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a b s t r a c t

Several ways of interleaving, as studied in theoretical computer science, and some sub-
jects from mathematics can be modeled by length-preserving operations on strings, that
only permute the symbol positions in strings. Each such operation X gives rise to a family
{Xn}n≥2 of similar permutations. We call an integer n X-prime if Xn consists of a single cy-
cle of length n (n ≥ 2). For some instances of X – such as shuffle, twist, operations based
on the Archimedes’ spiral and on the Josephus problem – we investigate the distribution
of X-primes and of the associated (ordinary) prime numbers, which leads to variations of
some well-known conjectures on the density of certain sets of prime numbers.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Interleaving is a central notion in theoretical computer science: it plays an important part when we model phenomena
like concurrency and synchronization. Shuffling a deck of cards is a very simple formof interleaving, but the shuffle operation
and its variants are used extensively in modeling concurrency [11]. On the other hand, interleaving aspects are also present
in the Josephus problem (‘‘eeny, meeny, miny, moe’’) [25,7] which may be considered as a rather complicated form of
interleaving. In between these extreme ways of interleaving are the twist operation and its generalizations (as introduced
in Section 7). Both the shuffle and the twist operation are also investigated in automata theory; see, e.g., [12–14]. It turns
out, as shown in [2], that these quite different forms of interleaving can be related by means of several types of Archimedes’
spirals.

In this context the following observation is crucial. In essence, we deal with length-preserving operations on strings
of symbols that only permute the symbol positions in the string. With each such operation X we can associate an infinite
sequence {Xn}n≥2 of similar permutations with Xn ∈ Sn where Sn is the symmetric group on n elements. Each permutation
Xn generates a cyclic subgroup ⟨Xn⟩ of Sn. Some permutations Xn in this sequence are of special interest; viz.

Definition 1.1. Let X be a permuting operation on strings. A number n (n ≥ 2) is called X-prime if Xn consists of a single
cycle of length n or, equivalently, ⟨Xn⟩ is of order n. The set of X-primes is denoted by P(X). �

The present paper is a companion to [2] and it is organized as follows. In Section 2 we recall the definitions and notation
of some permuting operations on strings from [2]: shuffle operations (viz. S and its dual S), twist operation T , operations
based on the Archimedes’ spiral (viz. A0, A1, A+

1 and A−

1 ) and on the Josephus problem (viz. J2 and its dual J2). For motivation,
examples of permutations Xn and of ⟨Xn⟩, as well as the concept of duality, we refer to [2]. Section 3 is devoted to a few
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characterization results for X-primes from [2] that play an important part in Sections 5 and 6. Then in Section 4 we count
X-primes – just as one counts ordinary prime numbers – where X equals S, S, T , A0, A1, A+

1 , A−

1 , J2 and J2. Section 5 deals
with ordinary prime numbers associated to X-primes, the so-called x-primes. In Section 6 we study the distribution of these
x-primes in relation to the distribution of ordinary prime numbers, i.e., we focus our attention to the density of x-primes in
the ordinary primes. In this section, we stumble against some well-known mathematical conjectures, viz. the Generalized
Riemann Hypothesis (GRH) and Artin’s Conjecture on Primitive Roots (ACPR). Our main results of Section 6 are placed in a
broader context in Section 7 (generators of Z⋆

p or primitive roots modulo p). Finally, Section 8 consists of a few concluding
remarks.

2. Permuting operations on strings

Let N2 = {n ∈ N | n ≥ 2}, and let Σn = {a1, a2, . . . , an} be an alphabet of n different symbols that is linearly ordered
by a1 < a2 < · · · < an (n ∈ N2). The string or word αn over Σn, defined by αn = a1a2 · · · an, is called the standard word of
length n [15].

Shuffling a deck of cards can be modeled by the permuting operation S, defined by

S(αn) = aka1ak+1a2ak+2a3 · · · with k = ⌈(n + 1)/2⌉,

which results – cf. Section 3.4 in [9] – in a family of permutations {Sn}n≥2 with

Sn(m) ≡ 2m (mod n + 1), n even; 1 ≤ m ≤ n,
Sn(m) ≡ 2m (mod n), n odd; 1 ≤ m < n,
Sn(n) = n, n odd.

The permuting operation S results from perfectly shuffling a deck of an even number of cards that has first been put up-
side down. For an odd number of cards we remove the last card, put the remaining deck upside down, shuffle it, and finally
put this card on top of the shuffled deck:

S(αn) = ak−1an−1ak−2an−2 · · · a1akan if n is odd,

S(αn) = ak−1anak−2an−1 · · · a1ak if n is even,

where k = ⌈(n + 1)/2⌉. The corresponding shuffle permutations can be defined by

Sn(m) ≡ −2m(mod n + 1), n even; 1 ≤ m ≤ n,
Sn(m) ≡ −2m(mod n), n odd; 1 ≤ m < n,
Sn(n) = n, n odd.

The twist operation T is another way of permuting a deck of cards: before we interleave the two parts of the deck we put
the second half upside down, i.e., T is defined by

T (αn) = ana1an−1a2an−2a3 · · · ,

which induces a family of permutations {Tn}n≥2 with

Tn(m) ≡ +2m (mod 2n + 1), 1 ≤ m < k = ⌈(n + 1)/2⌉, and
Tn(m) ≡ −2m (mod 2n + 1), k ≤ m ≤ n.

The Archimedes permuting operations A0, A1, A+

1 and A−

1 are based on the Archimedes’ spiral. So consider an Archimedes’
spiral with polar equation r = c θ (c > 0; θ ≥ 0 is the angle) and place the first symbol a1 from the standard word αn at
the origin (θ = 0) in the XY -plane. Each time, as θ increases, that r intersects the X-axis we put the next symbol from αn on
the X-axis. Finally, we read the symbols placed on the X-axis from left to right to obtain A0(αn):

A0(αn) = anan−2 · · · a4a2a1a3a5 · · · an−3an−1 if n is even, and
A0(αn) = an−1an−3 · · · a4a2a1a3a5 · · · an−2an if n is odd.

A0 induces a family of permutations {A0,n}n≥2 with, for 1 ≤ m ≤ n,

A0,n(m) = ⌈(n + 1)/2⌉ + (−1)m−1
⌈(m − 1)/2⌉.

The permuting operation A1 is defined as a variation of A0; viz. by starting with the Archimedes-like spiral defined by the
polar equation r = c(θ + π) with θ ≥ 0. Then

A1(αn) = an−1an−3 · · · a3a1a2a4 · · · an−2an if n is even, and
A1(αn) = anan−2 · · · a3a1a2a4 · · · an−3an−1 if n is odd.

Then the corresponding family of permutations {A1,n}n≥2 satisfies, for 1 ≤ m ≤ n,

A1,n(m) = ⌈n/2⌉ + (−1)m⌈(m − 1)/2⌉.
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Table 1
Small elements in P(X).

