
◆ Predictable Cloud Computing
Sape J. Mullender

The standard tools for cloud computing—processor and network
virtualization—make it difficult to achieve dependability, both in terms of
real time operations and fault tolerance. Virtualization multiplexes virtual
resources onto physical ones, typically by time division or statistical
multiplexing. Time, in the virtual machine, is therefore as virtual as the
machine itself. And fault tolerance is difficult to achieve when redundancy
and independent failure in the virtual environment do not necessarily map
to those properties in the physical environment. Virtualization adds a level of
indirection that creates overhead, and makes it all but impossible to achieve
predictable performance. Osprey uses an alternative to virtualization that
achieves the same goals of scalability and flexibility but carries neither the
overhead of virtualization, nor the restrictions on dependability. The result is
a programming environment that achieves most of the compatibility offered
by traditional virtualization efforts and provides much better and much
more predictable performance. One technique we use is called Library OS,
which stems from high-performance computing. The technique consists of
linking applications with a library that implements most services normally
provided by the operating system, creating an application that can run
practically stand alone, or at least with a very minimal operating system. The
Library OS approach moves the boundary between application and
operating system down to a level where interactions with the operating
system consist of sending/receiving messages (e.g., network packets) and
scheduling resources (processor, memory, network bandwidth, and device
access). These interactions, as we demonstrate, form a relatively weak bond
between an application and the particular instance of the operating system
on which it runs—one that can be broken and re-established elsewhere. In
fact, we make sure this is the case. Legacy applications that cannot be
recompiled or relinked can make use of a Library OS server that runs as a
tandem process along with the legacy application processes. System calls
from the legacy process are catapulted into the Library OS server which
executes them. Applications can still migrate, taking their server process
along with them. © 2012 Alcatel-Lucent.

Bell Labs Technical Journal 17(2), 25–40 (2012) © 2012 Alcatel-Lucent. Published by Wiley Periodicals, Inc.
Published online in Wiley Online Library (wileyonlinelibrary.com) • DOI: 10.1002/bltj.21542

26 Bell Labs Technical Journal DOI: 10.1002/bltj

Introduction
Distributed computing is the name of a branch of

computer science that studies how exploiting inde-

pendent failure in a network of computers can be

used to build applications that are more reliable than

their constituent components. Most of the ground-

work for distributed computing was laid in the 1980s,

just as personal computers (PCs) started becoming

popular. The PC provided a reliable personal comput-

ing platform on the desktop. Combined with servers

for file sharing and printing, most users saw little need

for the complexity of distributed computing, and the

field started languishing in the 1990s.

But the recurring phenomenon of technology

moving in waves manifests itself again: once more,

there are reasons to revisit distributed systems. One

big reason is that, now, there are some truly globe-

spanning distributed applications: Google* Search,

Facebook*, Twitter*, and Skype*. Additionally, the

advent of relatively resource-poor personal commu-

nication devices (the smartphone, netbook, and tablet

computer) that depend on services in the network

(map, nearby friends, YouTube*, Kindle*) are also

driving research to re-examine how services can be

delivered from the network.

Cloud computing is the term currently used for

leveraging large numbers of servers in data centers

for applications that share these servers, increasing

and decreasing the demand they place on the server

pool. In the past, we did something similar by running

a divergent set of applications on one very large main-

frame computer. We called it time sharing.

Interestingly, but nicely demonstrating the cyclic

nature of systems engineering, most of the issues that

arose in the time-sharing environments of the 1970s

and 1980s have returned in cloud computing.

Fault Tolerance
The cloud will become a place in which extremely

long-running applications are likely to find a home.

Servers typically run for weeks and months on end,

but users may also run applications in the cloud to

which they connect from sundry places.

Long-running applications are more exposed to

failures: power failures, system crashes, and network

outages, and therefore they need better protection.

Failures can be masked; that is, their consequences can

be made invisible by having backup processes, network

connections, or storage servers step into the breach.

This can only be done if failures can be contained—a

Panel 1. Abbreviations, Acronyms, and Terms

3G—Third generation cellular network
AMD—Advanced Micro Devices
AoE—ATA over Ethernet
ATA—Advanced Technology Attachment
CPU—Central processing unit
DNS—Domain name system
DSP—Digital signal processor
ELF—Executable and linking format
ETH—Swiss Federal Institute of Technology
FOX—Fault-Oblivious eXascale
FPGA—Field programmable gate array
HA—Home agent
HARE—Holistic Aggregate Resource

Environment
HP—Hewlett-Packard
HPC—High-performance computing

I/O—Input/output
IP—Internet Protocol
JVM—Java virtual machine
KVM—Kernel-based virtual machine
MIT—Massachusetts Institute of Technology
MN—Mobile node
NUMA—Non-uniform memory architectures
OS—Operating system
PC—Personal computer
PD—Process descriptor
SoC—System on a chip
SRAM—Static random access memory
TCP—Transmission Control Protocol
UART—Universal asynchronous

receiver/transmitter
VPN—Virtual private network

DOI: 10.1002/bltj Bell Labs Technical Journal 27

failure in one component should not bring others

down with it—and if there is redundancy. There have

to be resources available to step into that breach when

necessary.

Usually, the redundant resources have to be iden-

tified before any failure occurs. Essentially, there is

an algorithm that decides which resources will take

over in a given failure scenario.

Identifying such resources can be difficult and

requires a vertical scrutiny of services, the platforms

they run on, the hardware that supports those plat-

forms, and the energy source for those platforms. All

processes that are ultimately supported by a single

power supply will fail if that power fails, so they can-

not be backups for each other in the case of power

failure. Similarly, redundant network links that share

a fiber link somewhere can’t be backups for one

another if the light goes out.

Failure recovery requires distribution of system

state. If a component crashes without a description

somewhere else of what it was supposed to do, it

becomes impossible to recover from that failure.

Interestingly, state replication is in itself a candidate

for failures: Can the state be updated if a copy is

unreachable or unresponsive? What happens if the

network fails in a way that leaves two sets of systems

rendered incommunicado?

