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a b s t r a c t

When dealing with heterogeneous networks, where the agents are governed by non-identical models,
interesting questions arise regarding the ability of the network to synchronize to a common non-trivial
output trajectory, as well as the nature of such a trajectory. On this topic, Wieland, Allgöwer, and
Sepulchre have recently derived results showing that for a class of heterogeneous networks of dynamically
controlled linear agents, non-trivial output synchronization implies the existence of an observable virtual
exosystem for which the regulator equations are solvable for each agent. Moreover, this virtual exosystem
defines the output trajectories on the agreement manifold and is contained within each agent as an
internalmodel. In this paper, we shed further light on this topic by showing that, under amore general set
of assumptions, non-trivial output synchronization can occur in the absence of such a virtual exosystem.
We propose a modified result for this case that specifies the existence of a possibly unobservable virtual
exosystem for which the regulator equations are solvable, and for which the observable part defines the
output trajectories on the agreement manifold. We also show that a variation of the virtual exosystem is
contained within each agent as an internal model.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, a large body ofwork has emerged on the topic of
synchronization, where the goal is to secure agreement among net-
worked agents on a common state or output trajectory. Although
most of this work has been focused on state synchronization in
homogeneous networks, a limited amount of work has also been
done on heterogeneous networks, where the agents are governed
by non-identical models (e.g., Bai, Arcak, & Wen, 2011; Chopra &
Spong, 2008; Grip, Yang, Saberi, & Stoorvogel, 2012; Kim, Shim, &
Seo, 2011; Xiang & Chen, 2007; Yang, Saberi, Stoorvogel, & Grip,
in press; Zhao, Hill, & Liu, 2010).When dealingwith heterogeneous
networks, the goal is typically to achieve output synchronization—
that is, agreement on some partial-state output. Non-identical
models tend to produce outputs with different characteristics;
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thus, it is of interest to study when it is possible to achieve syn-
chronization to a common non-trivial output trajectory, and what
this output trajectory will look like.

Wieland, Allgöwer, and Sepulchre have recently derived results
showing that, for a class of dynamically controlled, diffusively
coupled networks with stabilizable and detectable agents, non-
trivial output synchronization implies the existence of a virtual
exosystem for which the regulator equations are solvable for
each agent (Wieland, 2010; Wieland & Allgöwer, 2009; Wieland,
Sepulchre, & Allgöwer, 2011). This virtual exosystem is described
by an observable pair (S, R), where the eigenvalues of S are in the
closed right-half complex plane. A consequence of the underlying
analysis is that the virtual exosystem must be embedded within
the dynamics of each agent together with its local controller. The
result is therefore interpreted as an internal model principle, which
is deemed necessary (as well as sufficient) for non-trivial output
synchronization.

In this paper, we seek to shed further light on this topic by
showing that, under a more general set of assumptions obtained
by removing a detectability condition on the combined agent–
controller dynamics, the existence of such a virtual exosystem is
not guaranteed.We note that this detectability assumptionwas in-
cluded byWieland (2010) andWieland and Allgöwer (2009), but it
was left out of themore recent paper ofWieland et al. (2011). Thus,
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our intention is also to point out the significance of this apparent
omission.

We shall show by example that, in the absence of the above-
mentioned detectability condition, there exist networks for which
non-trivial output synchronization can be achieved even though
the regulator equations are unsolvable for all observable virtual
exosystems. We also present a modified result that specifies the
existence of a possibly unobservable virtual exosystem for which
the regulator equations are solvable, and for which the observable
part defines the output trajectories on the agreement manifold.
We furthermore show that a variation of the virtual exosystem is
contained within each agent as an internal model.

1.1. Network description and previous results

We consider N linear agents described by models

ẋk = Akxk + Bkuk, xk ∈ Rnk , uk ∈ Rpk , (1a)

yk = Ckxk, yk ∈ Rq, (1b)

where (Ak, Bk) is stabilizable and (Ak, Ck) is detectable. The agents
are connected via diffusive couplings that allow the agents to
exchange relative system and controller states; specifically, agent
k has access to the quantity

vk =

N
j=1

akj(t)(ζj − ζk),

where ζk ∈ Rµ is a vector of system and controller states trans-
mitted by agent k over the network, and akj(t) is element (k, j)
of the adjacency matrix describing the network’s communication
graph, which is assumed to be uniformly connected (see Wieland
et al., 2011, Definition 2). The object of output synchronization is
to achieve (yi − yj) → 0 for each i, j ∈ 1, . . . ,N . Dynamic con-
trollers for each agent are given in the general form

ξ̇k = Dkξk + Ekyk + Fkvk, ξk ∈ Rυk (2a)
uk = Gkξk + Mkyk + Okvk, (2b)
ζk = Pkξk + Qyk. (2c)

The detectability condition discussed in Section 1 can be stated as
follows.