X P(X) OEIS

S 2, 4, 10, 12, 18, 28, 36, 52, 58, 60, 66, 82, 100, 106, 130, 138, 148, 162, 172, 178, 180, 196, 210, 226, 268, 292, 316, 346, 348, 372, . . . A071642
S 4, 6, 12, 22, 28, 36, 46, 52, 60, 70, 78, 100, 102, 148, 166, 172, 180, 190, 196, 198, 238, 262, 268, 270, 292, 310, 316, 348, 358, 366, . . . A163776
T 2, 3, 5, 6, 9, 11, 14, 18, 23, 26, 29, 30, 33, 35, 39, 41, 50, 51, 53, 65, 69, 74, 81, 83, 86, 89, 90, 95, 98, 99, 105, 113, 119, 131, 134,

135, 146, 155158, 173, 174, 179, 183, 186, 189, 191, 194, 209, 210, . . .
A054639

A0 2, 6, 14, 18, 26, 30, 50, 74, 86, 90, 98, 134, 146, 158, 174, 186, 194, 210, 230, 254, 270, 278, 306, 326, 330, 338, 350, 354, 378, 386, . . . A163777
A1 3, 5, 9, 11, 23, 29, 33, 35, 39, 41, 51, 53, 65, 69, 81, 83, 89, 95, 99, 105, 113, 119, 131, 135, 155, 173, 179, 183, 189, 191, 209, 221, . . . A163778
A+

1 5, 9, 29, 33, 41, 53, 65, 69, 81, 89, 105, 113, 173, 189, 209, 221, 233, 245, 261, 273, 281, 293, 309, 329, 393, 413, 429, 441, 453, 473, . . . A163779
A−

1 3, 11, 23, 35, 39, 51, 83, 95, 99, 119, 131, 135, 155, 179, 183, 191, 231, 239, 243, 251, 299, 303, 323, 359, 371, 375, 411, 419, 431, 443, . . . A163780
J2 2, 5, 6, 9, 14, 18, 26, 29, 30, 33, 41, 50, 53, 65, 69, 74, 81, 86, 89, 90, 98, 105, 113, 134, 146, 158, 173, 174, 186, 189, 194, 209, 210, 221, . . . A163782
J2 2, 3, 6, 11, 14, 18, 23, 26, 30, 35, 39, 50, 51, 74, 83, 86, 90, 95, 98, 99, 119, 131, 134, 135, 146, 155, 158, 174, 179, 183, 186, 191, 194, . . . A163781

It happens to be useful to subdivide P(A1) as follows. A number n inN2 is A+

1 -prime if it is an A1-prime and n ≡ 1 (mod 4).
And n in N2 is an A−

1 -prime if it is an A1-prime and n ≡ 3 (mod 4). Then we have P(A1) = P(A+

1 ) ∪ P(A−

1 ) with P(A+

1 ) ∩

P(A−

1 ) = ∅.
The permuting operation J2 stems from the Josephus problem [25]; it may be viewed as the simplest instance of ‘‘eeny,

meeny, miny, moe’’. There are various ways to describe this operation from which we choose the method given in Section
3.3 of [7].

We walk in a cyclic way through the standard word αn and we assign numbers to symbol indices (symbol positions
in αn). In the first sweep through αn we assign the numbers 1, 2, . . . , n to the symbol positions 1, 2, . . . , n, respectively;
positions that got an even number are ‘‘marked’’. In the next sweep throughαn the ‘‘unmarked’’ symbol positions are number
consecutively; a1 gets n + 1, a2 is marked, a3 gets n + 2, a4 is marked, a5 gets n + 3, etc. We continue this process until we
reach the number 2n, i.e., until all symbols are marked. Reading the marked symbols in order of increasing even assigned
numbers yields J2(αn).

For the family of permutations {J2,n}n≥2 we obtained in [2], for 1 ≤ m ≤ n,

J2,n(m) = (2n + 1 − 2n + 1 − m )/2,

where x is the odd part of x, i.e., the unique odd number such that x/ x is a power of 2. For instance, we have 16
= 1, 24 = 3 and 360 = 45.

In [2] we introduced a permuting operation J2 based on a modified Josephus problem. Viz. in numbering the symbol
positions in the standard word αn – still from left to right – we distinguish between even and odd (numbered) sweeps
through αn:
• In odd sweeps we number downwards starting with 2n in the first sweep.
• In even sweeps we number upwards starting with 1 in the second sweep.
• The numbering ends when all numbers from 1 to 2n are assigned to symbol positions.

As in the case of J2 the even numbers in the numbering/marking process determine the value of J2,n(m): the jth symbol
to be marked receives number 2j in the marking process.

For the family of permutations {J2,n}n≥2 we inferred in [2] that, for 1 ≤ m ≤ n,

J2,n(m) = (2n + 1 − m −

2n+1)/2,

where x −

q is the odd number such that 1 ≤ x −

q < q and x ≡ x −

q (−2)t(mod q) for the smallest t ≥ 0. As examples,
we mention that 6 −

29 = 21 and 2 −

35 = 23, since 6 ≡ 21(−2)3 (mod 29) with t = 3, and 2 ≡ 23(−2)6 (mod 35)
with t = 6, respectively. Clearly, for each odd x with 1 ≤ x < q, we have x −

q = x as t = 0 applies.
Table 1 contains for each X , the first elements of P(X);more elements can be found in the respective entries in the On-line

Encyclopedia of Integer Sequences (OEIS) [26].
Note that T -primes are often referred to as Queneau numbers [3–5,24] which are defined as T−1-primes; but it is easy

to see that P(T−1) = P(T ). The A0-primes are just the even Queneau numbers and the A1-primes are the odd Queneau
numbers [2].

3. Characterization of X-primes

In this section, we quote a few characterization results from [2]; we refer to this reference for a more complete overview
of characterizations as well as a short history of earlier, similar (partial) results as in [3,9,4,5]; cf. [6] for some more recent
characterizations.

Let Z be the set of all integers. For a prime p, Zp denotes the finite field of integers modulo p and Z⋆
p denotes the cyclic

multiplicative group of Zp. Recall that Z⋆
p has order p − 1. Let Gp be the set of all possible generators of Z⋆

p (the elements in
Z⋆
p of order p − 1).
First, we consider the several types of Archimedes primes.
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Table 2
Counting X- and x-primes; X ∈ {S, S, T , A0, A1}, x ∈ {s, s, t, a0, a1}; I = (N + 1)/2.

n N π(S, n) π(S, n) π(T , n) π(A0, n) π(A1, n)
π(s, I) π(s, I) π(t,N) π(a0,N) π(a1,N)

101 2 · 101
+ 1 3 2 5 2 3

102 2 · 102
+ 1 13 12 30 11 19

103 2 · 103
+ 1 67 69 177 61 116

104 2 · 104
+ 1 470 465 1257 418 839

105 2 · 105
+ 1 3603 3612 10084 3378 6706

106 2 · 106
+ 1 29341 29438 83584 27882 55702

107 2 · 107
+ 1 248491 248761 713154 237676 475478

108 2 · 108
+ 1 2154733 2153846 6214402 2071170 4143232

Theorem 3.1 ([2]).
(1) A number n in N2 is A0-prime if and only if n is even, 2n + 1 is a prime number, and both −2 and +2 are a generator of

Z⋆
2n+1 : {−2, +2} ⊆ G2n+1.

(2) A number n in N2 is A1-prime if and only if n is odd, 2n + 1 is a prime number, and only one of −2 and +2 is a generator of
Z⋆
2n+1: {−2, +2} ∩ G2n+1 is a singleton.

(3) A number n in N2 is A+

1 -prime if and only if n ≡ 1 (mod 4), 2n + 1 is a prime number, and +2 is a generator of Z⋆
2n+1,

but −2 is not: +2 ∈ G2n+1 and −2 ∉ G2n+1.
(4) A number n in N2 is A−

1 -prime if and only if n ≡ 3 (mod 4), 2n + 1 is a prime number, and −2 is a generator of Z⋆
2n+1,

but +2 is not: −2 ∈ G2n+1 and +2 ∉ G2n+1. �

Since there are no A0-primes with n ≡ 0 (mod 4) [2], we may replace ‘‘n is even’’ in Theorem 3.1(1) by ‘‘n ≡ 2 (mod 4)’’.
We consider these brands of Archimedes primes as building blocks to formulate characterizations for other X-primes.
For a permuting operation X , we define H(X) by H(X) = {n/2 | n ∈ P(X) − {2}}.

