
http://www.valvesoftware.com/
http://www.ogre3d.org/
http://www.re-lion.com


Table 1
Capabilities that can be changed without recompilation, per realizer.

SmartBody EMBR Greta ACE Elckerlyc AsapRealizer

Renderer U U U U U U

TTS system U � � U U U

BML transport wiring � � � � U U

BML to scripted output mapping U U U U U U

BML to procedural output mapping � � � � U U

Output modality � � � � U U

Behavior scheduling algorithm � � � � � U

Lipsync algorithm � � � � � U

Lipsync modality � � � � � U

D. Reidsma, H. van Welbergen / Entertainment Computing 4 (2013) 157–169 167
SmartBody offers integration with the Active MQ11 messaging
system to provide independency of platforms and programming lan-
guage, and to allow distributed setups. EMBR and Greta offer inte-
gration with the SEMAINE/Active MQ [14] messaging frameworks
to achieve this; Greta additionally offers integration with Psyclone.12

In AsapRealizer, a crucial requirement was that the BML trans-
port could easily be adapted. To this end, we took a different design
philosophy for BML transport than the realizers mentioned above.
Rather than relying on one (or few) BML transport mechanisms or
middleware systems, we argue that BML transport is not a respon-
sibility of the core realizer itself. Therefore we provide a clean and
simple interface (in Java) in which BML strings can be send to the
realizer and feedback listeners can be registered. Adapters and
pipes in seperate modules are used to compose more intricate
BML transport mechanisms. Current implementations of such
modules include adapters for the SEMAINE system, for ActiveMQ
and a simple direct TCP/IP connection and pipes that allow logging
and throttling for multithreaded execution. Our design philosophy
is similar to that used to compose complex functionality out of the
composition of several simple Unix programs that are connected
with simple standard interfaces (e.g. text through the stdout)
[15] and to Alistair Cockburn’s Hexagonal architecture.13
5.4. BML to output mapping

All realizers provide functionality to map BML behaviors to
scripted units (e.g. keyframe animations or predefined animation
scripts). SmartBody provides a configuration file in which one
can set up a one to one mapping from gesture lexeme to keyframe
animation file. EMBR and Greta convert the BML behavior into a
query that is used to search their behavior lexicons; adaptations
in existing animations in the lexicon and additions to the lexicon
are thus automatically handled in these realizers. In ACE, anima-
tions are constructed dynamically on the basis constraints speci-
fied in the MURML script language. In addition to being able to
run scripted animation, these realizers also provide several proce-
dural animation systems that are hardcoded in the realizer, includ-
ing gaze systems, locomotion systems or pointing systems.
However, none of the realizers mentioned above allows one to
add a new procedural (e.g., locomotion, pointing, gaze) output or
change the existing one, without recompiling their core system.

AsapRealizer contributes the ability to specify the mapping of
BML to procedural output units without requiring modifications
to AsapRealizer’s source code. This flexibility is offered by AsapRe-
alizer’s binding (see Section 4.2). Like the lexicons of Greta and
EMBR, the binding can be queried by BML. In addition to that,
the binding can map BML parameters to, e.g., animation parame-
ters and can provide default parameter values. The latter allows re-
11 http://activemq.apache.org/.
12 http://www.cmlabs.com/psyclone/.
13 http://alistair.cockburn.us/Hexagonal+architecture.
use of, e.g., an animation for different BML behaviors. For example:
a keyframe animation of a left hand gesture can also be as a right
hand gesture, by setting its mirror parameter to true.
5.5. Output modality

In SmartBody, EMBR, Greta and ACE it is not possible to change
the modality of a BML behavior (e.g., a virtual human vs a robotic
head vs a cartoon head, text vs TTS) without recompilation of the
realizer. AsapRealizer provides Engine and Embodiment abstrac-
tions to allow this. This architectural feature is discussen in Sec-
tions 4.3 and 4.5.
5.6. Lipsync algorithm

