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Abstract

Confluence reduction and partial order reduction by means of ample sets are two different techniques for
state space reduction in both traditional and probabilistic model checking. This paper provides an extensive
comparison between these two methods, and answers the question how they relate in terms of reduction
power when preserving branching time properties. We prove that, while both preserve the same properties,
confluence reduction is strictly more powerful than partial order reduction: every reduction that can be
obtained with partial order reduction can also be obtained with confluence reduction, but the converse is
not true.

The main challenge for the comparison is that confluence reduction was defined in an action-based set-
ting, whereas ample set reduction is often defined in a state-based setting. We therefore redefine confluence
reduction in the state-based setting of Markov decision processes, and provide a nontrivial proof of its cor-
rectness. Additionally, we pinpoint precisely in what way confluence reduction is more general, and provide
conditions under which the two notions coincide. The results we present also hold for non-probabilistic
models, as they can just as well be applied in a context where all transitions are non-probabilistic.

To discuss the practical applicability of our results, we adapt a state space generation technique based
on representative states, already known in combination with confluence reduction, so that it can also be
applied to ample sets.

Keywords: Confluence reduction, Partial order reduction, Ample sets, Probabilistic branching time,
Markov decision processes

1. Introduction

Probabilistic model checking has proved to be an effective way for improving the quality of communication
protocols and encryption techniques, for studying biological systems, and measuring the performance of
networks. The omnipresent state space explosion poses a serious threat to the efficiency of model checking
and similar methods; therefore, several reduction techniques have been introduced to deal with large systems.

While reduction techniques preferably reduce as much as allowed by a relevant notion of bisimulation,
in practice this is often infeasible. The computation may be complex and often requires the complete state
space, while it is much more desirable to reduce on-the-fly, i.e., prior to the generation of the original state
space. Therefore, reduction techniques often exchange reduction power for efficiency. Recently, two powerful
techniques of this kind were generalised from non-probabilistic model checking to the probabilistic setting:
partial order reduction [1, 2, 3] and confluence reduction [4, 5]. Both use a notion of independence between
transitions of a system, either explicitly or implicitly, and try to reduce the state space by eliminating
redundant paths through the system (and therefore often also states). In the non-probabilistic setting,
partial order reduction techniques have been defined for a large range of property classes, most notably
variants that preserve LTL\ x and CTLi x [6, 7, 8, 9]. Most work on confluence reduction has been designed
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to guarantee that the reduced system is branching bisimilar to the original system; thus, these techniques
preserve virtually all branching properties (in particular, CTL? ). There is not as much work on weaker
variants of confluence, though in [10] a variant is explored that makes no distinction between visible and
invisible actions and does not require acyclicity. The variant preserves deadlocks much in the same way as
weaker versions of ample and stubborn sets [8].

Partial order reduction, in the form of ample sets, was the first of these methods to be applied in the
probabilistic setting. In [11] and [12], the concept was lifted from labelled transition systems to Markov
decision processes (MDPs), providing reductions that preserve quantitative LTL\ x. These techniques were
refined in [13] to also preserve probabilistic CTLi x, a branching logic. Later, a revision of partial order
reduction for distributed schedulers was introduced and implemented in PRISM [14]. In [15], the use
of fairness constraints in combination with ample sets for the quantitative analysis of MDPs was first
introduced. Later, the so-called weak stubborn set method was also defined for a class of safety properties
of MDPs under fairness constraints [16].

Recently, confluence reduction was lifted to the probabilistic realm as well. In [17, 18] a probabilistic
variant was introduced that, just like the ample set reduction of [13], preserves branching properties. It was
defined as a reduction technique for action-based probabilistic automata [19], but as we will show in this
paper, it can also be used in the context of MDPs.

Ample sets and confluent transitions are defined and detected quite differently: ample sets are defined
by first giving an independence relation for the action labels, whereas confluence is a property of a set of
(invisible) transitions in the final state space. Even so, the underlying ideas are similar on the intuitive level.
Since both techniques are in general not able to achieve optimal reductions as compared to the bisimulation-
minimal quotient, we are interested to see if there are scenarios that can be handled by one technique but
not by the other, or whether their reduction capacities are equally powerful. Therefore, an obvious question
is: to what extent do ample sets and confluent transition coincide? This paper addresses that question by
comparing the notion of probabilistic ample sets from [13] to a state-based reformulation of the notion of
strongly probabilistically confluent sets from [17]. We restrict to ample sets, because they are currently the
most well-established notion of partial order reduction for MDPs.

Contributions. We first redefine confluence for MDPs. The task is nontrivial, because confluence was origi-
nally defined in a purely action-based formalism. Also, the original definitions are insensitive to divergences,
which in state-based approaches correspond to infinite stuttering. Unlike finite stuttering, infinite stuttering
must be preserved in order to preserve PCTL? x- We show that when preserving branching time behaviour,
confluence reduction is strictly more powerful than ample set reduction, by proving that every nontrivial
ample set can be mimicked by a confluent set, while also providing examples where confluent transitions
do not qualify as ample sets. In such cases, confluence reduction is able to reduce more than ample set
reduction. To continue, we pinpoint precisely in what way confluence is more general than ample sets, and
show how the definitions need to be adjusted to make them coincide.

While revealing exactly where the extra reduction potential with confluence comes from, the results we
present support the idea that confluence reduction is a well-suited alternative to the thus far more often used
partial order reduction methods. In particular, this is a major consideration in contexts where (1) detection
of confluence using heuristics that make use of these more relaxed conditions is possible, or where (2) the
conditions of confluence are just easier to check than their partial order reduction counterparts.

The first situation seems to occur in the context of statistical model checking and simulation. In this
context, [20] used partial order reduction to remove spurious nondeterminism from models to allow them
to be analysed statistically. As the reduction is applied directly to explicit models rather than high-level
specifications, the more relaxed confluence conditions may come in handy. Indeed, [21] shows that confluence
reduction is able to remove nondeterminism that partial order reduction could not, thereby allowing more
models to be analysed using statistical model checking techniques. Our results provide theoretical support
for this intuition. Since [20] applied a more powerful variant of partial order reduction, which only preserves
linear time properties, there are also cases where confluence is able to reduce less [21]. Therefore, it seems
beneficial to combine partial order reduction and confluence reduction for statistical model checking, applying
both techniques if one of them fails.



The second situation seems to arise when working with process-algebraic modelling languages. As demon-
strated in [4] for the non-probabilistic and in [17] for the probabilistic setting, it is quite natural to detect
confluence in such a context.

Alternatively, our results (in particular Theorem 38) allow for the use of more relaxed definitions—
incorporating a notion of local independence—if partial order reduction is used. In addition to providing
these practical opportunities, our precise comparison of confluence and partial order reduction fills a signif-
icant gap in the theoretical understanding of the two notions.