Assumption 1. For each k ∈ 1, . . . ,N , the pair (A∗

k , C
∗

k ), where

A∗

k =


Ak + BkMkCk BkGk

EkCk Dk


, C∗

k =

Ck 0


, (3)

is detectable.

Subject to Assumption 1, the following result from Wieland
et al. (2011) can then be stated.

Wieland et al., 2011, Theorem 3. Consider N linear state-space
models (1) coupled through dynamic controllers (2). Assume the
closed loop system has no asymptotically stable equilibrium set on
which yk(t) = 0, k ∈ 1, . . . ,N .

If (yi − yj) → 0 and (ζi − ζj) → 0 for i, j ∈ 1, . . . ,N expo-
nentially as t → ∞, then there exist a scalar m ∈ N, matrices
S ∈ Rm×m and R ∈ Rq×m, where the eigenvalues of S are in the
closed right-half complex plane and (S, R) is observable, and ma-
trices Πk ∈ Rnk×m, Γk ∈ Rpk×m for k ∈ 1, . . . ,N such that

AkΠk + BkΓk = ΠkS, (4a)
CkΠk = R, (4b)

for k ∈ 1, . . . ,N . Furthermore, there exists z0 ∈ Rm such that
limt→∞ ∥yk(t) − ReStz0∥ = 0 for all k ∈ 1, . . . ,N .
2. Synchronization without virtual exosystem

Assumption 1 is not intrinsically related to the concept of
synchronization; thus, it is of interest to investigate its significance
to the results stated above. The following example shows that, in
the absence of Assumption 1, synchronization can indeed occur
without the existence of an observable virtual exosystem.

Example 1. Consider a two-agent network with a uniformly
connected communication graph described by a11 = a12 = a22 =

0 and a21 = 1, and with agent models given by

Agent 1 :


ẋ11 = x12
ẋ12 = u1,
y11 = x11,
y12 = x12,

Agent 2 :


ẋ21 = x22,
ẋ22 = x21 + u2,
ẋ23 = −x23,
y21 = x22,
y22 = x23.

That is, the system matrices are given by

A1 =


0 1
0 0


, B1 =


0
1


, C1 =


1 0
0 1


,

A2 =

0 1 0
1 0 0
0 0 −1


, B2 =

0
1
0


, C2 =


0 1 0
0 0 1


.

It is easy to verify that both (A1, B1, C1) and (A2, B2, C2) are
stabilizable and detectable.

To design a synchronization protocol, we define the values ζ1 =

y1 and ζ2 = y2 to be transmitted over the network. This means
that agent 2 has access to v2 = y1 − y2. For agent 1, we define the
controller

u1 = −

0 1


y1.

For agent 2, we define the dynamic controller

˙̂x2 = A2x̂2 + B2u2 + K2(y2 − C2x̂2),
u2 = −


1 0 0


x̂2 +


1 0


v2,

where

K2 =

3 0
3 0
0 0


is chosen such that A2 − K2C2 is Hurwitz. It is easy to verify that
these controllers are in the form of (2) with Q = I,D1, E1, F1,G1,
and P1 empty, M1 = −[0, 1],O1 = 0,D2 = A2 − B2[1, 0, 0] −

K2C2, E2 = K2, F2 = B2[1, 0],G2 = −[1, 0, 0],M2 = 0,O2 =

[1, 0], and P2 = 0.
The closed-loop dynamics of agent x1 can be written as

ẋ11 = x12,
ẋ12 = −x12.

It therefore follows that y12(t) = e−tx12(0) → 0 and y11(t) =

x11(0) +
 t
0 x12(τ ) dτ → x11(0) + x12(0).

For agent 2, note that x̂2 is an observer estimate of x2, with the
dynamics of the estimation error x̃2 = x2 − x̂2 described by

˙̃x2 = (A2 − K2C2)x̃2.