Theorem 3.2 ([2]).
(1) P(J2) = H(S) = P(A0) ∪ P(A+

1 ),
(2) P(J2) = H(S) = P(A0) ∪ P(A−

1 ), and
(3) P(T ) = P(A0) ∪ P(A1) = P(A0) ∪ P(A+

1 ) ∪ P(A−

1 )

in which P(A0), P(A+

1 ) and P(A−

1 ) are mutually disjoint sets. Consequently,

(4) P(T ) = P(J2) ∪ P(J2) = H(S) ∪ H(S), with
(5) P(J2) ∩ P(J2) = H(S) ∩ H(S) = P(A0). �

Earlier we called S and J2 the dual operations of S and J2, respectively. For the formal definition of duality we refer to
Section 6 of [2], but Theorems 3.1 and 3.2 may give a hint. To complete the picture we mention that A−

1 is the dual of A+

1
(and vice versa) and that the operations T , A0 and A1 are self-dual, i.e., they themselves may serve as their dual.

4. Counting X-primes

We count the several X-primes in a way similar to counting ordinary prime numbers – as in, for instance, Section 1.5
of [28] – and we comment on their distribution.

Let π(X, n) be the number of X-primes less than or equal to n. Then our counting results are summarized in Tables 2 and
3. In Table 2 we should ignore the second row and the second column for the moment; the resulting smaller table will be
referred to as Table 2A. Similarly, we obtain Table 3A by deleting the second row and the second and last columns in Table 3.

As to be expected Tables 2A and 3A confirm the equalities of Theorem3.2. Sowe have, e.g.,π(T , n) = π(A0, n)+π(A+

1 , n)
+ π(A−

1 , n). The verification of the other equalities of Theorem 3.2 is left to the reader; cf. Table 1 as well.
Table 4 shows that the distributions of the S-, S-, T -, A0-, A1-, A+

1 -, A
−

1 -, J2- and J2-primes exhibit a ‘‘Prime Number
Theorem-like’’ behavior.

Let P the set of odd prime numbers and let π(P, n) the number of odd prime numbers less than or equal to n. Remember
that the Prime Number Theorem reads as:

Prime Number Theorem. The function π(P, n) is asymptotic to n/ ln n. That is limn→∞ π(P, n) ln n/n = 1. �

From Table 4 we observe that the distributions of X-primes show limiting values

Λ(X) = lim
n→∞

π(X, n) ln n/n

unequal to 1. Of course, it is possible to infer some rough estimates for Λ(X) from Table 4, but we will not do so. Instead we
will follow a detour in the next sections.
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Table 3
Counting X-, x- and P-primes; X ∈ {A+

1 , A−

1 , J2, J2}, x ∈ {a+

1 , a−

1 , j2, j2}.

n N π(A+

1 , n) π(A−

1 , n) π(J2, n) π(J2, n) π(P,N)

π(a+

1 ,N) π(a−

1 ,N) π(j2,N) π(j2,N)

101 2 · 101
+ 1 2 1 4 3 3

102 2 · 102
+ 1 10 9 21 20 21

103 2 · 103
+ 1 55 61 116 122 147

104 2 · 104
+ 1 421 418 839 836 1125

105 2 · 105
+ 1 3328 3378 6706 6756 8977

106 2 · 106
+ 1 27861 27841 55743 55723 74416

107 2 · 107
+ 1 237656 237822 475332 475498 635170

108 2 · 108
+ 1 2072304 2070928 4143474 4142098 5538820

Table 4
Distribution of S-, S-, T -, A0-, A1-, A+

1 -, A
−

1 -, J2- and J2-primes.

n π(X, n) ln n/n
S S T A0 A1 A+

1 A−

1 J2 J2

101 0.6908 0.4605 1.1513 0.4605 0.4605 0.4605 0.2303 0.9210 0.6908
102 0.5987 0.5526 1.3816 0.5066 0.8750 0.4605 0.4145 0.9671 0.9210
103 0.4628 0.4766 1.2227 0.4214 0.8013 0.3799 0.4214 0.8013 0.8427
104 0.4329 0.4283 1.1577 0.3850 0.7727 0.3878 0.3850 0.7727 0.7700
105 0.4148 0.4158 1.1610 0.3889 0.7721 0.3832 0.3889 0.7721 0.7778
106 0.4054 0.4067 1.1548 0.3852 0.7696 0.3849 0.3846 0.7701 0.7698
107 0.4005 0.4010 1.1495 0.3831 0.7664 0.3831 0.3833 0.7661 0.7664
108 0.3969 0.3967 1.1447 0.3815 0.7632 0.3817 0.3815 0.7633 0.7630

5. Associated prime numbers: x-primes

Now we assign to each X-prime an ordinary prime number in an obvious way.

Definition 5.1. Let X be equal to T , A0, A1, A+

1 , A−

1 , J2, or J2. If n is X-prime, then the number 2n + 1 is called the prime
number associated with n; we also call 2n + 1 an x-prime. The set of all x-primes {2n + 1 | n ∈ P(X)} is denoted by P(x).

If X is equal to S or S, then the x-prime associated with the X-prime n, is n + 1, and P(x) = {n + 1 | n ∈ P(X)}. �

Counting x-primes is summarized in Table 2B (obtained from Table 2 by deleting the first row and the first column) and
Table 3B (which results from Table 3 when we ignore the first row, the first and the last columns). For the distribution of
x-primeswe refer to Table 5 (cf. Table 4 for the distribution of the corresponding X-primes). In Table 5 the s- and s-primes are
scaled differently (Definition 5.1): it allows a comparisonwith the j2- and the j2-primes, respectively; cf. Theorem 5.4(1)–(2)
and Corollary 5.7(1)–(2).

An odd prime number is called Pythagorean if it is the hypotenuse of a right triangle with integer sides. Typical examples
are 5 and 13 since 52

= 32
+ 42 and 132

= 52
+ 122; cf. A002144 in [26]. Let P denote the set of Pythagorean primes. We

recall the following two characterizations of P.

Proposition 5.2. Let p be an odd prime number. Then

(1) p ∈ P if and only if p ≡ 1 (mod 4).
(2) p ∈ P if and only if for all g in Gp, −g belongs to Gp as well. �

Theorems 3.1 and 3.2 yield the following characterizations of x-primes, respectively.

Theorem 5.3. Let p ≥ 5 be a prime number. Then

(1) p ∈ P(a0) if and only if p ≡ 5 (mod 8), and −2 is in Gp.
(2) p ∈ P(a0) if and only if p ≡ 5 (mod 8), and +2 is in Gp.
(3) p ∈ P(a1) if and only if p ≡ 3 (mod 4), and only one of −2 and +2 is in Gp.
(4) p ∈ P(a+

1 ) if and only if p ≡ 3 (mod 8), and +2 is in Gp, but −2 is not.
(5) p ∈ P(a−

1 ) if and only if p ≡ 7 (mod 8), and −2 is in Gp, but +2 is not.