The latter failure actually causes a fundamental

impossibility in a fault tolerant system: two servers

that cannot communicate cannot know whether it

is because their peer has crashed or their peer is

“merely” unreachable. In the former case, the remain-

ing server could continue to provide service and brief

the crashed server when it comes back up. In the lat-

ter case, the servers, by continuing to work, may end

up with inconsistent states, which they’ll discover

once the network is repaired. In other words, in a

network that can be partitioned, you can obtain per-

fect availability or perfect consistency, but not at the

same time. Think of this as the uncertainty principle

of fault tolerant computing [9, 18].

Real Time
Real time service is a concern for the delivery of

media and communication services. For telecom opera-

tors this is a familiar issue. Telephone networks have

always operated in real time, and after convergence,

real time service has become important in Internet

Protocol (IP) networks too.

With the advent of media content delivery and

gaming over IP networks, real time service is affecting

a range of services, many of which are, or can be,

delivered from the cloud, so real time computing in

the cloud is important.

Real time processing requires a concerted effort of

many real time components to get real time results:

the ultimate requirement for the smooth presenta-

tion of a movie is that an image is presented on the

screen every, say, 30 ms; but to make this possible

the network must deliver the next batch of video data

in time, the server must get chunks of movie from

the storage server, and the disks have to be scheduled

to deliver all the flowing media streams on time,

simultaneously [5].

Providing real time services is even harder because

of the possibility of faults. The timing budget must take

into account the extra time needed for failover to

appropriate standby components. Note that for achiev-

ing fault tolerance, failures must be considered as part

of the specification: the types of failure (failures by

crashing, failures by timing, failures by producing

incorrect results, and failure through packet loss) as

well as the maximum number of failures allowed.

Mobility
Cloud computing has to consider mobility in two

ways. First, users accessing the cloud are becoming

increasingly mobile. In fact, mobile devices, given

their size and their reliance on batteries, can make

very good use of services that run in the cloud. Such

services, therefore, will have to be prepared to deal

with client address changes as well as less than com-

pletely reliable communication.

Second, in the cloud itself, considerations for

load balancing, moving computations to the data,

and scheduled maintenance will force applications and

services to relocate. Relocation may cause short ser-

vice disruptions, but afterwards, things must work

normally again, albeit from a different address.

The protocol underlying practically all Internet

communication is the Internet Protocol [6, 22]. In the

IP specification, Postel [22] paraphrases Shoch [25]:

28 Bell Labs Technical Journal DOI: 10.1002/bltj

The name of a resource indicates what we seek

an address indicates where it is, and

a route tells us how to get there.

In practice however, an IP address has now

become much more of a name. The slow-changing

nature of the Domain Name System (DNS) doesn’t

accommodate changes in mapping from names to

rapidly changing IP addresses very well, and higher-

level protocol connections, e.g., the Transmission

Control Protocol (TCP), cannot deal with midstream

IP address changes.

A few applications cope reasonably well with

address changes, however. Browsers and mailers are

good examples. One can carry a laptop around and,

wherever it gets plugged in, it can browse and email.

For everything else, Mobile IP appears to be the model

of choice, but as we shall show in the next section, it

is far from perfect.

Virtualization Considered Harmful
The title of this section pays homage to Rubin

[24] and Moore et al. [14], who cautioned that “the

use of ‘considered harmful’ is sometimes considered

harmful.”

Consider that the data center, in a sense, is the

modern equivalent of the time-sharing mainframe of

yore. Its computers could run an operating system,

possibly with some load-sharing facility, and applica-

tions could run in the data center just like they used

to run on a time-sharing system.

Unfortunately, it’s not that simple any more. Two

things happened. One is that the data center is avail-

able to all and sundry and, therefore, has to be much

better protected against malicious users and applica-

tions. The other is that operating systems have

become so much more complicated that they can no

longer be trusted to protect applications from attack,

nor can they always prevent applications from suc-

cessfully stealing operating system resources.

In the style of “All problems in computer science

can be solved by another level of indirection,” the

current solution of record is processor virtualization.

(This quote that has been attributed to Professor

David Wheeler of Cambridge University. He is also

said to have added “... except for the problem of too

many layers of indirection.”)

The data center’s computers run an operating

system that implements virtual machines with an

operating system interface that mimics the hardware

interface with sufficient fidelity to be able to run a

conventional operating system on it as an application;

that operating system becomes a guest operating system.

Several such guest operating systems can run on a

single computer and they need not be the same.

Windows* and Linux* can happily share a machine in

this way. The best known example of virtualizing a

host operating system is Xen [2], but there are now

many others, including kernel-based virtual machine

(KVM), VMWare*, and VirtualPC.

The reason processor virtualization has caught on

in cloud computing is that the virtual machine imple-

mented by the host operating system is very simple—

it is the computer’s hardware. This simplicity allows

the host to realize very good isolation from one guest

to another. It also makes it feasible to pick up a guest,

and move it to a different machine: the state of a guest

is represented by its memory contents and a set of

registers, and these are easy to capture and copy.

But that very same interface, by the nature of it

being fixed by the hardware it emulates, hides infor-

mation the guest could use from the host and vice

versa. In particular, the guest has no control over (and

no way to express to the host) when it gets scheduled,

or what fraction of the host resources it can consume.

In other words, one can’t schedule a real time pro-

cess in a guest operating system and have any realistic

hope it will run in “physical” real time. One could add

interfaces for resource scheduling to the host operating

system’s interface (and in so-called para-virtualization

systems, additional “system calls” have already

been defined), but adding—necessarily complicated—

interfaces for scheduling places virtualization on the

slippery slope of adding precisely the interface com-

plexity that virtualization seeks to eliminate.

In cloud systems, IP addresses are usually virtualized

by the extra level of creating a virtual private network

(VPN) that maintains a dynamic mapping between

virtual (and migratable) addresses and physical ones

and also between virtual network connections and

physical ones.

Again, the virtualization hides information essential

to achieving real time operations and fault tolerance: a

DOI: 10.1002/bltj Bell Labs Technical Journal 29

virtual link has a capacity that changes as virtual

machines are relocated and disjoint virtual paths may

share a physical path creating failure dependencies

unobservable in the virtual world. Again, one could add

management interfaces to virtualized networks, allow-

ing the specification of fault tolerance properties and

minimum throughput and latency requirements, but

these would precisely eliminate the transparency vir-

tualized networks aim to create.