The theory is presented in such a way, that the results hold for non-probabilistic automata as well, as
they form a special case of the theory where all probability distributions are deterministic. Hence, as a
side effect we also answer the question of how the non-probabilistic variants of ample set reduction and
confluence reduction relate.

Our findings imply that results and techniques applicable to confluence can be used in conjunction
with ample sets. As an example of such a technique, we show how a state space generation technique
based on representative states, already known in the context of confluence reduction [4], can also be applied
with partial order reduction. This is a very general technique for replacing a class of states by a single
representative, and a quite similar method has also been used in conjunction with the so-called essential
state abstraction in [22]. The technique replaces explicit checking of the cycle condition, in addition to
further reducing the number of states and transitions. The latter is important, especially if the MDP is to
be subjected to further analysis.

Overview of the paper. After recalling some basic preliminaries in Section 2, we present the notions of
ample set reduction and confluence reduction in Section 3, also showing that confluence reduction for MDPs
preserves PCTLi x in the same way as ample sets. Then, in Section 4 we discuss how ample set reduction can
be thought of as a special case of confluence reduction. We show what kind of restrictions and relaxations
are needed to make them coincide, thereby pinpointing the exact differences of the methods. In Section 5 we
consider the use of the so-called representation map in the context of confluence and ample set reduction.
Section 6 concludes the paper and provides directions for future work.

2. Preliminaries

Definition 1 (Probability distributions). A probability distribution over a countable set S is a function
p: S — [0,1] such that ) g p(s) = 1. The support of a distribution is given by spt(u) = {s € S | u(s) > 0},
and we write 1, for the deterministic distribution p determined by u(t) = 1. We use Distr(S) to denote the
set that contains all probability distributions over S and the subdistribution L that assigns probability 0 to
every s € S. Given an equivalence relation R C .S X S and two probability distributions p,v € Distr(S), we
write p =g v if u(C) = v(C) for every equivalence class C € S/R.

The model on which probabilistic ample set reduction is defined is the Markov decision process. It
consists of states that are labelled by atomic propositions, an initial state, and a probabilistic action-
labelled transition function. From each state s, a subset of the actions is enabled; for every enabled action a,
a probability distribution P(s,a) specifies for every other state s’ the likelihood P(s,a)(s’) of ending up
in s after taking a from s.

Definition 2 (MDPs). A Markov decision process (MDP) is tuple M = (S, %, P, s, AP, L), where
e S is a finite set of states;

e Y is a finite set of action labels;

P: (S x X) — Distr(S) is the probabilistic transition function;

s0 € S is the initial state;

AP is the set of atomic propositions;
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Figure 1: An MDP M representing a flow chart.

e L: S — 2°P s the labelling function.

If P(s,a) = L, the action a is not enabled from s. Otherwise, P(s,a)(s") is the probability of going to s’
when executing a from s.

We use several notions when working with MDPs. The next definition introduces the set of transitions of
the MDP, and introduces the notation (s, a, ) to denote a transition from s, taking an action a and having
a next-state distribution u. Also, we introduce a notation for paths through an MDP.

Definition 3 (Supporting notations for MDPs). Given an MDP M = (S,3, P,s°, AP, L), we denote the
set of all possible transitions of M by

Ay ={(s,a,pu) € S x X x Distr(S) | P(s,a) =pu# L},

and write s = s’ if there exists a distribution p € Distr(S) such that (s,a,p) € Apy and s’ € spt(u).
Moreover, we write s % if s % s’ for some s' € S, and define en(s) ={a € X |sH}.
We write s 2292=%ny o' if there exists a sequence of states sgsy...s, such that so = s, s, = s’ and
5; L g0 for every 0 < i < n, and write s 8220ny if g Q922Gny o for some s’ € S, Given a set
T C Ay we write s —»7 s (reachability ) if there is a path s s’ and all the transitions of this path
are in T. In addition, we write s -« s (joinability) if there is a state t such that s -7 t and s' - t.
A subset of transitions of an MDP is acyclic if there does not exist a cycle in the subgraph of the MDP

when only considering the transitions in this set.

a1a2...an

Example 4. Figure 1 visualises an MDP M, consisting of 14 states. This MDP will be used throughout
the paper as a running example. It represents a flow chart, specifying the way in which six tasks can be
performed. The tasks occur in pairs: first task; and tasks need to be executed, then tasks and tasky, and
finally we need to do tasks and taskg. Each pair of tasks can be executed in either order. Furthermore,
the execution of tasks fails with probability 1—10, in which case it can be attempted again. Moreover, after
finishing the first two tasks and before starting the last two, we can quit or choose to continue. Finally,
after all tasks have been completed, it is allowed to repeat either tasks or taskg. We assume that the effect
of the even-numbered tasks is visible to the environment (indicated by a change of atomic proposition due
to such a transition), while the odd-numbered tasks are invisible.

Note that for this MDP we have S = {s; | 0 < ¢ < 13} and ¥ = {task; | 1 <1 < 6} U {quit,continue}.
The probabilistic transition function is visualised by arrows. For instance, P(sg,tasks) = p such that

w(so) = 1—10 and p(s2) = 1—90, and P(sg, quit) = L. Furthermore, we have s = sy and AP = {p,q,r,s,t,u}.
The labelling is indicated for each state, e.g., L(s2) = {q}. We have s; laskay .. for instance, and
en(ss) = {quit, tasks, task,} as well as g5 ~2sha continuc tashs fasks, O

Definition 5 (Determinism, Stuttering and Invisibility). Given an MDP M = (S, %, P, s, AP, L),
4



o A transition (s, a, u) € Ay is deterministic if p is deterministic, and an action a € 3 is a deterministic
action if all a-labelled transitions are deterministic. We denote the set of all deterministic actions by
Yaet C X. Given a deterministic transition (s,a, 1), we write target(s,a) = t;

o A transition (s,a,n) € Ay is stuttering if L(s") = L(s) for each s’ € spt(u), and an action a € ¥ is a
stuttering action if all a-labelled transitions are stuttering. We denote the set of all stuttering actions

by gt C X

o A transition (s,a,p) € Ay is invisible if it is both deterministic and stuttering, and an action a € ¥
is an invisible action if all a-labelled transitions are invisible. We denote the set of all invisible actions
by Einv = Zst N Zdet ;

o A finite path s L2229 ' or infinite path s “1%2= s invisible if every action on it is invisible.

We sometimes abuse the notation a little by writing (s, a, s') instead of (s, a, 1s) for deterministic transitions.

Note that (s,a, ) may be an invisible transition even if a is not an invisible action, but not vice versa.
Also note that given a sequence of invisible (and thus deterministic) actions ajas . .. a,, talking about “the
path” of this sequence from some state s makes sense, because the states that are visited are unique. We
do so for the rest of this paper.