It follows that x̃2 → 0. The closed-loop dynamics of agent 2 can be
written as

ẋ21 = x22,
ẋ22 = x̃21 + y11 − y21,
ẋ23 = −x23.
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We therefore see that y22(t) = e−tx23(0) → 0, and hence (y22 −

y12) → 0. Furthermore, we have

ẏ21 − ẏ11 = ẋ22 − ẋ11
= x̃21 + y11 − y21 − x12
= −(y21 − y11) + x̃21 − x12.

Since x̃21 and x12 vanish exponentially, it follows that (y21−y11) →

0. Hence, the agents synchronize to the (generally nonzero) output
trajectory [x11(0) + x12(0), 0]′.

The example system satisfies the conditions in the statement
of Theorem 3 of Wieland et al. (2011), but not Assumption 1.
We now show that there exists no observable matrix pair (S, R)
that solves the regulator equations. For the sake of establishing a
contradiction, suppose that they do exist, and partition R, Π1, and
Π2 row-wise as

R =


r1
r2


, Π1 =


π11
π12


, Π2 =


π21
π22
π23


.

From the expression C1Π1 = R, we obtain that π11 = r1 and
π12 = r2. From the first row of the expressionΠ1S = A1Π1+B1Γ1,
we obtain π11S = π12 H⇒ r1S = r2. From the expression
C2Π2 = R, we obtain π22 = r1 and π23 = r2. From the first
and third rows of the expression Π2S = A2Π2 + B2Γ2, we obtain
π21S = π22 H⇒ π21S = r1 and π23S = −π23 H⇒ r2S = −r2.

Now, since r1S = r2 and r2S = −r2, we have ker RS ⊃ ker R, and
it follows that the unobservable subspace of (S, R) is given by ker R.
Since (S, R) is observable, it follows that either m = 1 or m = 2.
In the latter case, r1 and r2 would have to be linearly independent,
and we could therefore write π21 = α1r1 + α2r2 for some scalars
α1 and α2. However, this would imply π21S = (α1 − α2)r2, which
contradicts the expressionπ21S = r1. Hence, wemust havem = 1,
and either r1 ≠ 0 or r2 ≠ 0. If r2 ≠ 0, then it follows from
r2S = −r2 that S = −1, which cannot be the case since S has
all its eigenvalues in the closed right-half complex plane. Wemust
therefore have r2 = 0 and r1 ≠ 0. Then the expression π21S = r1
implies S ≠ 0. But then r1S = r2 implies r2 ≠ 0, which is a
contradiction.

Note that the outputs in our example synchronize to a bounded
trajectory [x11(0)+x12(0), 0]′. Nevertheless, the internal dynamics
of agent 2 is not bounded, as can be seen by noting that x21 is the
integral of y21. Since y21 converges to a generally nonzero constant,
this implies that x21 will grow linearly. Indeed, such dynamics is
necessary for synchronization. To see this, note first that y22 is
unaffected by inputs and converges to zero, which means that y12
must also converge to zero in order to achieve synchronization
in the second output channel. This implies that y11 becomes the
integral of a vanishing signal, and thus it converges to a (generally
nonzero) constant. To achieve synchronization in the first output
channel, y21 must also converge to a nonzero constant; however,
the transfer function from u2 to y21 is s/(s2 −1), which means that
y21 can only sustain a nonzero constant if u2 is an unbounded ramp
signal.

3. A modified theorem

In view of the above observations, let us state a modified result
in the absence of Assumption 1. For simplicity, we consider only
fixed communication topologies (i.e., akj(t) constant for all k, j ∈

1, . . . ,N).

Theorem 1. Assume that the network topology is fixed, and con-
sider N linear state-space models (1) coupled through dynamic
controllers (2). Assume the closed loop system has no asymptoti-
cally stable equilibrium set on which yk(t) = 0, k ∈ 1, . . . ,N.
If (yi − yj) → 0 and (ζi − ζj) → 0 for i, j ∈ 1, . . . ,N as
t → ∞, then there exist a scalar m ∈ N, matrices S ∈ Rm×m and
R ∈ Rq×m, where the eigenvalues of S are in the closed right-half
complex plane and (S, R) is observable, and a vector z0 ∈ Rm such
that limt→∞ ∥yk(t) − ReStz0∥ = 0 for all k ∈ 1, . . . ,N.