In addition to these fundamental problems in

achieving real time performance and fault tolerance,

virtualization also adds significant overhead, first by

duplicating a lot of mechanisms: routing in the VPN

as well as the underlying network, process scheduling

in the guest and in the host operating system, memory

protection, and paging in the guest and in the host

operating system as just a few examples. It just doesn’t

make sense to do load balancing by migrating a giga-

byte operating system for the purpose of relocating a

hundred megabyte application.

Mobile IP is not usually considered as a network-

virtualization technique, but it is: A Mobile IP address

isn’t an address at all, it is the name of a mobile node

(MN). Packets are delivered to the MN by sending

them to a different node, the home agent (HA), which

then forwards them to the MN by putting them inside

other packets—a tunnel. The MN informs the HA of

its whereabouts by registering a forwarding address

with the HA every time it moves (and every time the

registration is about to expire). Mobile IP achieves

mobility by adding a level of indirection to packet

routing.

Here, Wheeler’s observation hits home: adding

levels of indirection leaves one with the problem of

too many such levels. Virtualization not only doesn’t

help real time and fault-tolerant processing, in many

cases it actually makes it impossible to do.

Operating System
For the reasons given in the previous section, we

have explored different ways of achieving the benefits

of virtualization without the problems.

At the basis of our design is a microkernel operating

system called Osprey*, which assumes responsibility

for the management of shared resources: the memory,

processor cycles, and outgoing network bandwidth.

Each application receives a budget for these resources

which gives it the right to consume the resources in

the budget and guarantees that those resources are

available.

The specification of the budget can be in terms of

real time performance or best effort performance, and

applications can request statistical or absolute guaran-

tees for the availability of those resources at run time.

The other main responsibility of the Osprey ker-

nel is security, particularly protecting applications

from the unwanted attention of other applications;

address-space protection is an obvious example.

The system-call interface is kept as small as possi-

ble. When applications attempt to leave the confines

of their protection envelope (for example, to address

unmapped memory or execute instructions that trap),

a server process designated—and trusted—by the

application can be invoked to attend to the event. This

is an important mechanism for emulating mainstream

operating system interfaces.

In general, however, we expect applications to be

linked with a library that translates conventional sys-

tem calls into a combination of Osprey system calls

and server interactions. The library forms the replace-

ment operating system for (legacy) applications.

Related Research
For background on related research, we will pro-

vide details below on the Nemesis multimedia oper-

ating system, the Barrelfish operating system, and

Library operating systems in general before provid-

ing an in-depth description of the Osprey system.

Nemesis
With funding from an Esprit Basic Research

Programme, the systems groups at the Universities of

Cambridge and Twente developed the Nemesis mul-

timedia operating system in the 1990s [11, 20].

Nemesis introduced a scheduling discipline that

was an interesting mix of real time and best effort.

The notion was that multimedia applications need a

consistent share of the processing resources, but that

this share may change as the application mix changes.

What should not happen in Nemesis, however, is that

one application, by misbehaving in some way, can

suddenly deprive other applications of their rightful

share of resources.

30 Bell Labs Technical Journal DOI: 10.1002/bltj

Nemesis achieves this by two mechanisms. One is

to make sure that all resources consumed either by or

for an application are counted towards that applica-

tion’s resource budget. The other is a set of scheduling

regimes that mix best effort and real time. The idea is

that an application can have a guaranteed real time

allocation with additional recurring best effort allo-

cations. A multimedia application can, for example,

use the real time allocation to guarantee an audio

connection and use the unguaranteed allocation to

do the best it can to add video.

Nemesis introduced the term quality-of-service

crosstalk [23] for the effect that one process can have

on another’s access to processor resources, and it set

out to eliminate that effect by carefully assigning

every activity to the resource budget of the application

that caused it to happen.

After doing this, schedulers can begin to calcu-

late feasible budget allocations and keep applications

within their own budgets.

Osprey uses the quality-of-service crosstalk lesson

from Nemesis to assign all activities to resource bud-

gets. At the moment, Osprey scheduling just distin-

guishes real time and best effort and counts on

obtaining any kind of real time performance by using

collaborating real time and best effort processes.

Barrelfish
The Barrelfish operating system [3] is being devel-

oped under a joint project of the ETH (Swiss Federal

Institute of Technology) Systems Group in Zürich and

Microsoft Research.

The project focuses on designing efficient operat-

ing systems for modern multicore architectures. The

research team argues that as the number of cores

increases with Moore’s law, the efficiency of memory

sharing is reduced: the cost of synchronization

becomes a bottleneck.

Baumann et al. [4] present an operating system

design in which each core runs its own microkernel,

and communication between cores takes place exclu-

sively by message passing. Although they say that

message passing should be realized in a processor-

dependent fashion, they have just one implementation,

and on the x86 architecture they use cache-coherent

shared memory for cache-line-sized message passing.

For the most part, Barrelfish uses polling for mes-

sage reception; that is, the sending core places the

message in the receiving core’s queue where the receiver

will eventually find it.

Although Osprey’s architecture is significantly

influenced by the Barrelfish design, our concern of

guaranteeing real time deadlines made us reconsider

this notion of using polling.

Library Operating Systems
A Library operating system provides an operating sys-

tem interface to a program via a library that is linked

with the program and emulates the system calls; some

of the system calls are emulated locally, inside the

library itself, others are emulated by interacting with a

variety of servers and with other operating systems.

The term Library operating system appears to stem

from the MIT Lab for Computer Science, where the

idea was used in Exokernel [8], but it is in fact much

older. The Amoeba distributed operating system used

it as well. Mullender et al. [21] state:

To bridge the gap with existing systems,

Amoeba provides a Unix* emulation facility.

This facility contains a library of Unix system

call routines, each of which does its work by

making calls to the various Amoeba server

processes.

Today, there are reasons for using library operating

systems other than merely getting a program written

for one system to run on another. The Exokernel

team already recognized this and used “libos” to give

processes better performance by cutting down on the

overhead of user/kernel transitions.