Example 6. In the MDP M given in Figure 1, all transitions except for the two task, transitions are
deterministic. Hence, all actions except for tasks are deterministic. All transitions labelled by odd tasks are
stuttering, as well as the continue transition, since the atomic propositions in their source and target states
all correspond. Hence, all odd-labelled task actions and the continue action are stuttering. Combining this,
we obtain X, = {task; | i € {1,3,5}} U {continue}. O

For a given MDP, a wide class of reductions can be defined using the construct called a reduction function.
Informally, such a function decides for each state which outgoing actions are enabled in the reduced MDP.
The transition function of the reduced MDP then consists of all transitions that are still enabled after the
reduction function is applied, and the set of states consists of all states that are still reachable using the
reduced transition function.

Definition 7 (Reduction functions). Given an MDP M = (Sy;, %, Par, s, AP, L), a reduction function is
any function R: Syr — 2% with R(s) C en(s) for every s € Syr. Given a reduction function R, the reduced
MDP for M with respect to R is the minimal MDP Mp = (Sgr, X, Pgr,s’, AP, L) such that

o If s € Sk and a € R(s), then Pr(s,a) = Py (s,a) and spt(Py(s,a)) C Sg;
e Ifs€ Sk and a ¢ R(s), then Pr(s,a) = L;
e Lr(s) = Ly(s) for every s € Sg,

where minimal should be interpreted as having the smallest set of states.
Given a reduction function R: S — 2%, we define R: S — 2% by

S )0 if R(s) = en(s)
R(s) = { R(s) otherwise

The transitions in R are called the nontrivial transitions of the reduction. We say that a reduction function
R is acyclic if the original MDP restricted to the transitions in R is acyclic.

In other words, R assigns to each state s the subset of actions that are enabled by R in case a real
reduction is made for s. Otherwise, it assigns no actions to s. Note that the reduction function is acyclic if
there is no cycle of nontrivial transitions in the MDP.



Example 8. A possible reduction function R for the MDP in Figure 1 is given by R(sg) = {taski},
R(s1) = {taska}, R(s3) = 0 and R(s;) = en(s;) for every other state s;. The reduced MDP with respect to R
consists of solely the states so, s; and s3, and the two transitions connecting them. We have R(sq) = {task;}
and R(s1) = (0, and find that R is acyclic (which is immediate, as there is only one nontrivial transition and
this transition is no self-loop). O

When reducing MDPs, we clearly want to retain some behaviour to still be able to verify certain proper-
ties. The reductions we deal with preserve PCTL{y (a probabilistic variant of CTL{ y; see for instance [23]).

3. Ample Sets and Confluence for MDPs

This section presents the theory of the ample set reduction and confluence reduction techniques. While
the ample set technique is just taken from literature, our definitions and correctness proofs for confluence
reduction for MDPs are novel—although inspired by confluence reduction for PAs [17].

First, we need the concepts of weight functions and probabilistic visible (bi)simulation [24], as they will
be used to prove that our redefined variant of confluence for MDPs also preserves PCTL{ y.

Definition 9 (Weight functions). Let R C Sy x Sy be a binary relation and let p € Distr(S1) and
v € Distr(S2) be probability distributions. We write p Cr v if u,v # L and there exists a weight func-
tion w: S1 x Sy — [0, 1] such that for all s; € S1 and sy € Ss,

o w(sy,s2) > 0 implies (s1,82) € R;

. Z w(s1,8) = p(s1) and Z w(s, s2) = v(s2).
5€S2 s€ST
Definition 10 (Probabilistic visible bisimulation). Let M; = (S1,%, P1,sY,AP, L1) and My = (Ss, %, Ps,
89, AP, Ly) be MDPs, and let R C S1 x S be a binary relation. Then, R is a probabilistic visible simulation
for (My, M) if (s9,59) € R and, for every (s,s’) € R,
1. Ll(s) = LQ(SI);
2. If a € en(s), then either
(a) a € Liny and (target(s,a),s’) € R, or
(b) there is an invisible path s’ 2= §" in My such that (s, s}) € R for every state s, on this path,
a € en(s") and Pi(s,a) Er Py(s";a);

3. If there is an infinite invisible path s baba-y yin My such that (si,8") € R for every s; on this path, then
there is a finite invisible path s’ “2=" s! in My, n > 1, such that (s,s;) € R for every s’g on this
1ba...

path (possibly excluding s, ), and (s, s,) € R for at least one sy (with k > 0) on the path s =22,

A binary relation R is a probabilistic visible bisimulation for (M, M) if it is a probabilistic visible simu-
lation for (My, My) and R™" is a probabilistic visible simulation for (Mo, My).

We say that two MDPs My, My are probabilistically visibly bisimilar, denoted by My =pvr, Mo, if there
is a probabilistic visible bisimulation that relates them.

3.1. Ample sets

Although there are many techniques that are called “partial order reduction”, we focus on the ample set
method as presented in [13], as it is the most well known and the only one we are aware of that has been
defined so as to preserve probabilistic branching time properties. To present the definition, we first need
to introduce the notion of independence. Intuitively, two actions a, b are independent if they don’t disable
each other, and if the probability of ending up at any state by first taking a and then taking b is the same
as when the actions are taken the other way around.

Definition 11 (Independence). Given an MDP M = (S,%, P, s, AP, L), two actions a,b € ¥ are indepen-
dent if a # b and for every state s € S such that {a,b} C en(s) the following conditions hold:
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o If ' € spt(P(s,a)), then b € en(s’") (and symmetrically);

o Y P(s,a)(s)- P(s',b)(t) = Y P(s,b)(s) - P(s',a)(t), for every t € S.

s'esS s'es

If a and b are not independent, we say that they are dependent. An action a is dependent on a set B if
there exists at least one b € B on which a depends.

Based on this notion of dependence, the ample set constraints can be defined. We refer to [24] for an
extended explanation of these conditions.

Definition 12 (Ample set reduction). Let M = (S, %, P, s, AP, L) be an MDP without any terminal states.
Then, a reduction function A: S — 2% for M is an ample set reduction function if it satisfies the following
conditions in every state s € S:

A0 0 # A(s) C en(s);
A1l If A(s) # en(s), then A(s) C Xt

A2 For every path s % s1 25 ... 9oy s Bt in M such that b & A(s) and b depends on A(s), there exists
an 1 <i <n such that a; € A(s);

A3 For every path s <% 51 <2 -+ 2% s in M4 with s, = s, A(s;) = en(s;) for at least one 1 < i < n;
A4 If A(s) # en(s), then |A(s)] =1 and A(s) C Zqet-
The sets A(s) are called ample sets.

Note that we could also choose to allow MDPs with terminal states. In that case A0 should be changed
to allow A(s) = 0 if en(s) = 0. Note also that conditions Al and A4 can be combined by saying that either
A(s) = en(s) or A(s) contains exactly one invisible action.

Example 13. In the MDP M given in Figure 1, the actions task, and tasks are independent. After all,
there is only one state in which both are enabled: sg. From there, indeed, these two actions do not disable
each other. Moreover, when first executing task; and then executing taskso, the probability of ending up in
s1 is 1—10 and the probability of ending up in s3 is %. When executing the tasks the other way around, we
obtain the same probabilities.