In SmartBody, EMBR, Greta, ACE and Elckerlyc, the lipsync algo-
rithm and output modality are hardcoded in the realizer. In Asa-
pRealizer, lipsync module(s) can be registered to the
SpeechEngine, without recompilation of the SpeechEngine or Asa-
pRealizer’s core. This allows one to both apply different lipsync
strategies (e.g. new strategies that allow co-articulation) and to
easily apply lipsync on different embodiments (e.g., a robot or a
2D cartoon character). AsapRealizer’s lipsync strategy is dicussed
in detail in Section 4.8.
5.7. Available behavior types and extensibility

There are many different paradigms for the generation of spe-
cific behaviors for avatars (see, e.g., [16] for a survey of animation
techniques). The choice which paradigm is the most suitable in a
given situation depends (also) on the application. A BML Realizer
should therefore support as many behavior types as possible, and
should preferebly be easy to extend with new types.

Smartbody uses keyframe animation and a fixed set of biologi-
cally motivated motion controllers (e.g., for gaze) to achieve facial
and body motion. EMBR uses keyframe animation, procedural ani-
mation with a fixed set of expressive parameters, autonomous mo-
tion (such as eyeblink and balancing), morph targets for facial
animation, and controllable shaders (e.g., for blushing). Greta uses
procedural body animation with a fixed set of expressivity param-
eters, and Ekman’s action units [17] for facial animation.

AsapRealizer allows all of the above, and adds physically simu-
lated animation behaviors and sound effects (one can specify
sound files to be played in synchronization to other behaviors,
through a custom SoundEngine with a sound behavior BML exten-
sion). More importantly, we contribute the ability to add custom
behavior types and output modalities without requiring modifica-
tions to AsapRealizer’s source code, as described in Sections 4.4
and 4.5.

http://activemq.apache.org/
http://www.cmlabs.com/psyclone/
http://alistair.cockburn.us/Hexagonal+architecture


Table A.1
Overview of Engines available in AsapRealizer, the BML behaviors they can deal with, the Plan Units they use for this, and the Embodiments (and their control primitives)
controlled by the Engine.

TTSEngine
Core BML: speech

BML extensions: Dynamically set by binding. E.g: SSML, MS SAPI, MaryXML
Plan Units: TimedTTSUnit (impl: TimedWavTTSUnit, TimedDirectTTSUnit)
Embodiment interface: TTSGenerator
Implementations: AndroidTTSGenerator, MaryTTSGenerator, SAPI5TTSGenerator

TextEngine
Core BML: speech

Plan Units: TimedTextSpeechUnit
Embodiment interface: TextOutput
Control primitives: text
Implementations: JLabelTextOutput, StdoutTextOutput

AnimationEngine
Core BML: head, gaze, gesture, posture, postureShift, pointing

BML extensions: procanimation, controller, keyframe, noise, murmlgesture

Plan Units: TimedAnimationUnit (impl: PointingUnit, ProcAnimationUnit, GestureUnit, NoiseUnit, PhysicalControllerUnit, KeyframeUnit,
MURMLUnit, GazeUnit, PostureUnit)

Embodiment interface: SkeletonEmbodiment
Control primitives: joint rotation, translation
Implementations: HmiRenderBodyEmbodiment, RelionEmbodiment
Embodiment interface: PhysicalEmbodiment
Control primitives: joint torque, root force
Implementations: OdePhysicalEmbodiment

FaceEngine
Core BML: faceFacs, faceLexeme

BML extensions: murmlface, facemorph

Plan Units: TimedFaceUnit(impl: AUUnit, FACSUnit, MorphUnit, PlutchikUnit)
Embodiment interface: MorphEmbodiment
Control primitives: morph targets
Implementations: FaceController
Embodiment interface: MPEG4Embodiment
Control primitives: MPEG-4 FAPS
Implementations: FaceController, XFaceController

AudioEngine
BML extensions: audiofile

Embodiment interface: SoundManager
Control primitives: audio
Implementations: ClipSoundManager (java default), JoalSoundManager (openal)