Libra* [1] does the same, in the context of high-

performance computing.

As a special case of library operating systems, we

must consider user space implementations of protocol

stacks, especially those that were done as a perfor-

mance-enhancing measure.

One of the earlier experiments was carried out at

HP Labs, where Edwards and Muir [7] showed sig-

nificant performance benefits by running the TCP

stack in the user space.

A streaming protocol, such as TCP, creates a servo

loop consisting of packets travelling in one direction

DOI: 10.1002/bltj Bell Labs Technical Journal 31

and feedback (acknowledgements) in the other.

A kernel implementation of such a protocol termi-

nates this servo loop in the kernel, but creates an

additional, coupled one consisting of the packet traf-

fic between the kernel packet buffers and user space

buffers (via system calls such as send/receive).

Van Jacobson demonstrated [10] that such cou-

pled servo loops slow things down and that a pure

user space implementation of TCP can perform much

better than a kernel space one.

Osprey
Osprey is not an operating system for cloud com-

puting alone. It is also eminently applicable as a server

operating system, an embedded platform that might

even be adapted for portable devices. The project team

collaborates closely with the Bell Labs team working

on the Holistic Aggregate Resource Environment/Fault-

Oblivious eXascale (HARE/FOX) high-performance

computing project, making HPC another potential

target for Osprey.

Moore’s law states that the complexity of mini-

mum component costs (on an integrated circuit)

increases at a rate of roughly a factor of two per year

[16]; he later corrected this to “doubling only every

couple of years.” (Apparently, Gordon Moore never

said “every eighteen months” [15]). Until recently,

Moore’s Law was primarily expressed by the fact that

memories grew larger (and wider) and processors

became faster. Processors now typically run with clock

rates of 3 GHz or so and the increase in clock rates

has slowed down. Processors now have as many tran-

sistors as they need and the doubling of component

counts is now the cause for the appearance of more

processors on a chip: the multicore processor.

This trend started with the so-called system on a

chip (SoC), which combined a processor and a number

of peripheral devices (e.g., Ethernet, universal asyn-

chronous receiver/transmitter (UART), static random

access memory (SRAM)) on a chip. Now SoCs are

used a lot in mobile devices where they routinely com-

bine processor, graphics processor, Wi-Fi, and 3G radio.

Today, “pure” multicore processors behave as sym-

metrical multiprocessors: all processors are the same

and every processor has the same access to memory.

As the number of cores grows (eight is common today;

64 will be common in a few years’ time), things will

become less symmetrical: we may expect different

types of processors on a chip (a combination, as it

were, of multicore and SoC) and see general purpose

processors; digital signal processors (DSPs), as, for

example, in graphics processors; field programmable

gate arrays (FPGAs); and highly integrated peripherals.

We’ll see non-uniform memory architectures (NUMA)

because otherwise memory will become a bottleneck.

If a processor has different core types and proces-

sors cannot access all of the memory, running a single

operating system image with shared data structures

stops making sense. In fact, on today’s symmetrical

multiprocessors, it already makes sense to run sepa-

rate copies of the operating system kernel on each

core. This leaves processes assigned to a particular

core, but most operating systems already attempt to

run processes on the same core as much as possible

for reasons of cache affinity [12]. An operating system

application can be used to perform medium term load

balancing by transferring processes from one core to

another (or by assigning new processes to the lightest-

loaded one).

Each core, thus, schedules its own set of pro-

cesses. It does, however, expose information about

the set of processes it owns to the other cores in a

way that allows another core to make an informed

decision about whether it should interrupt the ker-

nel when a process needs to be run more urgently

than the process currently running.

Messages from processes on one core to a process

on another are routed via a central mailbox on the

receiving core so the scheduler on the receiving core

becomes aware of any process wakeups that may be

needed.

Kernel Structure
Osprey cores run more-or-less independent copies

of the operating system. Each core, therefore, sched-

ules the user and kernel processes assigned to it and

manages a portion of physical memory.

On each core, we run tasks. Tasks are kernel pro-

cesses. Some of these tasks may carry responsibility

for a process in the user space. Each user process is

managed by a dedicated task. The task is scheduled so

the user process may run and, when an interrupt

32 Bell Labs Technical Journal DOI: 10.1002/bltj

interrupts a user process, its task saves the process

state before passing control to the scheduler.

User processes can be multithreaded, but thread

management takes place completely in the user space

and the thread model is, therefore, not dictated by

Osprey.

All interprocess (and interthread) communication

takes place by means of messages. Messages are data

structures whose size is a cache line (typically 32 or 64

bytes). They are transmitted by copying them and

delivering them in message queues. Messages may

contain pointers to, for example, buffers or network

packets. When a message is copied, the pointers are

also copied, but not the data they point to. It is the

responsibility of threads, processes, and tasks to make

sure that pointer values make sense as they are inter-

preted in different address spaces.

Traditional system calls are largely replaced by mes-

sage exchanges between a process and the operating

system. Each process is created with a queue segment

(usually just one or two small pages) at a well known

address. This contains at least two queues, one, USK,

for messages from the user space to the kernel and

one, KSU, for messages from the kernel to user space.

A system call is performed by placing a request on

USK and waiting for a reply on KSU. Processes are

allowed to send multiple system call requests before

waiting for system call replies.

There are a few real system calls: one, for instance,

that effectively says “I’m waiting for a reply” and one

that says “I’m done, exit.”

Given these asynchronous system calls, it

becomes relatively straightforward to implement

many thread models in user space.

As the numbers of cores on processors grow, syn-

chronization across all cores will become relatively

more costly. In our design, we follow the trend set by

the Barrelfish operating system [4] and treat the pro-

cessor as an interconnected network of cores. We

don’t follow it quite as far however, and in contrast to

Barrelfish, we make use of interrupt-based signaling

between cores that help guarantee deadlines while,

paradoxically, reducing numbers of interrupts.

This is best explained by taking an extreme exam-

ple. Suppose a core has two processes, one, R, scheduled

as a sporadic real time process, the other, B, as a best

effort process. R, we assume, is waiting for a message

that will release it and then it will have to be scheduled

to meet its deadline. B is running; let’s say it’s trying to

factor the product of two ten-thousand-bit primes

(which should keep it busy for the foreseeable future).