Similarly, it can be shown that tasks and task, are independent. Note that tasks and taskg are not
independent, as they are both enabled in s1; and from there can disable each other.

A valid ample set reduction function A for M is given by A(sg) = {task1} and A(s;) = en(s;) for all
other states. Note that all ample set conditions vacuously hold for all fully-expanded states, so we only need
to investigate sg. The conditions A0, Al and A4 are trivial to verify. Also A3 is easy, since the only possible
cycle in M 4 is an infinite loop through s; (although this has probability 0): indeed A(s1) = en(s1). Finally,
to see why A2 holds, note that every path from sg either immediately traverses task; (which is indeed in
A(sp)) or starts with a number of times tasks and then taskq; for all traces of the second kind, tasks is
independent of A(sp) and task is in A(so), satisfying the condition.

This reduction function only gets rid of state s3. Note that no additional reduction is possible. In s3,
s4, S5 and Sg, no subset of the enabled actions can be chosen as an ample set, since none of the actions is
independent of the quit action (as quit disables all other actions). Also, in sg no reduction is possible, since
tasks and taske are not independent (after all, in state s11 they can disable each other). O

The following result from [13] indicates why ample sets are sound for MDP reduction.

Theorem 14. If A is an ample set reduction function for M, then M =pn, Ma, and consequently M
and M 4 satisfy the same PCTL?X—formulae.
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Figure 2: Non-probabilistic motivation.

3.2. Confluence

Confluence for action-based probabilistic automata was introduced in [17]. Here, we reformulate the
theory in terms of MDPs in order to compare it to the ample set method. In [17], three variants of
probabilistic confluence were introduced, differing in their ease of detection and their reduction power.
Traditionally, notions of confluence (as of bisimulation) that are able to distinguish many systems are called
strong, while the more relazed notions are called weak. Hence, reduction power is inversely related to the
strength of a notion’s distinctive character.

In this work, we redefine strong probabilistic confluence. The weaker variants are more difficult to use in
practice and would therefore not provide a fair comparison to ample sets. We weaken the notion of strong
probabilistic confluence slightly from [17], to make it a true probabilistic generalisation of the earlier notion
of non-probabilistic strong confluence from [5], except for the ability to preserve divergences. This way, our
results also hold for strong confluence in a non-probabilistic setting, as presented in previous work. We
first discuss non-probabilistic strong confluence as presented in [5], to provide motivation and intuition as a
foundation for the probabilistic variant.

3.2.1. Non-probabilistic strong confluence

Strong confluence is based on a set 7 of invisible transitions, that are all called strongly confluent if the
set satisfies a certain confluence property. Basically, it should be the case that the transitions from 7 can
never interfere with observable behaviour. That is, an action that is enabled before a confluent transition
should still be enabled after the transition (so that it can be mimicked). Moreover, the system should end up
in the same state, regardless of whether the other transition is taken before or after the confluent transition.
Because of this, confluent transitions can basically be given priority, omitting all other transitions from the
states in which they are enabled.

Strong confluence can be defined diagrammatically, as in Figure 2(a). Here, we write T above an arrow
to indicate that the corresponding transition is in 7 (and we do not care about the action name). The solid
lines should be matched universally, while the dashed lines are meant to be existential. That is, for all states
s,t,u,v in a system M such that there are transitions (s,a,t) € T and (s,b,u) € Ay, there has to be a
state v with transitions (¢,b,v) € Ay and (u,c,v) € T for some c. Additionally, if the left b-transition is
in T, so should the right one be. Some states might coincide, so for instance a self-loop (s, b, s) can be seen
as the transition (s, b,u) with u = s. The property should hold for all transitions in 7 and all actions b.

To make things slightly more liberal, invisible actions do not necessarily have to be mimicked. Therefore,
the double lines indicate that, in case b € Yy, it is also fine if ¢ cannot do a b-transition, as long as ¢t = v.
Similarly, since all transitions in 7 are invisible, it is also fine if there is no T-transition from u and v = v.

Example 15. As an example, consider the MDP in Figure 2(b). Note that the actions a, ¢, d, e, f and g
are invisible. We show that 7 = {a, ¢, f, g} is a valid strongly confluent set (indicated in bold in the figure).

First note that the confluence diagram always holds for a confluent transition with itself. Take for
instance the match s = s4 and t = u = s5, with the c-transition being both of the outgoing transitions from

8



Figure 3: An MDP to demonstrate ~>.

s. Since every T-transition is invisible, we can take both ¢ = v and u = v due to the double lines (which is
valid since ¢t = u), and the diagram holds vacuously. For ¢ and f there is nothing more to check.

For a, there are three additional transitions for which the diagram has to hold. The b-transition can
easily be seen to satisfy the diagram, since it can indeed be mimicked from s; and there is a T-transition
between the target states. For the d-transition, the diagram holds by taking ¢t = w = v. Finally, for the
e-transition (which is invisible itself), we can take ¢ = v and see that the diagram fits using s = sg, t = v = $1
and u = s3. For g we should have v and v coincide, and take s = s5, t = sg and u = v = ss. O

3.2.2. Probabilistic strong confluence

In a probabilistic setting, transitions do not have a single target state anymore; they go to a distribution
over target states. Therefore, instead of requiring as above that u should have a T-transition to v, we should
require that the distribution corresponding to the b-transition from s is somehow related by 7 -transitions
to the distribution corresponding to the b-transition from ¢.

To define strong probabilistic confluence, we therefore introduce the notion of equivalence up to T -steps:
a way of saying that two probability distributions are basically the same, except for some intermediate
transitions from a set 7.

Definition 16 (Equivalence up to T-steps). Let M = (S,%, P,s°, AP, L) be an MDP, T C Ay a set of
deterministic transitions of M, and p,v € Distr(S) two probability distributions. Then, we say that p is
equivalent up to T-steps to v, denoted by u ~7 v, if u,v # L and there exists a partitioning spt(p) = L—ﬂ?zl Si
of the support of p and an ordering spt(v) = {s1,...,sn} of the support of v, such that

Vi<i<mn.u(S;)=v(s)AN(S;i={si}VVseS,.JacX.(s,a,1,)eT).

With respect to the notion of equivalence up to 7.-steps of [17] this definition is slightly more general,
as we allow states in the support of p to directly correspond to states in the support of v, without requiring
a T-step in between (by the S; = {s;} clause). This corresponds to the fact that the lower 7T-transition in
Figure 2(a) is dashed, and is needed for our probabilistic notion of strong confluence to coincide with the
existing non-probabilistic notion in a non-probabilistic context (except for divergences).