NabaztagEngine
BML extensions: moveearto, wiggleear

Plan Units: MoveEarToNU, WiggleEarNU
Embodiment interface: NabaztagEmbodiment
Control primitives: earposition

PictureEngine
Core BML: faceLexeme, gesture

BML extensions: setImage, addImage, addAnimationXML, addAnimationDir

Plan Units: TimedPictureUnit(impl: SetImagePU, AddImagePU, AddAnimationPU, AddXMLPU)
Embodiment interface: PictureEmbodiment
Control primitives: add/remove/replace image at layer x
Implementations: JFramePictureEmbodiment, AndroidPictureEmbodiment

FlobiEngine
Core BML: gaze, head, faceFacs

Plan Units: Facs, HeadOrientation, HeadRotation
Embodiment interface: XS2Output
Control primitives: NAORSB calls (nao is a misnomer here, same library is used for both Flobi and Nao)

NaoEngine
Core BML: locomotion, head, faceFacs

Plan Units: Locomotion, HeadOrientation, HeadRotation
Embodiment interface: XS2Output
Control primitives: NAORSB calls

LiveMocapEngine
BML extensions: remoteFaceFACS, remoteHead

Plan Units: LiveMocapTMU(impl: RemoteHeadTMU, RemoteFaceFACSTMU)
Embodiment interface: a PlanUnit specific (Sensor,Embodiment) pair
Implementations: EulerInput->EulerHeadEmbodiment, FACSFaceInput->FACSFaceEmbodiment

168 D. Reidsma, H. van Welbergen / Entertainment Computing 4 (2013) 157–169
6. Discussion

We have discussed how AsapRealizer can be tailored to the
needs of specific applications, without requiring invasive modifica-
tions to AsapRealizer itself. AsapRealizer’s flexibility has allowed
us to connect it to a behavior planner using either the SEMAINE
framework or simple function calls, and to switch between such
connections with a simple configuration option. For example, a



D. Reidsma, H. van Welbergen / Entertainment Computing 4 (2013) 157–169 169
group of educational technology researchers succeeded in sending
BML from their tutoring application to AsapRealizer, embedding
our virtual human as embodied tutor in their educational software,
doing a series of user experiments with this setup. In our own
experiments, the logging port allowed us to easily record all com-
munication with AsapRealizer for user experiments, by simply
changing the wiring between the behavior planner and AsapReal-
izer. The BMLRealizerPort also allowed us to exchange both the
realizer and the behavior planner very easily. We have designed
several behavior planners that implements behavior planning of
a VH and one that replaces the VH behavior planning by a generic
Wizard of Oz interface. The ability to easily replace the BML Real-
izer and behavior planner is also valuable for testing. We have de-
signed a mockup BML Realizer that allows us to test behavior
planners rapidly. This mockup BML Realizer does not actually exe-
cute the BML behavior, but does provide the behavior planner with
appropiate BML feedback. We have also designed a behavior plan-
ner that tests realizer implementations. This behavior planner exe-
cutes test BML scripts on the realizer and inspects if the realizer
provides the appropiate feedback. Since this test behavior planner
communicates with the realizer through the generic BMLRealizer-
Port, it can not only test any configuration of AsapRealizer, but also
test Realizers designed by other research groups (by writing an
adaptor from the BMLRealizerPort to their input and output chan-
nels), as discussed in [18]. AsapRealizer’s ability to add new modal-
ities has allowed us to hook it up with the Nabaztag rabbit (see also
Section 4.5) and to steer this rabbit with generic BML commands.
The Nabaztag extension was achieved in a matter of days and did
not require any changes in the AsapRealizer’s source code.14 An
Embodiment and Engine implementation for a humanoid robot head
was implemented by another research group, allowing them to steer
the head and gaze behavior of their robot using BML requests that
are realized by AsapRealizer.