The scheduler can leave B running until a message for

R arrives.

When that message does arrive, there are two

ways of making sure R will meet its deadline: One is

to make the scheduler check for incoming messages

often enough for it to schedule R in time to meet its

deadline. The other is to make sure R is alerted by the

arrival of the message. If R has deadline dR and cost cR,

the scheduler, in the first scenario, must react within

dR – cR seconds after the arrival of a message for R; that

means a frequency of 1/(dR–cR). In the other scenario,

the scheduler need not set any timers at all, while the

core or device that delivers the message must inter-

rupt the receiving core (i.e., scheduler) within dR – cR

seconds after delivery of the message.

But things are a tad more complex than that. If

the message were for a best effort process, or a real

time process with a very distant deadline, and a

real time process with a very near deadline is running,

then the interrupt generated by the arrival of the mes-

sage may cause a deadline to be missed, rather than

helping to meet deadlines. For this reason, a scheduler

exports information to the other cores about the dead-

lines of processes for which messages may arrive, as well

as the setting of its timer. When delivering a message to

a core, the delivering task can now check whether or not

the receiving core should be interrupted.

The mechanisms for doing this are embedded in

Osprey’s message passing and delivery system. In gen-

eral, a message from a user space thread on one core

is delivered to a user space thread on another by rout-

ing the message to the sender’s kernel, from there, to

the receiving core’s process scheduler, then to the

receiving process’ thread scheduler and, finally, to

the thread itself. In other words, messages to an active

entity, such as a kernel task, a user process, or a user

thread are always routed via their schedulers, allow-

ing those schedulers to make appropriate scheduling

decisions.

Messages, as stated, are delivered to queues. If a

queue is an active entity’s input queue, messages are

DOI: 10.1002/bltj Bell Labs Technical Journal 33

routed there as shown. More generally, messages are

always routed to queues and, if a queue is directly

addressable, the delivery path is direct (the sender

deposits the message in the receiver’s queue).

All queues are constructed to allow reception to

be independent of delivery (no critical sections exist

for sender and receiver). However, if there are con-

current senders, locking is needed to prevent one

sender from stepping on another. The same applies

to concurrent receivers, but to date, we have not

found a need for having them.

For efficient intercore message passing, we cur-

rently use a queue for each source/destination pair

of cores (i.e., n cores have n2 queues). This arrange-

ment will, however, be architecture dependent. We

expect that future multicore processors will no longer

necessarily have a memory architecture that allows

each pair of cores to share memory directly. We may,

however, see hardware mechanisms for efficient

intercore communication that Osprey can use.

For this reason, we do specify the message-passing

mechanism in terms of interface, but not in terms of

implementation.

Networking
Three issues influence the way in which net-

working is implemented in Osprey.

1. Applications must be able to process network data

at network speeds of at least 10 Gb/s. Data copy-

ing should be avoided and context switches

should be kept to a minimum.

2. Mobility must be supported as much as possible.

This implies that when processes relocate, any

protocol state should relocate as well (and proto-

col implementation should be mobility-aware).

3. The network interface is shared and this implies

two types of protection: a) protection against one

process intercepting or generating data for another’s

connection, and b) protection against one process

using network resources reserved by another.

The central component of the network infrastruc-

ture in Osprey is a packet multiplexer. The multiplexer

is controlled by a network resource table that

also defines the network resource budgets of the

applications.

An entry in the network resource table is depicted

in Table I. For each supported protocol, the protocol

Table I. Sample entry in a network resource table.

AoE—ATA over Ethernet
ATA—Advanced Technology Attachment
IP—Internet Protocol
LUN—Logical unit number
MAC—Medium access control

Max—Maximum
MTU—Maximum transmission unit
TCP—Transmission Control Protocol
UDP—User Datagram Protocol

Network Ethernet
Source MAC address

Destination MAC address

Protocol IPv4 IPv6
AoE

�P
TCP/UDP Client/Server

Source IP

LUN
Server IDProtocol Destination IP
Client IDparameters Source port

Destination port

Resource Size Real time/best effort
Max MTU Period

Packets
Bytes

34 Bell Labs Technical Journal DOI: 10.1002/bltj

data determines whether and what packets may be

sent/received by the process associated with the entry.

The resource section of the table determines the

packet size and scheduling priority for outgoing traf-

fic. (Incoming traffic cannot be scheduled).

Besides IP-based traffic, Osprey supports special

protocols such as ATA over Ethernet (AoE) for access-

ing disks over Ethernet and the pP file access protocol.

Typically, separate ring buffers are used for these spe-

cial protocols in which jumbo packet payloads are

aligned on page boundaries for copy-less delivery to

receiving processes.

The packet multiplexer is designed to deliver

incoming packet data directly to the receiving pro-

cess, via no more than a single wakeup. The receiving

process must copy the data (if it needs to be copied)

and restock the multiplexer’s receive buffer supply.

Outgoing packets are queued for the multiplexer

to send based on the priorities determined by the net-

work resource table. The multiplexer also checks if

the packet header matches the network resource table

entry so that rogue processes cannot intrude on other

processes’ communication.

Setting up the network resource table requires

coordination with already existing entries. New

entries may not intrude on reservations for existing

entries, both in terms of bandwidth resources and

protocol/address resources. The network resource

table is, of course, closely related to other types of

resources and should thus be viewed as part of the

general resource budgets allocated to applications.

These are the subjects of the next section.

The packet multiplexer performs no protocol pro-

cessing whatsoever; that is left to applications. Two

ways of protocol handling appear obvious: One is to

use protocol processing servers—a TCP/IP server, for

example—and the other is to let each process do its

own protocol processing.

Although both are possible in Osprey, we advo-

cate the latter—for several reasons:

1. When communicating processes contain their own

protocol stack, mobility and process migration

become much easier to handle. It makes processes

more self contained and thus simpler to detach

from one host Osprey and reattach to another.

2. Faults can be handled by the application: when

connections break, a user space stack gives the

application control over restoration of the con-

nection and retransmitting any unacknowledged

data in a way that can be hidden from the rest of

the (possibly legacy) application.