Furthermore, there exist a scalar r ∈ N and matrices S21 ∈ Rr×m

and S22 ∈ Rr×r , where the eigenvalues of S22 are in the closed right-
half complex plane, such that, for each k ∈ 1, . . . ,N, there exist
matrices Πk ∈ Rnk×(m+r) and Γk ∈ Rpk×(m+r) satisfying

AkΠk + BkΓk = ΠkS̄, (5a)

CkΠk = R̄, (5b)

where

S̄ =


S 0
S21 S22


, R̄ =


R 0


.

Proof. Let A∗ and C∗ be defined as in the proof of Theorem 3 of
Wieland et al. (2011), so that the diagonal elements are given by A∗

k
and C∗

k . Following the proof of Theorem 3 of Wieland et al. (2011)
we can conclude that the trajectories converge to an invariant
agreement manifold S = span Ψ̃ that contains no asymptotically
stable modes. Thus, there exists a matrix S̃ ∈ Rm̃×m̃ such that
A∗Ψ̃ = Ψ̃ S̃, where S̃ represents the overall dynamics on the
agreement manifold. Writing Ψ̃ = [Π̃ ′

1, Σ̃ ′

1, . . . , Π̃ ′

N , Σ̃ ′

N ]
′, as in

Wieland et al. (2011), we obtain AkΠ̃k + Bk(MkCkΠ̃k + GkΣ̃k) =

Π̃kS̃, and hence AkΠ̃k + BkΓ̃k = Π̃kS̃ for Γ̃k = MkCkΠ̃k + GkΣ̃k.
Furthermore, since yi = yj onS wehave, as inWieland et al. (2011),
CkΠ̃k = R̃ for some R̃.

Let Λ be a nonsingular state transformation taking (S̃, R̃) to the
Kalman observable canonical form. That is,

Λ−1S̃Λ = S̄ =


S 0
S21 S22


, R̃Λ = R̄ =


R 0


,

for some matrices S ∈ Rm×m, S21 ∈ Rr×m, S22 ∈ Rr×r , and R ∈

Rq×m, wherem = m̃− r . The output trajectories on the agreement
manifold are governed by the observable part of (S̃, R̃), given by
(S, R), and hence lim(yk(t) − ReStz0) = 0 for some z0 ∈ Rm.
Furthermore, it is easily seen that the regulator equations (5) are
satisfiedwithΠk = Π̃kΛ andΓk = Γ̃kΛ. Note thatm > 0, because
the closed-loop system is assumed tohaveno asymptotically stable
subspace on which yk(t) = 0. �

4. Internal model principle

The results of Wieland (2010); Wieland and Allgöwer (2009);
Wieland et al. (2011) can be interpreted as an internal model
principle, because they imply that the observable pair (S, R), which
dictates the outputs on the agreement manifold, is embedded
within each agent’s dynamics together with its local controller.
That is,

T−1
k A∗

kTk =


S ⋆
0 ⋆


, C∗

k Tk =

R ⋆


,

for some nonsingular matrix Tk, where ⋆ denotes a block of no
importance in this context. In the absence of Assumption 1, this
internal model principle may fail to hold, both for (S, R) and (S̄, R̄).
We can, however, state the following result.

Theorem 2. Assume that the conditions of Theorem 1 hold. For each
k ∈ 1, . . . ,N, there exist a Tk ∈ R(nk+υk)×(nk+υk) and matrices
Sk21 ∈ Rrk×m and Sk22 ∈ Rrk×rk , where rk ≤ r, such that

T−1
k A∗

kTk =


S̄k ⋆
0 ⋆


, C∗

k Tk =

R̄k ⋆


,
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where

S̄k =


S 0

Sk21 Sk22


, R̄k =


R 0


.