Example 17. Consider the MDP in Figure 3, and let T = {(so,a,s1), (s2,q, S6), (83, a, S5), (84,a, S5) }.
Moreover, let u = P(sg,b) and v = P(s1,b). It now follows that pu ~»7 v, by taking the partitioning
spt(p) = S1 U Sy with S; = {s2} and S2 = {s3,s4}, and the ordering spt(v) = {s¢,s5}. Now, indeed
1(S1) = & = v(sg) and p(S2) = 2 = v(ss). Also, there is a transition in 7 connecting s3 to sg, and there
are transitions in 7 connecting s3 and s4 to s5. Note that it also would have been fine if, for instance, sg

directly went to sg instead of sy with probability % as part of the b-transition. O

The next lemma states that, given a deterministic transition (s, a, 1), the distribution from s associated
with an action b independent of a is equivalent up to a-labeled-steps to the distribution associated with the
same action from s’.



Lemma 18. Let M = (S,%,P,s°,AP,L) be an MDP, and a,b € ¥ two independent actions such that
a € Xqet- Let s € S such that {a,b} C en(s), and assume that s = s'. If T contains all outgoing a-transitions
from states in the support of P(s,b), i.e., T 2 {(t,a,p) € Apr |t € spt(P(s, b))}, then P(s,b) ~1 P(s',b).

Proof. For any t € spt(P(s',b)), let By = {r € spt(P(s,b)) | r % t} be the set of states that might be reached
after the action b from s and can reach ¢ by an a-action. As a and b are independent, R; is not empty, and
when taking into account the assumption that a is deterministic it follows that {R; | t € spt(P(s',b))} is a
partitioning of spt(P(s,b)). We use this partitioning to show that P(s,b) ~7 P(s’,b). Indeed

P(s',b)(t) = D P(s,a)(s")- P(s",b)(t) = > P(s,b)(s") - P(s",a)(t)
s""es s'"'eS
= Z P(s,b)(s")- P(s",a)(t) = P(s,b)(Ry).
s""€Ry

The first equality follows from the fact that a is deterministic, the second from the independence of a and b,
the third from the definition of R; and the fourth from the fact that a is deterministic.
Also, by definition of R; and 7 and the fact that a € Yget, we have Vs € Ry . Ja € ¥ . (s,a,14) € T. O

We define strong probabilistic confluence for sets of transitions 7, and require every transition in such a
set to have an invisible action. Actions that were enabled before a confluent transition should still be enabled
after the transition, and if a transition (s, b, u) is to be mimicked by a transition (¢, b, ), then there should
be confluent transitions connecting p and v as defined by the relation ~»5. As an exception, transitions
with invisible actions and having the same source and target state as a confluent transition do not have to
be mimicked, as an equivalent transition already exists by definition.

Definition 19 (Strong probabilistic confluence). Let M = (S,%, P,s°, AP, L) be an MDP. A set T C Ay
of transitions of M is strongly probabilistically confluent if all its transitions have invisible actions, and for
every (s,a,1t) € T and every b € en(s) either

o P(s,b) ~7 P(t,b) and, if (s,b, P(s,b)) € T, then also (t,b, P(t,b)) € T, or
e be X, and P(s,b) = 1,.

A transition (s,a,u) € A is said to be strongly probabilistically confluent if there exists a strongly proba-
bilistically confluent set T such that (s,a,p) € T.

To motivate this definition, consider again the diagram in Figure 2(a). The first clause of our definition
corresponds to the case where the b-transition from s is indeed mimicked from ¢. In the non-probabilistic case,
we then required that there either is a confluent transition from u to v, or that v = v. In the probabilistic
case, this corresponds to requiring that P(s,b) ~7 P(t,b). Also, just like in the non-probabilistic case, we
require that if the b-transition from s is confluent, then so is the one from ¢.

If b € iy, as stated by the second clause, then the states ¢t and v in Figure 2(a) are allowed to coincide.
If P(s,b) = 14, then apparently also ¢t and wu coincide, and the diagram holds vacuously. So, the second
clause corresponds to the case that both the path from u to v and the path from ¢ to v is empty.

Looking at the non-probabilistic diagram, there is one last possibility: if b € Xy, it is also allowed that it
is not mimicked by ¢ (so t = v), that u # v, and there is a T-transition from u to v. A clause dealing with this
case would be “b € X, and Je . (target(s,b),c,1;) € T7. In the non-probabilistic action-based setting, the
object is to preserve branching bisimilarity. Branching bisimulation as an equivalence does not require loops
of invisible actions, i.e., divergences, to be preserved. In the current context we want to prove probabilistic
visible bisimulation, which requires divergence to be preserved by confluent transitions (otherwise, minimal
reachability probabilities might change). To demonstrate that the suggested third clause would not preserve
enough behaviour, consider the MDP in Figure 4.

Here, T = {b} would be a valid strongly probabilistically confluent set if this additional third clause
would be taken into account. After all, a is invisible and indeed there is a confluent transition from sg to si.

10



{r} {r} {a}

Figure 4: An MDP to demonstrate strong probabilistic confluence.

A reduction based on this set, keeping only the b-transition from sy and omitting the a-transition, would
change the minimal reachability probability from sg of the atomic proposition ¢ from 0 to 1. For this reason,
we need a stronger condition than the non-probabilistic version of strong confluence and omit this clause.
We are now ready to define confluence reduction functions.

Definition 20 (Confluence reduction). Given an MDP M = (S,%,P,s°, AP, L), a reduction function
T: S — 2% is a confluence reduction function for M if there exists some confluent set T C Ans such that,
for every s € S,

o if T'(s) # en(s), then T(s) = {a} for some a € Lin, such that (s, a, Liarget(s,a)) € T-
In such a case, we also say that T is a confluence reduction function under 7T .

Note that, in every state, a confluence reduction function either fully explores all outgoing transitions
or explores only one of them (which is then required to be confluent). This way, the possibility exists that
confluent transitions are taken indefinitely, ignoring the presence of other actions. This problem is well
known in the theory of partial order reduction as the ignoring problem [3, 25], and is dealt with by the cycle
condition A3 of the ample set method. With strong confluence this problem can be dealt with by requiring
acyclicity, and in Section 5 we will look at an alternative approach.

Example 21. Consider again the MDP M given in Figure 1. We define T = {(so, taski, s1), (s2, tasky, s3),
(83, tasks, s4), (85, tasks, s¢), (Ss, tasks, s9), (10, tasks, s11)}. Note that, indeed, all of these transitions have
invisible actions. Moreover, it is easy to verify that, for instance, P(sq, tasks) ~»7 P(s1, tasks). This is the
only proof obligation for the transition (sg, taski,s1) in 7. For (so, tasky, s3) there is nothing we have to
prove, since there are no other transitions from ss.

Note that (ss5, tasks, sg) is a valid element of T, since P(s5, quit) ~7 P(sg, quit). After all, both of these
probability distributions assign probability 1 to s7, and hence equivalence up to 7 -steps is trivial due to the
clause S; = {s;} in its definition. The validity of the other transitions is shown similarly.