3. Protocol processing in one place—be it in the ker-

nel or in a user space protocol server—brings with

it the difficulty of charging the cycles consumed

for a particular application to that application’s

resource budget. By making the applications do

their own protocol processing, any processing cost

is automatically charged to the correct budget.

4. As shown in the section on Library operating sys-

tems, user space protocol implementations can

outperform kernel-based ones because of the

elimination of coupled servo loops. This is yet

another reason for placing the protocol imple-

mentations in user space.

Resource Budgets
Resource budgets specify what applications can

use in terms of processors, memory, and input/

output (I/O). The exact specification of these budgets

is still under investigation. One goal is to come up

with a way to allow a meaningful combination of

budgets for the sub-applications in a large distributed

application running on multiple machines.

As an example, video conferencing applications

running on participating hosts, as well as the network

connecting these hosts, need their budgets specified in

a way that gives the video conference the intended

bandwidth and latency and allows any video/audio

processing to be done in real time.

At the moment, the processor budget consists of a

per-core real time or best effort allocation. The best

effort allocation is simply in terms of a base priority. A

process’ priority is calculated by subtracting from the

base priority a value that expresses recent consumption

of central processing unit (CPU) cycles. The best effort

process with the highest priority is run first. The offset

based on recent CPU consumption avoids starvation.

Real time computing relies on process scheduling

with an awareness of the deadlines processes have to

meet. Those deadlines are usually recurring: a real

DOI: 10.1002/bltj Bell Labs Technical Journal 35

time process, for instance, must process a video frame

precisely every 30 ms. They are typically characterized

by a period t, a deadline d, and a cost c, as illustrated

in Figure 1. The process is released (at most) every t

seconds and may then consume up to c seconds of

CPU time before the deadline, d seconds later (c � d � t).

For n real time processes on a given CPU, .

In fact, if d � t and if processes can be preempted,

this is a sufficient condition for schedulability [13].

Guaranteeing that processes meet their deadlines

when there are additional constraints (e.g., processes

must wait for others to finish something) is a complex

art and the subject of much research [19]. What is of

concern in this paper is that it requires precise control

of a clock to interrupt the normal flow of execution

when real time processes must take over, as well as

knowledge of the number of processor cycles available

per second.

Osprey keeps track of clock time in nanoseconds. A

64-bit signed value records nanoseconds since the epoch,

00:00, January 1, 2000. This allows expressing times

anywhere between Thursday, 22 September 1707 and

Monday, 11 April 2292. The accuracy of the Osprey

scheduler is around 5 ms on a typical modern processor.

Real time processes may be scheduled periodically

or sporadically; the former means that processes are

released at precise intervals equal to their specified

a
n

i�0

ci�ti � 1

period, t; the latter means that processes wait for, and

are released by, external events and, if such an event

occurs less than t seconds after the previous, the

release is postponed until t seconds have elapsed. An

application that processes incoming data packets in

real time would normally be scheduled as a sporadic

real time process.

Adding a real time processing budget to a resource

budget requires permission from the operating system,

and this permission will only be granted if there are

sufficient resources left to allow the real time guarantees

to be given. An admission test is performed to verify this.

An application’s memory resources are specified

in segments. Each segment is composed of pages and

has a size that is a multiple of the page size chosen for

the segment. The range of page sizes is dictated by the

processor architecture; on the Intel/AMD k8 archi-

tecture, the page sizes are 4 KB, 2 MB, or 1 GB.

Not all the pages in a segment have to be allo-

cated a priori. Segments have a type that dictates

whether, where, and how pages can be added to a

segment. Segments, however, can never grow beyond

their initially specified size, and thus the set of seg-

ments for an application specifies the memory budget

of that application.

The processes that form the application may map

these segments into their address space; segments in

an address space may not overlap.

Release T T� � T � t � ε0 T � � T� � t � ε1

Deadline D � T � d D� � T� � d

Cost c

Period t

Deadline t

Figure 1.
Parameters characterizing a real-time process; note that intervals are indicated by lower-case letters, while times
are indicated using capitals. Periodic process are scheduled precisely every t seconds (�j � 0); sporadiac process are
scheduled at least t seconds apart (�j 		 0).

36 Bell Labs Technical Journal DOI: 10.1002/bltj

Segment sharing is heavily used in Osprey for effi-

cient interprocess communication. Control over sharing

is provided to a segment’s owner (i.e., the owner of

the budget from which the segment was allocated),

via an access control list, as if the segment were a file.

Segments, in fact, are usable as files, so this is no sur-

prise.

For the time being, the I/O bandwidth budgets

are just network bandwidth budgets. They were dis-

cussed in the previous section. We are still discovering

what the best expression of network bandwidth reser-

vations must be, and at the moment, we are using

best effort and real time reservations. The real time

reservations specify a period and the maximum num-

ber of packets and/or bytes for which a guarantee to

send can be given. This implies that with a given

bandwidth in bytes, one cannot expect a guarantee

to send the bytes one byte per packet; or with a reser-

vation of a large number of packets with a moderate

number of bytes, one cannot expect to be able to send

the maximum number of maximum-size packets.

Longer term, we are looking for ways to express

CPU and network reservations in a way that makes

them composable in the sense that a number of collab-

orating machines can each get reservations that match

their needs and that the combined reservations form

a working one for the distributed application as a

whole.

An issue that hasn’t been addressed at all yet is

formulation of resource reservations suitable for

weathering failures in real time. This is a subject for

current study.

Library OS
At the heart of Osprey’s cloud support is the

notion of the Library OS. The Library OS idea is not

new. As we reported earlier, a Library OS has been

used in the Exokernel and for supporting Java* virtual

machines (JVMs). Osprey uses a Library OS to relieve

the operating system kernel from maintaining user

process state. In fact, a Library OS achieves several

important goals for Osprey:

1. Per-process operating system state is minimized.

2. Different operating system interfaces can be sup-

ported on a single Osprey platform.

3. Library OS support tailored to the operating sys-

tem interface can provide much better perfor-

mance than matching one full-fledged OS

interface to another, as is the case for Wine* [26].