AsapRealizer is compliant with BML version 1.0. Switching from
the Draft 1.0 version of BML was mostly a matter of updating the SAI-
BA BML parsing packages15 and updating the XML descriptions for the
various Bindings. Minor changes to the standard will require no more
than that; slightly more extensive changes require modifications of
the scheduler and the engines, but those are often still local to a spe-
cific engine. The BML Realizer Tester framework mentioned above
helps in smoothly moving to new versions of the BML standard.

AsapRealizer’s extensibility is mainly achieved by a very flexible
initialization stage. In this initialization stage, a desired setup of
the AsapRealizer is constructed by combining and configuring dif-
ferent components that are provided by AsapRealizer’s code base
or by custom extensions. We have designed an XML configuration
file format that describes such a configuration. Several default con-
figurations are available, and new configurations are typically eas-
ily achieved by slight modifications of an existing configuration.

Acknowledgments

This research and development project has been supported by
the GATE project, the Dutch Organization for Scientific Research
(NWO) and the Dutch ICT Regie, the Dutch national program COM-
14 See http://asap-project.org/ for screenshots and movies.
15 Available from http://sourceforge.net/projects/saibabml/.
MIT, the DFG in the Center of Excellence ’’Cognitive Interaction
Technology’’, and the German Federal Ministry of Education and
Research (BMBF) within the Leading-Edge Cluster Competition
and managed by the Project Management Agency Karlsruhe
(PTKA). The authors are responsible for the contents of this
publication.
Appendix A. Engines and Embodiments

Table A.1.

References

[1] H. van Welbergen, D. Reidsma, Z.M. Ruttkay, J. Zwiers, Elckerlyc: a BML realizer
for continuous, multimodal interaction with a virtual human, J. Multimodal
User Interfaces 3 (2010) 271–284.

[2] H. van Welbergen, D. Reidsma, S. Kopp, An incremental multimodal realizer for
behavior co-articulation and coordination, in: Y. Nakano, M. Neff, A. Paiva,
M.A. Walker (Eds.), IVA, Lecture Notes in Computer Science, vol. 7502,
Springer, 2012, pp. 175–188.

[3] S. Kopp, I. Wachsmuth, Synthesizing multimodal utterances for conversational
agents, Comput. Animat. Virtual Worlds 15 (2004) 39–52.

[4] S. Kopp, B. Krenn, S. Marsella, A.N. Marshall, C. Pelachaud, H. Pirker, K.R.
Thórisson, H.H. Vilhjálmsson, Towards a common framework for multimodal
generation: The behavior markup language, in: IVA, pp. 205–217.

[5] D. Reidsma, H. van Welbergen, J. Zwiers, Multimodal plan representation for
adaptable bml scheduling, in: H. Vilhjálmsson, S. Kopp, S. Marsella, K.
Thórisson (Eds.), Intelligent Virtual Agents-11th International Conference,
IVA 2011, Reykjavik, Iceland, September 15–17, 2011. Proceedings, Lecture
Notes in Computer Science, vol. 6895, Springer, Berlin/Heidelberg, 2011, pp.
296–308.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Adisson-Wesley, 1995.

[7] M. Slee, A. Agarwal, M. Kwiatkowski, Thrift: Scalable cross-language services
implementation, 2007.

[8] K. Balci, Xface: MPEG-4 based open source toolkit for 3d facial animation, in:
AVI04, Working Conference on Advanced Visual Interfaces.

[9] R. Klaassen, J. Hendrix, D. Reidsma, R. op den Akker, Elckerlyc goes mobile:
Enabling technology for ecas in mobile applications, in: UBICOMM 2012, The
Sixth International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies, pp. 41–47.

[10] M. Thiebaux, A.N. Marshall, S. Marsella, M. Kallmann, Smartbody: Behavior
realization for embodied conversational agents, in: AAMAS, pp. 151–158.

[11] A. Heloir, M. Kipp, Real-time animation of interactive agents: Specification and
realization, Appl. Artif. Intell. 24 (2010) 510–529.