Proof. The statements 5.3(3)–(5) directly follow from Theorem 3.1(2)–(4), respectively.
Similarly, we obtain from Theorem 3.1(1), that p ∈ P(a0) if and only if p ≡ 5 (mod 8), and both −2 and +2 are in Gp. But

if p ≡ 5 (mod 8), then p is Pythagorean by Proposition 5.2(1), and Proposition 5.2(2) implies that one of the two conditions
on Gp may be dropped, which yields both 5.3(1) and (2). �
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Table 5
Distribution of s-, s-, t-, a0-, a1-, a+

1 -, a
−

1 -, j2- and j2-primes; I = (N + 1)/2.

N π(x, I) ln I/I π(x,N) lnN/N
s s t a0 a1 a+

1 a−

1 j2 j2

2 · 101
+ 1 0.6540 0.4360 0.7249 0.2900 0.4349 0.2900 0.1450 0.5799 0.4349

2 · 102
+ 1 0.5940 0.5483 0.7915 0.2902 0.5013 0.2638 0.2375 0.5541 0.5277

2 · 103
+ 1 0.4624 0.4762 0.6724 0.2317 0.4407 0.2089 0.2317 0.4407 0.4635

2 · 104
+ 1 0.4328 0.4282 0.6224 0.2070 0.4154 0.2085 0.2069 0.4154 0.4139

2 · 105
+ 1 0.4148 0.4158 0.6154 0.2062 0.4093 0.2031 0.2062 0.4093 0.4123

2 · 106
+ 1 0.4054 0.4067 0.6063 0.2023 0.4041 0.2021 0.2020 0.4044 0.4042

2 · 107
+ 1 0.4005 0.4010 0.5995 0.1998 0.3997 0.1998 0.1999 0.3995 0.3997

2 · 108
+ 1 0.3969 0.3968 0.5939 0.1979 0.3960 0.1980 0.1979 0.3960 0.3959

Theorem 5.4. (1) P(j2) = P(s) = P(a0) ∪ P(a+

1 ),
(2) P(j2) = P(s) = P(a0) ∪ P(a−

1 ), and
(3) P(t) = P(a0) ∪ P(a1) = P(a0) ∪ P(a+

1 ) ∪ P(a−

1 )

in which P(a0), P(a+

1 ) and P(a−

1 ) are mutually disjoint sets. Consequently,

(4) P(t) = P(j2) ∪ P(j2) = P(s) ∪ P(s), with
(5) P(j2) ∩ P(j2) = P(s) ∩ P(s) = P(a0). �

Example 5.5. (1) If n is A0-prime, then 2n+ 1 is a0-prime and by Theorem 5.3 and Proposition 5.2(1) a Pythagorean prime.
But P(a0) is a proper subset of P: 109 ∈ P but 109 is not a0-prime because 54 is not A0-prime. Note that G109 = {±6,
±10, ±11, ±13, ±14, ±18, ±24, ±30, ±37, ±39, ±40, ±42, ±44, ±47, ±50, ±51, ±52, ±53}, and G109 contains
neither +2 nor −2.

(2) The first few t-primes are: 5, 7, 11, 13, 19, 23, 29 and 37. Clearly, 17 and 31 are in P but not in P(t), as neither +2 nor
−2 are in G17 or G31 : G17 = {±3, ±5, ±6, ±7} and G31 = {−14, −10, −9, −7, 3, 11, 12, 13}. �

In view of Theorem 5.3 it is useful to look at the odd prime numbers modulo 8, for which we need Euler’s totient function
and a strong version of Dirichlet’s Theorem.

Remember that Euler’s totient function ϕ : N → N is defined by: ϕ(n) is the number of integers k (1 ≤ k < n) that are
relatively prime to n, i.e., gcd(k, n) = 1.

In the sequel we use the following sets of odd prime numbers:

π(P,N) = #{p ∈ P | p ≤ N},

π(P,N; a, b) = #{p ∈ P | p ≤ N, p ≡ a (mod b)},
π(x,N) = #{p ∈ P(x) | p ≤ N}, and
π(x,N; a, b) = #{p ∈ P(x) | p ≤ N, p ≡ a (mod b)},

where #F is the number of elements of the finite set F .

Dirichlet’s Theorem. Let a and b be positive numbers with gcd(a, b) = 1. Then

lim
N→∞

π(P,N; a, b)
π(P,N)

=
1

ϕ(b)
,

i.e., the set of odd primes that are congruent to a modulo b has density 1/ϕ(b) in P. �

Consequently, for b = 8 we have ϕ(8) = 4 and the odd prime numbers are equally distributed over the four residue
classes 1, 3, 5, 7 modulo 8; see also Table 6.

Example 5.6. Counting results for Pythagorean primes are in Table 3. Note that by Proposition 5.2,π(P,N) = π(P,N; 1, 4)
and so π(P,N) = π(P,N; 1, 8) + π(P,N; 5, 8); cf. Tables 3 and 6. �

From Theorem 5.4 we obtain the following equalities.

Corollary 5.7. For each positive integer N, we have

(1) π(j2,N) = π(s,N) = π(a0,N) + π(a+

1 ,N),
(2) π(j2,N) = π(s,N) = π(a0,N) + π(a−

1 ,N),
(3) π(t,N) = π(a0,N) + π(a1,N) = π(a0,N) + π(a+

1 ,N) + π(a−

1 ,N),
(4) π(t,N) = π(j2,N) + π(j2,N) − π(a0,N),
(5) π(t,N) = π(s,N) + π(s,N) − π(a0,N). �
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Table 6
Counting odd primes modulo 8.

N π(P,N; a, 8) π(P,N) π(P,N) lnN/N
a = 1 a = 3 a = 5 a = 7

2 · 101
+ 1 1 3 2 1 7 1.01484081

2 · 102
+ 1 8 12 13 12 45 1.18730707

2 · 103
+ 1 68 77 79 78 302 1.14723813

2 · 104
+ 1 556 571 569 565 2261 1.11953894

2 · 105
+ 1 4466 4495 4511 4511 17983 1.09750398

2 · 106
+ 1 37116 37261 37300 37255 148932 1.08040120

2 · 107
+ 1 317477 317768 317693 317668 1270606 1.06802325

2 · 108
+ 1 2769023 2770106 2769797 2770010 11078936 1.05880438

Apart from twin primes – i.e., pairs (p, p + 2) such that both p and p + 2 are prime numbers – there are other ways
to couple prime numbers to sibling primes. In this context we quote two results from [3] on T -primes (Theorem 5.8); by
Definition 5.1 we obtain similar results for t-primes (Corollary 5.9) and, consequently, two example families of such sibling
primes.

Theorem 5.8 ([3]).

(1) If both p and 2p + 1 are prime numbers, then p is a T-prime.
(2) If both p and 4p + 1 are prime numbers, then 2p is a T-prime. �

Corollary 5.9. (1) If both p and 2p + 1 are prime numbers, then 2p + 1 is a t-prime.
(2) If both p and 4p + 1 are prime numbers, then 4p + 1 is a t-prime. �

Numbers p with the property that both p and 2p + 1 are prime, are the so-called Sophie Germain prime numbers; cf.
A005384 in [26]. So if p is a Sophie Germain prime, then 2p + 1 is a t-prime by Corollary 5.9(1) and, consequently, p is a
T -prime.

Generalizing Corollary 5.9 to a statement of the form ‘‘If both p and 2kp+1 are prime numbers, then 2kp+1 is a t-prime’’
will not work. For k = 3 the smallest counter-example is p = 5, as 31 is not a t-prime. For k = 4 the situation is even more
dramatic: no number nwith n ≡ 1 (mod 8) is t-prime, because all numbers equivalent 0 (mod 4) are not T -prime [3,2]. And
notice that replacing 2k by 2k+1will be unsuccessful for all k ≥ 1 and all odd prime numbers p, because (2k+1)p+1 is even.