These three points make Osprey eminently suit-

able for cloud computing. The overhead of a virtualized

operating system’s extra layers of indirection— two lev-

els of memory management and process scheduling—

significantly affect performance.

Naturally, the Library OS needs a system interface

that allows it to do its job. Osprey cannot be com-

pletely devoid of system calls. The system calls present

are related to process creation and destruction, to

memory management, to interprocess communica-

tion, and to resource budgets. We’ll discuss these cate-

gories one at a time.

Processes are created and managed with so-called

process descriptors (PDs). Process descriptors were

inspired by the Amoeba Distributed System [17]

which also used them for process management. A PD

is depicted in Figure 2.

The figure depicts a data structure that contains

all of a process’ state except the contents of its mem-

ory. For each memory segment in a process’ address

space, the PD contains the type and size, and where

it’s mapped. The content reference behaves like a file

name and can be used by the receiver of a PD to read

the contents in memory like a file.

Before a program can be run, its representation is

converted (from, e.g., executable and linking format

(ELF) format) into a PD. Content references, for con-

venience, may contain a name plus an offset allowing

a PD plus the initial content of a program’s text and

data segment to be stored in one file.

The PD is then sent to the process manager

server on an Osprey core, where a process can

then be created and initialized. The memory seg-

ments are created, and depending on the type of

process or memory segments, the segments can be

read in beforehand, or they can be paged in (or

faulted in).

The process owner may stop a running process.

Its hosting process manager will then produce a PD

describing its state. The content references for

immutable segments will be the original ones; those

DOI: 10.1002/bltj Bell Labs Technical Journal 37

for modified segments will be names served by the

process manager as if they were files.

Segments are, in fact, treated as files: they have

owners and access control lists and these are consulted

to determine whether memory sharing will be allowed

(or whether segments can be used as memory-mapped

files).

A PD produced by a process manager behaves just

like any PD and can be given to another process man-

ager. If the original process is then deleted, the

procedure amounts to process migration. If the origi-

nal is allowed to continue, it amounts to forking.

The self-contained nature of processes in Osprey

allows them to exert full control over their own fault

tolerance. A process can choose the moment and then

checkpoint itself by receiving its own PD.

Status and Conclusions
Osprey is still under development, but large parts

of it are now up and working on Intel/AMD 32-bit

and 64-bit platforms. Processes can run, send, and

receive messages; schedule themselves in periodic or

sporadic real time; and there is a completely untested

Library OS for Plan 9® applications. On 2 GHz

machines, the scheduling accuracy is under 10 ms and

context-switching times are 1 ms for kernel tasks and

a little more for user processes.

When it becomes stable, Osprey code will be

made available under an Apache license.

This paper described the design of an operating sys-

tem that can handle dynamically distributed workloads

and operate in real time in a fault tolerant manner. We

discussed the low-level operating system design, but

have not touched upon the actual realization of fault

tolerance, nor have we discussed security. These are

active areas of research in the group and we will pub-

lish on these topics separately.

To date, we are very satisfied with a design that

runs more or less separate copies of the operating sys-

tem on each core. It significantly simplifies the kernel

design—there is much less concurrency to worry

about. The places where cross-core coordination is

Process state
PC, SP

registers
FP state

Segment
descriptor

Segment
descriptor

…

CPU
network

Memory map

Resource budget

Type

Page size

Virtual address

No. of pages

Content ref

CPU—Central processing unit
FP—Floating point

PC—Program counter
SP—Stack pointer

Figure 2.
Process descriptor.

38 Bell Labs Technical Journal DOI: 10.1002/bltj

needed are easily identified—e.g., free memory and

address space shared cross-core, message routing and

delivery, load balancing—and some of these can be

delegated to user level operating system servers.

We are exploring the possibilities of sharing cores

between Osprey and Plan 9. The idea started in the

HARE/FOX high-performance computing project

(where it was called Nix; Nix is described elsewhere in

this issue), and, in our context, it boils down to this:

An almost unmodified copy of Plan 9 boots up on one

of the cores and then, perhaps, takes a few more cores

for its own use. It then allocates memory for Osprey’s

use and boots up Osprey on the remaining cores.

Osprey tasks and processes communicate in the usual

way with processes on Plan 9: by sending and receiv-

ing messages. These messages can be used to access

devices and files on the Plan 9 system. We are think-

ing of using this to give Osprey access to devices and

file systems more quickly.

Acknowledgements
We gratefully acknowledge the contributions of

the entire Osprey team: Utku Günay Acer,

(Xueli An), Tom Bostoen, Davide Cherubini, Noah

Evans, Franck Franck, Eric Jul, Jim McKie, Jeff

Napper, Fabio Pianese, Jan Sacha, Henning Schild,

and Tom Wood.

*Trademarks
Facebook is a trademark of Facebook, Inc.
Google and YouTube are registered trademarks of

Google, Inc.
Inferno is a registered trademark of Vita Nuova Holdings

Limited.
Java is a trademark of Sun Microsystems Inc.
Kindle is a registered trademark of Amazon Technologies,

Inc.
Libra is a registered trademark of Agilent Technologies, Inc.
Linux is a trademark of Linus Torvalds.
Skype is a registered trademark of Skype Limited.
Twitter is a registered trademark of Twitter, Inc.
Unix is a registered trademark of The X/Open Group.
VMWare is a registered trademark of VMWare, Inc.
Windows is a registered trademark of Microsoft Corporation.
Wine is a registered trademark of Software Freedom

Conservancy.

References
[1] G. Ammons, J. Appavoo, M. Butrico, D. Da

Silva, D. Grove, K. Kawachiya, O. Krieger,
B. Rosenburg, E. Van Hensbergen, and R. W.
Wisniewski, “Libra: A Library Operating System

for a JVM in a Virtualized Execution
Environment,” Proc. 3rd Internat. Conf. on
Virtual Execution Environments (VEE ‘07) (San
Diego, CA, 2007), pp. 44–54.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield, “Xen and the Art of Virtualization,”
Proc. 19th ACM Symp. on Operating Syst.
Principles (SOSP ‘03) (Bolton Landing, NY,
2003), pp. 164–177.