Based on T, we can define the reduction function T given by T'(sg) = tasky, T(s3) = tasks, T(ss) = tasks
and T'(s) = en(s) for all other states s. The reduced MDP obtained in this way is shown in Figure 5. Note
that, compared to the maximal ample set reduction that could be obtained for this MDP, we reduced on
two more occasions in the MDP. O

3.2.8. Correctness
Our main result here is Theorem 25, which establishes the correctness of acyclic confluence reduction

functions. The following two lemmas and corollary first give us some tools. For starters, we provide a lemma
stating that the joinability relation for confluent transitions (i.e., —»«—7) is an equivalence relation.

{r} {a} {s} {t}

10
tasky taskso tasks

{r} {a} tr}

{

continue

Figure 5: A reduced MDP.
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Lemma 22. Let M = (5,3, P,s°, AP, L) be an MDP, and T C Ay a strongly probabilistically confluent
set of transitions of M. Then, the set R ={(s,s) | s »«7 s’} is an equivalence relation.

Proof. Clearly, R is reflexive and symmetric by construction. So, we only need to prove transitivity.

Let s —«—7 s -« s’’. We show that s’ -« s”. Let ¢’ be a state such that s -7 ¢’ and s’ - ¢/,
and likewise, let t” be a similar state for s and s”’. If we can show that there is some state ¢t such that ¢’ —»+ ¢
and ¢ —7 t, we have the result. Let a minimal confluent path from s to ' be given by sy 2922y 5
with sy = s and s,, = /. By induction on the length of this path, we show that for each state s; on it, there
is some state ¢ such that s; -7 ¢ and ¢ —» ¢. Since ¢’ is also on the path, this completes the argument.

Base case. There clearly is a state t such that sqg —7 t and t/ —7 ¢, namely t” itself. After all, sg = s
and s —7 t”, and —» 7 is reflexive.

Inductive case. Let there be a state ¢ such that s, —7 ¢, and ¢ —7 ;. We show that there exists a
state ty1 such that sg11 =7 tp1 and t - tpi1. Let (sg,a,u) € T be the first transition on the T-path
from sy to t. Let (sg,ak+1,8k+1) € T be the T-transition between s and sp41. By Definition 19, either
(1) sp41 =u, or (2) Ly, ., ~»7 P(u,ars1) and (u, apq1, P(u, arq1)) € T.

In case (1), we directly find sx41 —7 ti. Hence, we can just take tx11 = tg. In case (2), there is some
state u’ such that (u,ary1,u’) € T and either sg1 = u' or (sgy1,c¢,u’) € T for some action c. If u = ¢, we
can take t;.1 = u’ and indeed sgy1 7 tgy1 and t” — 7 i 1. Otherwise, we can show as above that there
is a state tp4q such that u’ —7 tp1q and ¢/ — 7 tgi1, based on u —»7 t and ¢/ —» t5. Since the path from
u to ti is one transition shorter than the path from si to tx, this argument terminates. O

Based on the lemma above, it is immediate that confluent transitions can always join again without
having to take any non-confluent transitions. We state this property in terms of terminal SCCs—i.e.,
maximal strongly connected subgraphs without any outgoing transitions—of the system obtained when
omitting all non-confluent transitions.

Corollary 23. Consider an MDP M, a strongly probabilistically confluent set of transitions T, and the
subgraph of M obtained by keeping only the transitions that are in T . Then, for every state s in this subgraph,
there is a unique terminal SCC.

Proof. This is an immediate consequence of the fact that R = {(s, s) | s »«7 s’} is an equivalence relation.
After all, consider a state s with multiple outgoing T -transitions, for instance to s’ and s”. Then, s -« s’
and s -« s, and hence by transitivity of R also s’ -« s, So, s’ and s’ cannot be part of distinct
terminal SCCs, as there is a state they can both reach. O

As a last preparation for the main theorem of this section, we show that p ~»7 v implies that p and v
assign the same probabilities to sets of states that are joinable by confluent transitions.

Lemma 24. Let M = (S,%, P,s°, AP, L) be an MDP, and T C Ay a strongly probabilistically confluent
set of transitions of M. Also, let R = {(s,s") | s »«7 §'}. Then, p ~>1 v implies p =g v.

Proof. First of all, by Lemma 22 we find that R indeed is an equivalence relation.
Let p ~»7 v, Le., p,v # L and there exists a partitioning spt(u) = Wi, S; of the support of y and an
ordering spt(v) = {s1,..., s, } of the support of v, such that

Vi<i<n.u(S;)=v(s;)AN(Si={si}VVseS;,.FaeX . (s,a,1,,)€T).

Now let R’ be the smallest equivalence relation that relates the states of every set S; to each other and to
their corresponding s;. That is, for every S; and for all s, € S;, let (s,s’) € R’ and (s,s;) € R’. Since
w(S;) = v(s;) for every S;, clearly p =g v.

Since a transition (s, a,s;) € T implies s -« s;, we find (s,s;) € R for all s € S; in every S;. Also for
every S; and all s, s’ € S; we have s —« &', since they either coincide or can join at s; (so also (s, s’) € R).
Since R’ is the smallest equivalence relation having these properties, we find that R O R’. Because of this,
i =pr/ v implies p =g v (using Proposition 5.2.1.1 and 5.2.1.5 from [26]), which is what we wanted to
show. O
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We are now able to prove the following theorem, stating that acyclic confluence reduction functions are
correct with respect to probabilistic visible bisimulation. Note that acyclicity was introduced in Definition 7.

Theorem 25. Let M = (S,%, P,s°, AP, L) be an MDP, T a strongly probabilistically confluent set of tran-
sitions from M and T an acyclic confluence reduction function under T. Let My = (St,%, Pr,s°, AP, L)
be the reduced MDP. Then, M =y, Mr.

Proof. In this proof, whenever we write that a transition is ‘confluent’, we mean that it is in 7. Similarly,
a ‘confluent path’ in this proof is a path consisting only of transitions from 7.

Let R = {(s,s') € S x S| s »«7 s’} be the relation that relates all states that can join by traversing
only confluent transitions. By Lemma 22, it is an equivalence relation. Let R = R N (S x Sr), i.e., it
restricts R to relating only states of the original MDP to the reduced one. Note that R is still transitive,
and that it is reflexive for the state of Sp. We first prove that R is a probabilistic visible simulation for
(M, Mr). Note that (s°,s%) € R, since R is reflexive for states in St and indeed s® € Sz due to the fact that
reduction functions preserve initial states. For the additional conditions of probabilistic visible simulation,
let (s,s') € R,s0s €S, s €Srand s »«7p 5.