6. Distribution of the associated prime numbers

In this section, we will first apply the main result from [17] (Theorem 6.3) to some x-primes (Theorem 6.4). Then we will
take an alternative approach based on Artin’s conjecture on primitive roots; see Theorems 6.5, 6.7 and 6.8. These latter two
theorems heavily rely on a result on the distribution of prime numbers p with a prescribed generator of Z⋆

p over residue
classes (Theorem 3 in [19]).

But first we need a definition and a few results from number theory.

Definition 6.1. Let p be an odd prime. The number a is a quadratic residue of p if the congruence x2 ≡ a (mod p) has a
solution. When no such solution exists, the number a is called a quadratic non-residue of p. �

Proposition 6.2. (1) The number +2 is a quadratic residue of primes of the form 8k ± 1 and a quadratic non-residue of primes
of the form 8k ± 3.

(2) The number −2 is a quadratic residue of primes of the form 8k + 1 and 8k + 3, and a quadratic non-residue of primes of the
form 8k + 5 and 8k + 7. �

Proposition 6.2(1) is well known; for a proof we refer to Theorem 95 in [8], Theorem 3.103 in [1], or Section 4.1 in [16].
And Proposition 6.2(2) can be proven as Theorem 95 in [8]; cf. Example 4.1.18 in [16]. Proposition 6.2 plays an important
role in establishing characterization results for T -primes (Queneau numbers); see [3,6,2].

Let p be an odd prime and a any number not divisible by p. Then Legendre’s symbol (a/p) is defined by

(a/p) = +1 if a is a quadratic residue of p, and
(a/p) = −1 if a is a quadratic non-residue of p.

The main result from [17] now reads as follows. Note that ‘‘generator of Z⋆
p’’ is usually referred to as ‘‘primitive root

modulo p’’ in number theory [8,1,16].
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Theorem 6.3 ([17]). Let g ∈ Z be unequal to −1, 0 and +1, and let h be the largest integer such that g is an h-th power. Let
πg(P,N; a, b) denote the number of odd primes less than or equal to N such that p ≡ a (mod b) and g is a primitive root modulo
p. Then, under the Generalized Riemann Hypothesis,

πg(P,N; a, b) = 2 ·


2<p≤N

(g/p)=−1
p≡a (mod b)
gcd(p−1,h)=1

ϕ(p − 1)
p − 1

+ RN

where ϕ is Euler’s totient function and RN satisfies RN ∈ O(N log logN/ log2 N). �

The exact formulation of the Generalized Riemann Hypothesis (GRH) is less relevant in the present context; it suffices to
remark that it is used in the proof of Theorem 6.3 to show that RN is sufficiently small, viz. RN ∈ O(N log logN/ log2 N).

We apply Theorem 6.3 to obtain the distribution for some of the x-primes.

Theorem 6.4. Under the Generalized Riemann Hypothesis, we have

(1) π(a0,N) = 2 ·


2<p≤N, p≡5 (mod 8)
ϕ(p−1)
p−1 + RN ,

(2) π(a+

1 ,N) = 2 ·


2<p≤N, p≡3 (mod 8)
ϕ(p−1)
p−1 + RN ,

(3) π(a−

1 ,N) = 2 ·


2<p≤N, p≡7 (mod 8)
ϕ(p−1)
p−1 + RN ,

where ϕ is Euler’s totient function and RN is as in Theorem 6.3.

Proof. We first observe that by Theorem 5.3(1), (2), (4) and (5) we have

π(a0,N) = π−2(P,N; 5, 8) = π+2(P,N; 5, 8),
π(a+

1 ,N) = π+2(P,N; 3, 8), and

π(a−

1 ,N) = π−2(P,N; 7, 8).

Next we apply Theorem 6.3; note that in all three cases we have h = 1, and therefore gcd(p − 1, h) = 1.

(1) By Proposition 6.2(2) we obtain (−2/p) = −1 since p ≡ 5(mod 8). Similarly, Proposition 6.2(1) yields (+2/p) = −1
as well.

(2) p ≡ 3 (mod 8) and Proposition 6.2(1) imply (+2/p) = −1.
(3) From Proposition 6.2(2) and p ≡ 7 (mod 8), it follows that (−2/p) = −1. �

Similar distributions can be obtained for a1-, j2-, j2-, s-, s- and t-primes by Theorem 6.4 and Corollary 5.7.
With Dirichlet’s Theorem and Theorem 6.4 in mind, we are tempted to conjecture that Λ(a0) = Λ(a+

1 ) = Λ(a−

1 ),
provided the function ϕ(p − 1)/(p − 1) behaves in some uniform fashion over the residue classes 1, 3, 5 and 7 modulo 8;
cf. Theorems 6.7 and 6.8.

Although the distributions in Theorem 6.4 are simple as compared to the one in Theorem 6.3, they are rather unsatisfac-
tory from a computational point of view. Therefore we will continue into another direction.

When we compare Tables 2B, 3B and 6 we observe that in each interval we have π(a0,N) < π(P,N; 5, 8), π(a+

1 ,N) <

π(P,N; 3, 8) and π(a−

1 ,N) < π(P,N; 7, 8). This should not come as a surprise since we ignored the additional restrictions
on the generators of Z⋆

p (or, primitive roots modulo p); cf. Theorem 3.1.
This leads us to the followingwell-known conjecture inwhich S(g) is the set of prime numbers p such that g is a primitive

root modulo p, i.e., g generates the cyclic group Z⋆
p.

Artin’s Conjecture on Primitive Roots (ACPR). Let g be an integer which is not a perfect square and not equal to −1, and let
g = g0h2 with g0 square-free. Then
(1) S(g) is infinite, and S(g) has a positive asymptotic density in P.
(2) If in addition g is not a perfect power and if g0 is not congruent to 1 modulo 4, this density is independent of g and equals

Artin’s constant A. �

Artin’s constant A is defined as the infinite product

A =


p is prime


1 −

1
p(p − 1)


= 0.3739558136192022880547280543464164151 . . . .

Theorem 6.5. Under the assumption of ACPR, we have

Λ(j2) = Λ(j2) = Λ(s) = Λ(s) = A.

Proof. From Theorems 5.3(2), (4), 5.4(1), together with ACPR applied to g = g0 = 2 and h = 1, we obtain that P(j2) =

S(2), P(j2) is infinite, and Λ(j2) = A.
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In a similar way Theorems 5.3(1), (5), 5.4(2), and ACPR yield P(j2) = S(−2), P(j2) is infinite, and Λ(j2) = A.
Finally, Theorem 5.4(1)–(2) or Corollary 5.7(1)–(2) implies Λ(s) = Λ(s) = A. �

Hooley [10] proved that ACPR follows from the Generalized Riemann Hypothesis (GRH); so in Theorem 6.5 we may
replace ACPR by GRH as well.

Next we will show, under the assumption of GRH, that Λ(a0) = A/2; cf. Theorem 6.7. It is possible to infer this equality
by going step by step through Artin’s heuristic approach – as given in, e.g., [27] or [20] – together with the additional
requirement that p ≡ 1 (mod 4) and relying on an application of Dirichlet’s Theorem, which results in Λ(a0) = A/ϕ(4) =

A/2. However, we prefer to derive Theorem 6.7 from one of the main results of [19] which we also need in Section 7. We
do not use the complete, most general version of Theorem 3 of [19], since for our purposes a special instance (Theorem 6.6)
suffices. For other similar statements that are particular instances of Theorems 1–3 in [19] we refer to [18,27]. Again we
need some concepts from number theory.