[12] M. Mancini, R. Niewiadomski, E. Bevacqua, C. Pelachaud, Greta: a SAIBA
compliant ECA system, in: Agents Conversationnels Animés.

[13] M. Kipp, A. Heloir, M. Schröder, P. Gebhard, Realizing multimodal behavior:
Closing the gap between behavior planning and embodied agent presentation,
in: J. Allbeck, N. Badler, T.W. Bickmore, C. Pelachaud, A. Safonova (Eds.),
Proceedings of the 10th International Conference on Intelligent Virtual Agents,
Lecture Notes in Computer Science, vol. 6356, Springer, 2010, pp. 57–63.

[14] M. Schröder, The SEMAINE API: Towards a standards-based framework for
building emotion-oriented systems, Adv. Hum. Comput. Interact. (2010).

[15] E.S. Raymond, The Art of UNIX Programming, Addison-Wesley, 2003.
[16] H. van Welbergen, B.J.H. van Basten, A. Egges, Z.M. Ruttkay, M.H. Overmars,

Real time animation of virtual humans: a trade-off between naturalness and
control, Comput. Graph. Forum 29 (2010) 2530–2554.

[17] P. Ekman, W. Friesen, Facial Action Coding System: A Technique for the
Measurement of Facial Movement, Consulting Psychologists Press, Palo Alto,
1978.

[18] H. van Welbergen, Y. Xu, M. Thiébaux, W.-W. Feng, J. Fu, D. Reidsma, A.
Shapiro, Demonstrating and testing the BML compliance of BML realizers, in:
H.H. Vilhjálmsson, S. Kopp, S. Marsella, K.R. Thórisson (Eds.), Intelligent
Virtual Agents-11th International Conference, IVA 2011, Reykjavik, Iceland,
September 15–17, 2011. Proceedings, Lecture Notes in Computer Science, vol.
6895, Springer, 2011, pp. 269–281.

http://refhub.elsevier.com/S1875-9521(13)00005-0/h0005
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0005
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0005
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0010
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0010
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0010
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0010
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0010
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0010
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0010
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0010
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0015
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0015
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0020
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0020
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0020
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0020
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0020
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0020
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0020
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0020
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0020
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0020
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0020
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0025
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0025
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0025
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0030
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0030
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0035
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0035
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0035
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0035
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0035
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0035
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0035
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0035
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0035
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0035
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0035
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0040
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0040
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0045
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0045
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0050
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0050
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0050
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0055
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0055
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0055
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0055
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0060
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0060
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0060
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0060
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0060
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0060
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0060
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0060
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0060
http://refhub.elsevier.com/S1875-9521(13)00005-0/h0060
http://asap-project.org/
http://sourceforge.net/projects/saibabml/

	AsapRealizer in practice – A modular and extensible architecture for a BML Realizer
	1 Introduction
	2 Requirements for a modular and extensible virtual human platform
	2.1 Extensions and modifications should be non-invasive
	2.2 Requirements for extensibility and configurability

	3 AsapRealizer: Basic architecture
	4 Solutions for a flexible and extensible BML Realizer
	4.1 Ports, pipes, and adapters
	4.2 Gesture binding and other bindings
	4.3 New Embodiments
	4.4 BML elements and plan units
	4.5 New modality Engines
	4.5.1 The Nabaztag Engine
	4.5.2 Other Engines

	4.6 Integration with renderers
	4.7 Text-to-speech generation and speech scripts
	4.8 Lipsync
	4.9 Loading a complete system
	4.10 Conflict resolution
	4.11 Conclusion

	5 Comparison with other platforms
	5.1 Integration with new and existing renderers
	5.2 Integration with new and existing Text-To-Speech systems
	5.3 BML transport wiring
	5.4 BML to output mapping
	5.5 Output modality
	5.6 Lipsync algorithm
	5.7 Available behavior types and extensibility

	6 Discussion
	Acknowledgments
	Appendix A Engines and Embodiments
	References