1. L(s) = Ly (s") holds because all confluent transitions are invisible (and hence stuttering).

2. Let a € en(s). Since (s,s’) € R and hence also (s,s’) € R, there is at least one state in S that is
reachable in M using confluent paths from both s and s’. Combining this fact with Corollary 23, we
find that there is a unique terminal SCC of the subgraph of M obtained by keeping only the transitions
that are in 7, that can be reached in M from s and s’ by following only confluent transitions. Since
reduction functions preserve at least one confluent transition in each state that has at least one such
transition and T is acyclic, s’ can still reach a subgraph of this terminal SCC in Mr. Let t be a state
in this subgraph such that T'(t) = en(t), i.e., t is fully expanded. Such a state exists, due to acyclicity
of the reduction.

So, there is a confluent path from s to ¢ in M, and there is a confluent path from s’ to t in M.
Therefore, (s,s;) € R for all states s on the path from s’ to ¢ in Myp. Since all transitions on this
path are confluent, the path is invisible, and it can be used to satisfy condition 2(b) of the definition of
probabilistic visible simulation. We only still need to show that a € en(t) and that P(s,a) Cr Pr(t,a).
Since ¢ is fully expanded, Pr(t,a) = P(t, a), so we just need to prove that P(s,a) Cr P(t,a).

Let sg by S1 LENUN sp with s = s and s,, = t be the confluent path from s to ¢t. We show
by induction on its length that either a € i, A (target(s, a),s’) € R, or P(s,a) =g P(s;,a) for every
0 < i < n (note that we use =g instead of =g). The first part coincides with condition 2(a) of
Definition 10. The second part can be instantiated with ¢ = n to obtain P(s,a) =g P(t,a) and thus
also P(s,a) Cr P(t,a) (using Proposition 5.2.1.1 from [26]). As ¢ is fully expanded, every state in
the support of P(t,a) is in St, so P(s,a) Cr P(t,a) implies P(s,a) Cr P(t,a), which coincides with
condition 2(b) of Definition 10 (using the confluent path from s’ to ¢ in My discussed above).

Base case. For sp, we immediately obtain P(s,a) =r P(so,a) from the fact that s = s and the
reflexivity of the =x relation.

Inductive case. Let either a € Eiyy A (target(s,a),s’) € R, or P(s,a) =g P(s;,a) for every 0 < i <k
from some k < n. In case the first part of this disjunction is true, we are done. So, we assume
P(s,a) =g P(si,a) and prove either a € X, A (target(s,a),s’) € R or P(s,a) =r P(sk+1,a). We
make a case distinction:

(a) Let a € Xi,y and P(sg,a) = 1, ,. Notice that P(s,a) =r P(sy,a), combined with the facts that
a € Yiny and P(sg,a) = 1, ,, yields (target(s,a), sp+1) € R. Since there is a direct confluent
path from sg41 to ¢ and one from s’ to ¢, also (sg+1,s’) € R. Finally, by transitivity of R we find
(target(s,a),s’) € R and since s’ € My, also (target(s,a), s’) € R.

(b) Let a ¢ ¥iny or P(sg,a) # 1s,,,. Then, by definition of confluence P(sy,a) ~»7 P(spy1,a).
Lemma 24 yields P(sk,a) =r P(sg+1,a). By transitivity of =g, we find P(s,a) =g P(sk+1,a).
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3. Let s 222 he an invisible path such that (s;,s’) € R for every state s; on the path. As shown above

in part (2) of this proof, (s,s’) € R implies that there is a state ¢t such that T'(t) = en(t), there is a
confluent path from s to ¢ in M and there is a confluent path from s’ to ¢ in M.

If ' has an outgoing confluent transition (so with an invisible action) to some state s”, then
(s',8") € R and by transitivity of R also (s;,s”) € R for every i. Hence, the condition is met.

So, assume that s’ does not have an outgoing confluent transition, and thus ¢ = s’. Hence, there is
a confluent path from s to s’. Note that one of the states on the confluent path s 2“2y s is the last

one to appear in the infinite path s %, let us say this is s;. Note that the index i here refers to

the index of this state on the confluent path from s to s’, and that the index of this state on s bibgery
may be different. We denote the states on that infinite path without prime, so let’s say that s} = sy.

Now, we prove by induction on the length of the path from s to s’ (also denoted by s},) that every
state s on that path (including s’) has an infinite path of invisible transitions, i.e., s} == (where
we use T to denote an anonymous invisible action), such that every state on that path is reachable by

a directed confluent path from at least one state s; of the path s bibgey

Basbe case. Sir}?ce s} is on the path s %ﬁ it clearly has an infinite invisible path, just continuing
S = spi1 =2 .... Also, each state on this path is reachable by a directed confluent path from

some state on s ﬁ&%, as they even are on s bib2-y and therefore empty paths suffice.

Inductive case. Let s’ (with s # ') be a state on the confluent path from s to s” such that s ==
and every state on s; TT-3 is reachable by a directed confluent path from at least one state of the
path s 222y We show that 8’1 also has such an infinite invisible path. If s7_; lies on s} ITs this
is obviously true. So, from now on assume that the infinite invisible path from s} does not involve
33 +1- Note that 53 41 is reachable by a directed confluent path from some state on s %, namely
the state s mentioned above, as there is a directed confluent path from s = s} to s; 41 (this is after
all a part of the confluent path from s to s).

Now, let s* be s7’s successor on the infinite invisible path s Il 80 s} 2y s* for some b (in-
visible, but not necessarily confluent). As 5;. also has a confluent transition to s; 11, by definition
of confluence either P(s’,b) ~7 P(s},,b) or target(s},b) = s”, ;. The second option is impossible,
since target(s;,b) = s* is on the infinite path s’ == and we assumed that s/, is not. The first
options translates to either (a) s* = target(s; ,b) or (b) there is a confluent transition from s* to

target(s) 1, 0).

(a) In this case, clearly s}, also has an infinite invisible path, first taking it’s b-transition and then
continuing on the infinite invisible path from s*. All states on this path are reachable by a
directed confluent path from at least one of the states of the path s bib2-y Qe to the induction

hypothesis and the earlier observation that this holds for s; 41

(b) In this case, there is a state u such that s;-+1 2 u and s* has a confluent transition to u.

If u is on s; ITy  then s; 41 has an infinite invisible path, and the directed confluent paths

exist for the same reason as in case (a).

If w is not on sg TT-y  then again u is reachable by a directed confluent path from some
state on s %, since s* is and there is a confluent transition from s* to u. Moreover, from u
the exact same situation that we started with appears again. So, we can repeat the argument
until case (a) occurs, or if that doesn’t happen (b) occurs infinitely often and s’ ; has an infinite

invisible path as well.

So, s’ has an infinite invisible path such that every state on this path is reachable by a directed
confluent path from as least one of the states of the path s bibzy et s b s* be the first transition
of this path from s’, then the path s Ly s* satisfies condition 3 of Definition 10. After all, this path
is in M7 since t was assumed to be fully expanded and s’ = t. Moreover, there indeed is some state v
on s 225 with a directed confluent path to s*, so (v,s*) € R*. It is easy to see from the proof that

v corresponds to a state s; on s bibaey with i > 0, as required by Definition 10.
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To see that R~! is a probabilistic visible simulation for (M7, M), we can use the same as or much simpler
arguments than above:

1. As above.

2. Every state s € Sp will have either exactly one outgoing confluent transition, or exactly the outgoing
transitions that are in M. In the first case 2(a) holds, and in the second, 2(b), trivially.