TheMöbius function µ : N → {−1, 0, +1} is defined by
• µ(n) = +1 if n is squarefree and n has an even number of prime factors,
• µ(n) = −1 if n is squarefree and n has an odd number of prime factors,
• µ(n) = 0 if n is not squarefree.

Let n ≠ 0 be an integer with prime factorization n = u · pe11 · · · pekk , where u ∈ {+1, −1} and pi are primes. Let a be an
integer. Then the Kronecker symbol (a|n) is defined by

(a|n) = (a|u) ·

k
i=1

(a|pi)ei .

If pi is odd, then (a|pi) = (a/pi) (Legendre symbol); for p1 = 2, (a|2) is defined by
• (a|2) = 0 if a is even,
• (a|2) = +1 if a ≡ ±1 (mod 8), and
• (a|2) = −1 if a ≡ ±3 (mod 8).

Finally, (a|1) = 1, and (a| − 1) = 1 if a ≥ 0 and (a| − 1) = −1 otherwise.
LetΛg(a, b) be the density defined byΛg(a, b) = limn→∞ πg(P, n; a, b)/π(P, n) or, equivalently, byΛg(a, b) = limn→∞

πg(P, n; a, b) ln n/n.
Remember that n denotes the odd part of n, i.e., the odd number such that n/ n is a power of 2.

Theorem 6.6 (Theorem 3 from [19] with f = 2k, k ≥ 1). Let g be an integer not equal to −1 or a square; let h ≥ 1 be the
largest integer such that g is an h-th power. Write g = g1g2

2 , with g1 squarefree and both g1 and g2 integer. Let a and b be natural
numbers with 1 ≤ a < b = 2k for some k ≥ 1, and a odd. Let

β = g1 , γ = (−1)(β−1)/2 gcd(g1, b)

and

A(h) =
1
2

·


p≥3
p|h


1 −

1
p − 1

 
p≥3
p-h


1 −

1
p(p − 1)


if gcd(a − 1, b, h) = 1 and A(h) = 0 otherwise, where p runs through all the prime numbers.

Then, under the Generalized Riemann Hypothesis, we have

Λg(a, b) =
A(h)
ϕ(b)

1 − (γ |a)
µ(|β|)

p|β, p|h
(p − 2)


p|β, p-h

(p2 − p − 1)


if g1 ≡ 1 (mod 4) or g1 ≡ 2 (mod 4) and k ≥ 3 or g1 ≡ 3 (mod 4) and k ≥ 2, and

Λg(a, b) =
A(h)
ϕ(b)

otherwise. �

Theorem 6.7. Under the assumption of GRH, we have Λ(a0) = A/2.

Proof. By Theorem 5.3(2) we have Λ(a0) = Λ2(5, 8). Thus we apply Theorem 6.6 with g = g1 = 2, h = 1, a = 5, b = 8
(k = 3), β = 1, µ(|β|) = 1, and γ = 2. Consequently, we obtain

A(1) =
1
2

·


p≥3


1 −

1
p(p − 1)


=


p≥2


1 −

1
p(p − 1)


= A,

and Λ(a0) = Λ2(5, 8) = A(1)(1 − (2|5))/ϕ(8) = A(1 + 1)/4 = A/2. �
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Table 7
d+
g (N) and d±

g (N) for odd primes that have g as minimal generator of Z⋆
p (minimal primitive root modulo p) for N = 150 000 001.

g +2 −2 +3 −3 +5 −5 +6 −6 +7 −7

d+
g (N) 0.374031 0.226523 0.139052 0.055954 0.068789

d±
g (N) 0.374031 0.373947 0.181194 0.142723 0.068735 0.073519 0.030383 0.030337 0.035154 0.034617

g +10 −10 +11 −11 +12 −12 +13 −13 +14 −14

d+
g (N) 0.023048 0.037256 0.003268 0.023168 0.008276

d±
g (N) 0.016340 0.016330 0.018119 0.018070 0.000496 0.000428 0.012191 0.012204 0.005509 0.005504

g +15 −15 +17 −17 +18 −18 +19 −19

d+
g (N) 0.004226 0.011582 0.000408 0.007601

d±
g (N) 0.002326 0.002282 0.006319 0.006311 0.000374 0.000374 0.004425 0.004426

Theorem 6.8. Under the assumption of GRH, we have

Λ(a+

1 ) = Λ(a−

1 ) = A/2,
Λ(a1) = A, and
Λ(t) = 3A/2.

Proof. From Corollary 5.7 we obtain by taking limits for N → ∞:

Λ(j2) = Λ(a0) + Λ(a+

1 ),

Λ(j2) = Λ(a0) + Λ(a−

1 ),

Λ(a1) = Λ(a+

1 ) + Λ(a−

1 ), and
Λ(t) = Λ(a0) + Λ(a1).

Now, using Theorems 6.5 and 6.7 it is straightforward to obtain the results. �

Thus the set P(t) of prime numbers associated with the Queneau numbers has density 3A/2 in P, the set P(a0) of prime
numbers associated with the even Queneau numbers has density A/2 in P, and the set P(a1) of prime numbers associated
with the odd Queneau numbers has density A in P.

7. Generators (primitive roots) other than +2 and −2

In the previous sections the numbers +2 and −2 played an important part as generator of Z⋆
p. Now 0 and +1 never can

be such a generator, and this observation also applies to −1 whenever p ≠ 3. Consequently, +2 and −2 can be considered
as minimal generators of Z⋆

p. In looking for minimal generators we can distinguish two points of view.
In the first and usual one, the residue classesmodulo p are represented by the numbers 0, 1, . . . , p−1 andwe determine

the smallest g with 2 ≤ g < p − 1 that generates Z⋆
p; see [22,21] for results along this approach.

Alternatively, we can represent the residue classes modulo p with p = 2n + 1 by −n, . . . ,−1, 0, +1, . . . ,+n, where
n + 1, n + 2, . . . , 2n are represented by −n, −n + 1, . . . ,−1, respectively. This representation is useful in dealing with
Queneau numbers (T−1-primes) [3] or T -primes [2]. For each of these representatives, we can define its absolute value [3],
and so we are looking for the smallest |g| with 2 ≤ |g| ≤ n such that g generates Z⋆

p.
Of course, for Pythagorean prime numbers both approaches yield closely connected results, but in general there is a

considerable difference in values between those two points of view. Table 7 contains, for small values of |g|, numerical
approximations of the densities (or, actually, the relative frequencies) d+

g (N) and d±
g (N) of odd primes less than or equal

to N that have g as minimal generator: for d+
g (N) we search in the interval 2 ≤ g ≤ p − 1 and for d±

g (N) in the interval
2 ≤ |g| ≤ n. In Table 3 of [21] more accurate values of d+

g (N) are given based on a much larger interval (viz. N = 4 · 1010).
Notice that the values of d+

+2(N), d±

+2(N) and d±

−2(N) tend to A as the interval length N increases; cf. Theorems 5.3, 5.4, 6.5,
6.7 and 6.8.

To place our results from Section 6 (Theorems 6.5, 6.7 and 6.8) in a broader context we will now look at the distribution
of prime numbers with small primitive roots (other than +2 or −2) over the residue classes amodulo bwhere a is odd and
b = 2k for 1 ≤ k ≤ 4.