[3] Barrelfish, �http://www.barrelfish.org
.
[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,

R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania, “The Multikernel: A New OS
Architecture for Scalable Multicore Systems,”
Proc. 22nd ACM Symp. on Operating Syst.
Principles (SOSP ‘09) (Big Sky, MT, 2009),
pp. 29–44.

[5] P. Bosch and S. J. Mullender, “Real-Time Disk
Scheduling in a Mixed-Media File System,”
Proc. 6th IEEE Real-Time Technol. and
Applications Symp. (RTAS ‘00) (Washington,
DC, 2000), pp. 23–33.

[6] S. Deering and R. Hinden, “Internet Protocol,
Version 6 (IPv6) Specification,” IETF RFC 2460,
Dec. 1998, �http://www.ietf.org/rfc/rfc2460.txt
.

[7] A. Edwards and S. Muir, “Experiences
Implementing a High Performance TCP in User-
Space,” Proc. Conf. on Applications, Technol.,
Architectures, and Protocols for Comput.
Commun. (SIGCOMM ‘95) (Cambridge, MA,
1995), pp. 196–205.

[8] G. R. Ganger, D. R. Engler, M. F. Kaashoek,
H. M. Briceño, R. Hunt, and T. Pinckney, “Fast
and Flexible Application-Level Networking on
Exokernel Systems,” ACM Trans. Comput.
Syst., 20:1 (2002), 49–83.

[9] W. Heisenberg, “Über den Anschaulichen Inhalt
der Quantentheoretischen Kinematik und
Mechanik,” Z. Phys., 43:3-4 (1927), 172–198.

[10] V. Jacobson and B. Felderman, “Speeding Up
Networking,” Linux.conf.au (LCA ‘06)
(Dunedin, Nzl., 2006).

[11] I. M. Leslie, D. McAuley, R. Black, T. Roscoe,
P. Barham, D. Evers, R. Fairbairns, and E.
Hyden, “The Design and Implementation of an
Operating System to Support Distributed
Multimedia Applications,” IEEE J. Select. Areas
Commun., 14:7 (1996), 1280–1297.

[12] H. Li and K. C. Sevcik, “Exploiting Cache Affinity
in Software Cache Coherence,” University of
Toronto, Computer Systems Research Institute
(CSRI), Tech. Report 299, Apr. 1994.

DOI: 10.1002/bltj Bell Labs Technical Journal 39

[13] C. L. Liu and J. W. Layland, “Scheduling
Algorithms for Multiprogramming in a Hard-
Real-Time Environment,” J. ACM, 20:1 (1973),
46–61.

[14] D. Moore, C. Musciano, M. J. Liebhaber, S. F.
Lott, and L. Starr, “’GOTO Considered Harmful’
Considered Harmful” Considered Harmful?,”
Commun. ACM, 30:5 (1987), 351–355.

[15] G. Moore, “Excerpts from a Conversation with
Gordon Moore: Moore’s Law,” Intel, Video
Transcript, 2005, �http://download.intel.com/
museum/Moores_Law/Video-Transcripts/
Excepts_A_Conversation_with_Gordon_Moore.
pdf
.

[16] G. E. Moore, “Cramming More Components
onto Integrated Circuits,” Electron., 38:8
(1965).

[17] S. J. Mullender, “Process Management in a
Distributed Operating System,” Experiences
with Distributed Systems (J. Nehmer, ed.),
LNCS 309, Springer-Verlag, Berlin, Heidelberg,
New York, 1988, pp. 38–51.

[18] S. J. Mullender, “Interprocess Communication,”
Distributed Systems, 2nd ed. (S. J. Mullender,
ed.), ACM Press/Addison-Wesley, Wokingham,
Eng., Reading, MA, 1993, Chapter 9,
pp. 217–250.

[19] S. J. Mullender and P. G. Jansen, “Real Time in
a Real Operating System,” Computer Systems:
Theory, Technology, and Applications—a
Tribute to Roger Needham (A. Herbert and
K. Spärck Jones, eds.), Springer-Verlag, New
York, 2004, pp. 213–222.

[20] S. J. Mullender, I. M. Leslie, and D. McAuley,
“Operating-System Support for Distributed
Multimedia,” Proc. USENIX Summer Tech.
Conf. (USTC ‘94) (Boston, MA, 1994), vol. 1.

[21] S. J. Mullender, G. van Rossum, A. S.
Tanenbaum, R. van Renesse, and H. van
Staveren, “Amoeba—A Distributed Operating
System for the 1990s,” IEEE Comput., 23:5
(1990), 44–53.

[22] J. Postel (ed.), “Internet Protocol,” IETF RFC
791, Sept. 1981, <http://www.ietf.org/rfc/
rfc791.txt>.

[23] T. Roscoe, The Structure of a Multi-Service
Operating System, Ph.D. Dissertation, Queens’
College, University of Cambridge, 1995.

[24] F. Rubin, “‘GOTO Considered Harmful’
Considered Harmful,” Commun. ACM, 30:3
(1987), 195–196.

[25] J. F. Shoch, “Inter-Network Naming,
Addressing, and Routing,” Proc. 17th IEEE

Conf. on Comput. Commun. Networks
(COMPCON ‘78–Fall) (Washington, DC, 1978),
pp. 72–79.

[26] WineHQ, “Wine,” �http://www.winehq.org
.

(Manuscript approved February 2012)

SAPE J. MULLENDER is director of the Network Systems
Lab at Bell Labs in Antwerp, Belgium. He
has worked extensively in operating
systems, multimedia systems, and, in recent
years, wireless systems research. He was a
principal designer of the Amoeba

distributed system; he led the European Union’s
Pegasus project, which resulted in the design of the
Nemesis multimedia operating system; and he made
valuable contributions to work on the Plan 9® and
Inferno® operating systems. He received a Ph.D. from
the Vrije Universiteit in Amsterdam, The Netherlands,
where he also was formerly a faculty member. He
currently holds a chair part time in the Computer
Science Department at the University of Twente.
Dr. Mullender has published papers on file systems,
high-performance remote procedure call (RPC)
protocols, migratable object location in computer
networks, and protection mechanisms, and he was
involved in the organization of a series of advanced
courses on distributed systems. ◆