Proof. Referring back to the proof of Theorem 1, it is clear that
A∗Ψ = Ψ S̄, where Ψ = Ψ̃ Λ. Let Ψ = [Ψ ′

1, . . . , Ψ ′

N ]
′, where

Ψk ∈ R(nk+υk)×m̃. Then A∗

kΨk = ΨkS̄ and C∗

k Ψk = R̄. Let Ψk =

[Ψk1, Ψk2], where Ψk1 ∈ R(nk+υk)×m and Ψk2 ∈ R(nk+υk)×r . Then Ψk1
is of full column rankm and imΨk1 ∩ imΨk2 = {0}. To see this, let
O(A, C) := [C ′, . . . , (CAm̃−1)′]′ for anymatrices A and C of compat-
ible dimensions, and note that O(S̄, R̄) = O(A∗

k , C
∗

k )Ψk. Moreover,
O(S̄, R̄) = [O(S, R), 0], and hence we have O(A∗

k , C
∗

k )Ψk1 = O(S, R)
and O(A∗

k , C
∗

k )Ψk2 = 0. Since O(S, R) is the observability matrix
of the observable pair (S, R), we see that rankO(A∗

k , C
∗

k )Ψk1 = m,
which implies rankΨk1 = m. Moreover, imΨk1 ∩ imΨk2 = {0},
since otherwise there would be an η1 ≠ 0 such that Ψk1η1 =

Ψk2η2. This would imply O(A∗

k , C
∗

k )Ψk1η1 = O(A∗

k , C
∗

k )Ψk2η2 = 0,
which contradicts the fact that rankO(A∗

k , C
∗

k )Ψk1 = m.
Define Tk = [Ψk1, Ψk2Vk, Tk3], where Vk2 is chosen such that the

columns of Ψk2Vk form a nonsingular basis for imΨk2, and Tk3 is
chosen to make Tk nonsingular. Then

A∗

kTk =

A∗

kΨk1 A∗

kΨk2Vk A∗

kTk3


=

Ψk1S + Ψk2S21 Ψk2S22Vk A∗

kTk3

.

Let Sk21 be defined such that Ψk2S21 = Ψk2VkSk21, and let Sk22 be
defined such that Ψk2S22Vk = Ψk2VkSk22. Then

A∗

kTk =

Ψk1 Ψk2Vk Tk3

  S 0 ⋆
Sk21 Sk22 ⋆
0 0 ⋆



= Tk


S̄k ⋆
0 ⋆


.

Furthermore,

C∗

k Tk =

C∗

k Ψk1 C∗

k Ψk2Vk C∗

k Tk3


=

R 0 ⋆


=


R̄k ⋆


. �

We now confirm that the above results are consistent with our
example.

Example 1 (Continued). The outputs of the agents synchronize to
a trajectory ReStz0, where the observable pair (S, R) is given by

S = 0, R =


1
0


.

It can be confirmed that the regulator equations (5) are solvable for
the pair

S̄ =


0 0
1 0


, R̄ =


1 0
0 0


,

by choosing

Π1 =


1 0
0 0


, Γ1 =


0 0


, Π2 =

0 1
1 0
0 0


,

Γ2 =

0 −1


.

This is consistent with Theorem 1 with S21 = 1 and S22 = 0.
The matrices A∗

1 and C∗

1 are given by

A∗

1 =


0 1
0 −1


, C∗

1 =


1 0
0 1


,

and hence we can choose T1 = I to satisfy Theorem 2with S121 and
S122 empty. The matrices A∗

2 and C∗

2 are given by

A∗

2 =


0 1 0 0 0 0
1 0 0 −1 0 0
0 0 −1 0 0 0
0 3 0 0 −2 0
0 3 0 0 −3 0
0 0 0 0 0 −1

 ,

C∗

2 =


0 1 0 0 0 0
0 0 1 0 0 0


.

Defining

T2 =


0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 −1 0 0
1 0 0 0 −1 0
0 0 1 0 0 −1


satisfies Theorem 2 with S221 = 1 and S222 = 0. Note that there
is no internal model describing the output trajectories that works
both for (A∗

1, C
∗

1 ) and (A∗

2, C
∗

2 ).

5. Concluding remarks

The above analysis shows that, even though the synchronized
outputs converge to trajectories defined by an observable pair
(S, R), the regulator equations are not necessarily solvable with
respect to this pair. This may seem to contradict the notion that
output regulation is equivalent to solvability of the regulator
equations. Note, however, that classical output regulation as
defined by Francis and Wonham (1975) assumes loop stability –
that is, stability of the closed-loop system when the state of the
exosystem is zero – as an intrinsic part of the problem formulation.
In the absence of loop stability, feasibility of the regulation problem
is not equivalent to solvability of the regulator equations.
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