Theorem 7.1. Let g be a natural number with 2 ≤ |g| ≤ 10, g ≠ 4 and g ≠ 9. Then for natural numbers a and b with
1 ≤ a < b = 2k (1 ≤ k ≤ 4) and a odd, the value of Λg(a, b) is, under the assumption of GHR, as in Tables 9 and 10.
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Table 8
Relevant data for the proof of Theorem 7.1.

g g1 h β µ(|β|) γ (γ |a)
a = 1 a = 3 a = 5 a = 7 a = 9 a = 11 a = 13 a = 15

2 2 1 1 1 2 1 −1 −1 1 1 −1 −1 1
−2 −2 1 −1 1 −2 1 1 −1 −1 1 1 −1 −1
3 3 1 3 −1 −1 1 −1 1 −1 1 −1 1 −1

−3 −3 1 −3 −1 1 1 1 1 1 1 1 1 1
−4 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
5 5 1 5 −1 1 1 1 1 1 1 1 1 1

−5 −5 1 −5 −1 −1 1 −1 1 −1 1 −1 1 −1
6 6 1 3 −1 −2 1 1 −1 −1 1 1 −1 −1

−6 −6 1 −3 −1 2 1 −1 −1 1 1 −1 −1 1
7 7 1 7 −1 −1 1 −1 1 −1 1 −1 1 −1

−7 −7 1 −7 −1 1 1 1 1 1 1 1 1 1
8 2 3 1 1 2 1 −1 −1 1 1 −1 −1 1

−8 −2 3 −1 1 −2 1 1 −1 −1 1 1 −1 −1
−9 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
10 10 1 5 −1 2 1 −1 −1 1 1 −1 −1 1

−10 −10 1 −5 −1 −2 1 1 −1 −1 1 1 −1 −1

Table 9
Distribution of odd primes modulo 2, 4 and 8, respectively, with prescribed generator g .

g Λg = Λg (1, 2) Λg (a, 4) Λg (a, 8)
a = 1 a = 3 a = 1 a = 3 a = 5 a = 7

2 A A/2 A/2 0 A/2 A/2 0
−2 A A/2 A/2 0 0 A/2 A/2
3 A 3A/5 2A/5 3A/10 A/5 3A/10 A/5

−3 6A/5 3A/5 3A/5 3A/10 3A/10 3A/10 3A/10
−4 A 0 A 0 A/2 0 A/2
5 20A/19 10A/19 10A/19 5A/19 5A/19 5A/19 5A/19

−5 A 10A/19 9A/19 5A/19 9A/38 5A/19 9A/38
6 A A/2 A/2 3A/10 3A/10 A/5 A/5

−6 A A/2 A/2 3A/10 A/5 A/5 3A/10
7 A 21A/41 20A/41 21A/82 10A/41 21A/82 10A/41

−7 42A/41 21A/41 21A/41 21A/82 21A/82 21A/82 21A/82
8 3A/5 3A/10 3A/10 0 3A/10 3A/10 0

−8 3A/5 3A/10 3A/10 0 0 3A/10 3A/10
−9 A 0 A 0 A/2 0 A/2
10 A A/2 A/2 5A/19 9A/38 9A/38 5A/19

−10 A A/2 A/2 5A/19 5A/19 9A/38 9A/38

Proof. First, we establish the values of Λg(a, b) as mentioned in Table 10: b = 16 and a is odd with 1 ≤ a < 16. Table 8
contains the relevant data for these cases in order to apply Theorem 6.6. In the proof of Theorem 6.7 we showed that
A(1) = A. Similarly, we have

A(3) =
1
2

·


p=3


1 −

1
p − 1

 
p≥5


1 −

1
p(p − 1)


=

1
2

·
1
2

· A ·


1
2

·
5
6

−1

= 3A/5.

Now it is straightforward to compute all entries of Table 10; we give two sample computations, viz. for g equal to 7 we have

Λ7(1, 16) = Λ7(5, 16) = Λ7(9, 16) = Λ7(13, 16) =
A
8

·


1 − 1 ·

−1
72 − 7 − 1


= 21A/164,

and

Λ7(3, 16) = Λ7(7, 16) = Λ7(11, 16) = Λ7(15, 16) =
A
8

·


1 − (−1) ·

−1
72 − 7 − 1


= 5A/41.

We leave the computation of the remaining entries in Table 10 to the reader.
Obviously, we may obtain Table 9 in a similar way, but it is less tedious to sum up the appropriate columns using

Λg(a, b/2) = Λg(a, b) + Λ(a + b/2, b), where a is odd with 1 ≤ a < b = 2k (k = 2, 3, 4). �

Notice that in the right upper corner of Table 9 the identities Λ(a0) = Λ2(5, 8) = Λ−2(5, 8) = A/2, Λ(a+

1 ) = Λ2(3, 8)
= A/2 and Λ(a−

1 ) = Λ−2(7, 8) = A/2 from Theorems 6.7 and 6.8 reappear.
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Table 10
Distribution of odd primes modulo 16 with prescribed generator g .

g Λg (a, 16)
a = 1 a = 3 a = 5 a = 7 a = 9 a = 11 a = 13 a = 15

2 0 A/4 A/4 0 0 A/4 A/4 0
−2 0 0 A/4 A/4 0 0 A/4 A/4
3 3A/20 A/10 3A/20 A/10 3A/20 A/10 3A/20 A/10

−3 3A/20 3A/20 3A/20 3A/20 3A/20 3A/20 3A/20 3A/20
−4 0 A/4 0 A/4 0 A/4 0 A/4
5 5A/38 5A/38 5A/38 5A/38 5A/38 5A/38 5A/38 5A/38

−5 5A/38 9A/76 5A/38 9A/76 5A/38 9A/76 5A/38 9A/76
6 3A/20 3A/20 A/10 A/10 3A/20 3A/20 A/10 A/10

−6 3A/20 A/10 A/10 3A/20 3A/20 A/10 A/10 3A/20
7 21

164A
5
41A

21
164A

5
41A

21
164A

5
41A

21
164A

5
41A

−7 21
164A

21
164A

21
164A

21
164A

21
164A

21
164A

21
164A

21
164A

8 0 3A/20 3A/20 0 0 3A/20 3A/20 0
−8 0 0 3A/20 3A/20 0 0 3A/20 3A/20
−9 0 A/4 0 A/4 0 A/4 0 A/4
10 5A/38 9A/76 9A/76 5A/38 5A/38 9A/76 9A/76 5A/38

−10 5A/38 5A/38 9A/76 9A/76 5A/38 5A/38 9A/76 9A/76

This observation arises the obvious questionwhetherwe can introduce newpermuting operations X on strings that leads
us via their families of permutations {Xn}n≥2, and characterizations of their sets P(X) and P(x) of X-primes and associated
ordinary prime numbers to entries in Tables 9 and 10 different from the ones for g equal to +2 or −2.

Considering the Josephus permuting operations Jk for k ≥ 3 provides no answer to this question. In Table 1 of [2] the
first few Jk-primes for 3 ≤ k ≤ 20 are given: the values in this table suggest that Λ(Jk) = 0 for 3 ≤ k ≤ 20. In addition we
mention that a characterization of P(Jk) for k ≠ 2 in terms of finite fields of prime order is very unlikely [2]. Consequently,
notions like ‘‘jk-prime’’, ‘‘P(jk)’’ and ‘‘Λ(jk)’’ are meaningless for k ≥ 3.

More promising is an approach by Roubaud [23] and Dumas [5,6]. Their generalization of the ‘‘quenine’’ (i.e., the
Queneau–Daniel spiral permutation or, equivalently, T−1

n ) to the ‘‘g-quenine’’ (spiral permutationwithmultiplier g) suggests
the following generalization of the twist operation on strings.

The zigzag operation on strings Zg models the cutting of a deck of n cards in g (almost) equal parts D1, . . . ,Dg , putting
the even numbered parts upside down and interleaving (shuffling) the g resulting parts (in order D2D4D6 · · ·Dg · · ·D3D1
provided g divides n).

Example 7.2. We consider Z3(α15): so we divide α15 in 3 equal parts D1,D2 and D3 of which we put D2 upside down. This
results in a1a2a3a4a5, a10a9a8a7a6 and a11a12a13a14a15. Interleaving/shuffling with order of parts equal to D2D3D1 yields

Z3(α15) = a10a11a1a9a12a2a8a13a3a7a14a4a6a15a5,

⟨Z3,15⟩ = (1 3 9 4 12 5 15 14 11 2 6 13 8 7 10),#⟨Z3,15⟩ = 15 which means that 15 is Z3-prime. Analogously, we have for
Z4(α12) with order D2D4D3D1:

Z4(α12) = a6a12a7a1a5a11a3a8a4a10a9a2,

⟨Z4,12⟩ = (1 4 9 11 6)(2 8 7 3 12)(5)(10), #⟨Z4,12⟩ = 5 and hence 12 is not Z4-prime. �

Rather than formally defining this permuting operation on strings – which is a bit complicated – we directly turn to the
family of corresponding permutation {Zg,n}n≥2. This family defines Zg indirectly and it can be defined concisely in case n is
a multiple of g and if gcd(g, 2n + 1) = 1 (as in Example 7.2); viz. for 1 ≤ k ≤ g and 1 ≤ m ≤ n,

Zg,n(m) ≡ ok g m (mod 2n + 1), if (k − 1)n < gm ≤ kn,

where ok is the parity function with ok = +1 if k is odd and ok = −1 if k is even.
When n is not a multiple of g , we have to decide to which part we assign the ‘‘remaining elements’’ before we start the

interleaving process (which in turn happens to be more complicated in this case). However, in special cases we can rely on
a slight generalization of a definition of Dumas [5,6].

Definition 7.3. Let g and n be integers such that 1 ≤ g ≤ n and gcd(g, 2n + 1) = 1. The zigzag permutation Zg,n is the
permutation

Zg,n(m) ≡ +gm (mod 2n + 1), if 2kn < gm ≤ (2k + 1)nwith 0 ≤ k ≤ ⌈(g − 1)/2⌉,
Zg,n(m) ≡ −gm (mod 2n + 1), otherwise.

The g subintervals of [1, n] where the sign of the multiplication is constant are called the regions of Zg,n. �
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These regions are in fact the parts D1, . . . ,Dg in the interleaving process: the parts Di have a factor +g in the multipli-
cation if i is odd, and the parts Di have a factor −g if i is even. It is easy to see that Z1 is the identity operation.

Dumas’ original definition [5,6] requires that ‘‘2n + 1 is a prime number’’ instead of ‘‘gcd(g, 2n + 1) = 1’’. Now Defi-
nition 7.3 implies that Z2 equals the twist operation T , i.e., Z2,n = Tn for each n and not only for those n for which 2n + 1
is a prime number. Definition 7.3 also allows us to consider permutations, like Z4,12 as in Example 7.2, for which 2n + 1 is
not a prime number. Dropping the condition ‘‘gcd(g, 2n + 1) = 1’’ might, however, result in mappings Zg,n that are not a
permutation.

Example 7.4. For n = 11, g = 3 and g = 5 with gcd(g, 23) = 1, Definition 7.3 yields: Z3,11 = (1 3 9 4 11 10 7 2 6 5 8)
and, respectively, Z5,11 = (1 5 2 10 4 3 8 6 7 11 9). Since #⟨Z3,11⟩ = #⟨Z5,11⟩ = 11, we have that 11 is Z3-prime and also
Z5-prime.

A graphical representation of Z3,11 shows that the interleaving order is D2D3D1 with D1 = a1a2a3,D2 = a4a5a6a7 and
D3 = a8a9a10a11. And for Z5,11 the interleaving order is D4D3D2D5D1 with D1 = a1a2,D2 = a3a4,D3 = a5a6, D4 = a7a8a9
and D5 = a10a11. �

We are now ready to quote one of the main results from [5,6] which, of course, relies on Dumas’ original definition. But,
obviously, this characterization applies to Zg as given in Definition 7.3 as well.

Theorem 7.5 ([5,6]). Let g and n be natural numbers such that 2n + 1 is a prime number and g ≤ n. Then n is Zg -prime if and
only if one of the following conditions holds.

(1) g is of order 2n in Z⋆
2n+1 or, equivalently, g generates Z⋆

2n+1.
(2) n is odd and g is of order n in Z⋆

2n+1. �

Example 7.6. Since 23 is prime and 5 is of order 22 in Z⋆
23, we have by Theorem 7.5(1) that 11 is Z5-prime. And from Theo-

rem 7.5(2) and the facts that 11 is odd and 3 has order 11 in Z⋆
23, we obtain that 11 is also Z3-prime; cf. Example 7.4. �

Theorem 7.5 is a promising starting point to characterize the sets P(Zg), the sets of associated prime numbers P(zg) and
their densities in P, which might correspond to entries in Tables 9–10 other than the ones for g = +2 and g = −2.

8. Concluding remarks

In the previous sections we counted X-primes for X in {S, S, T , A0, A1, A+

1 , A−

1 , J2, J2} and their associated prime numbers
(x-primes). Then we investigated the distribution of these prime numbers. Going from X-primes to x-primes has the advan-
tage thatΛ(x) can be interpreted as the density of P(x) inP. Of course, the values ofΛ(X)donot allow such an interpretation:
note in particular thatΛ(T ) > 1 (Table 4).Whenwe return from x-primes to X-primeswe obtain the followingΛ(X)-values:

Λ(X) = 2 · Λ(x), X ∈ {T , A0, A1, A+

1 , A−

1 , J2, J2}

Λ(X) = Λ(x), X ∈ {S, S}.

Our main results on the density of x-primes in P (Theorems 6.5, 6.7 and 6.8) as well as the entires in Tables 9–10 are –
strictly spoken –mere conjectures rather than genuine theorems because they rely on unproven statements like GRH and/or
ACPR.

On the other hand, Theorems 6.5, 6.7 and 6.8 are supported by numerical evidence; see the entries in Table 5 and note
that A/2 = 0.18697790680960114402 . . . , and 3A/2 = 0.56093372042880343208 . . . . The deviations of 6% are as to be
expected forN = 2·108

+1; cf. Table 6. For smaller deviations – andmore support –we have to extend Table 5 considerably,
e.g., to 2·1020

+1 as Table 1.8 in [28]. Using the logarithmic integral or the Riemann function – cf. Section 1.5 in [28] – instead
of N/ lnN yields tables similar to Table 5, smaller deviations (viz. less than 0.05% for N = 2 · 108

+ 1) and so additional
support; cf. Tables 1.9 and 1.11 in [28].

Clearly, the zigzag permuting operation Zg deserves more attention. Based on Definition 7.3 we need characterization
results like Theorems 3.2(3), 5.4(3), Corollary 5.7(3) and Theorem 6.8 for Zg and zg . In this approach we are looking for spiral
permutations that will take the role of Archimedes’ spirals and of the sets P(a0), P(a+

1 ) and P(a−

1 ) as played in the present
paper; the work of Roubaud [23] and Dumas [5,6] is a good source for such spirals.
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