3. The same reasoning applies as before, with the simplification that each infinite execution of My is at
the same time an infinite execution of M. O

Proposition 3.4.10 from [24], gives the following corollary.

Corollary 26. If T is an acyclic confluence reduction function for M, then M and My satisfy the same
PCTL! x -formulae.

3.2.4. Weak confluence
Many weaker definitions of probabilistic confluence can be given. Here we provide one, based on the
notion of action-based weak probabilistic confluence from [17].

Definition 27 (Weak Probabilistic Confluence). Let M = (S, %, P,s°, AP, L) be an MDP, T C Ay a set
of transitions from M and R = {(s,s') € S x S | s =« §'} a relation over its states. Then, T is weakly
probabilistically confluent if a € 3, for every transition (s,a,u) € T, and

e The relation R is an equivalence relation, and

o For every path s -1 t and for every a € X, (s,a, ) € Ay implies A’ € S .t -7 t' such that either
P(t',a) =r p or a € Xiny and p =g 1y

Note that reflexivity and symmetry of R are immediate. Transitivity basically corresponds to requiring
that two outgoing 7 -transitions from the same state can always join again following only 7 -transitions. This
yields the very appealing property that, when only following 7-transitions, we always end up in a unique
terminal strongly connected component (as we also used above with strong probabilistic confluence).

As expected, weak probabilistic confluence is implied by strong probabilistic confluence.

Proposition 28. A strongly probabilistically confluent set of transitions is weakly probabilistically confluent.

Proof. Let T be a strongly confluent set of transitions. We need to prove two things. Firstly, we need to
show that the relation R = {(s,s’) | s -« &'} is an equivalence relation. This was already proven in
Lemma 22. Secondly, we need to show that s — ¢ implies that for every a such that P(s,a) # L, there
exists a state t' such that ¢ -7 t' and either P(s,a) =g P(t',a) or P(s,a) =g 1y and a € Xjpy.

For the second part, strong confluence guarantees that if P(s,a) # L, then on all confluent paths that
start from s, a is never disabled (unless it is invisible). More formally, let s = 59 <% s1 % -+ < 5, = ¢
be a path from s to ¢ such that all transitions are in 7. First, assume that a & i,y Then7 we know by
strong confluence that P(s;—1,a) ~7 P(s;,a) for every 0 < i < n, which by Lemma 24 implies that also
P(si—1,a) =g P(si,a). Then, transitivity of R gives the result.

If a € ¥i,y, possibly at some point P(s;,a) = 1,,,. Since the above arguments apply until this point,
P(s,a) =r P(si,a). Moreover, since s;y1 —7 t, we find 1,,,, =r 1;, so since P(s;,a) = 1 also
P(si,a) =g 14, and by transitivity of =g we obtain P(s,a) =g 1.

Sit1

Although states that are connected by weakly confluent transitions can be shown to have the same
observable behaviour, this fact is hard to use for state space reduction. For instance, consider this MDP:

{d} {r}

<—O—.
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Here, both a-transitions are weakly confluent, as the observable transitions are not disabled. Indeed,
s1 and so are branching bisimilar in the sense that they have the same behaviour modulo invisible actions.
However, a reduction function R that chooses for instance R(s1) = {a} would not be valid, as the observable
b-transition is now not reachable anymore from s; and so, while it was before. Hence, this reduction function
based on a weakly confluent set is not sound, even though it is acyclic. A solution would be to merge all
the equivalent states into one big state, but in practice this is much less convenient. For this reason, we will
use strong probabilistic confluence in our comparison to ample sets.

4. A Comparison of Ample Sets and Confluence

The relationship between ample sets and confluence is not straightforward. In this section, we will first
see that confluence is strictly more general, by proving that every ample set reduction also is a confluence
reduction. In addition to this, we discuss the aspects that differentiate ample sets from confluence. To show
that these are the only differences, we provide variations to the concepts that make them coincide. The
choice of which concept is varied in each situation, is to a large extent arbitrary. Restricting confluence
or relaxing ample sets is not the issue here, the objective is to prove that we have identified the essential
differences. However, the variations are made in such a way that the resulting notions are useful in practice.
Restrictions of confluence rule out features that are plausibly hard to implement in practice, and relaxed
features of ample sets are such that they have been used in practice.

4.1. Why confluence is strictly more powerful

The starting point of our investigation is given by Theorem 29. It shows that, if the ample set method
allows a state to explore only one of its outgoing transitions, the confluence method also allows this. There-
fore, any reduction that can be achieved by the use of ample sets can also be achieved by using confluence.
In the following, “confluence” refers to the notion of strong confluence of Definition 19.

Recall that A(s) contains the actions that are enabled from s by a reduction function A in case s is not
fully explored (the nontrivial transitions); otherwise, A(s) is the empty set (Definition 7).

Theorem 29. Let A be an ample set reduction function for an MDP M = (8,3, P,s°, AP, L). Then, the
set Ta = {(s,a,p) € Apr | a € A(8)} is acyclic, and consists of strongly confluent transitions.

Proof. Firstly, the fact that 74 is acyclic follows from the ample set condition A3: a cycle of nontrivial
transitions would violate the condition. Secondly, to show that all the transitions in T4 are confluent, we
need to find a confluent set of transitions 7; D T4 in which they are contained. Let T} be defined as the
minimal set that satisfies the following:

o Ta" 2 Ta;
o If (s,a,1;) € T5 and b € en(s) (b # a), then {(so,a, u) € Apr | so € spt(P(s,b))} C Tx.

To prove that T4 is confluent, first note that by conditions Al and A4 of the definition of ample
sets and by construction of 7, only transitions with invisible actions are ever added to the set. Second,
let (s,a,1;) € T; and let (s,b, ) be a transition of M. If b equals a, then the condition for confluence is
trivially fulfilled, so assume that b # a. If we can prove that a and b are independent, confluence follows from
Lemma 18. Note that this lemma is indeed applicable, since by construction 7 contains all a-transitions
from the support of P(s,b).

By definition of T, there must be some state s* and a (possibly trivial) path s* brbuy o guch that b; #a
for each i, and a € A(s*). Then, A(s*) = {a}, by condition A4 of ample sets. Condition A2 guarantees that
if b depends on a, we would have at least one b; € A(s*), contradicting A4. Thus, a and b are independent.

Also note that, if (s,b, ) € T} too, then for confluence it has to be mimicked by a confluent transition.
Indeed, since (s,b, 1) € T and a € en(s), by construction also the b-transition from ¢ is in 77}. O
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Figure 6: Confluence triumphs over ample sets.

This result obviously holds for weaker notions of confluence (probabilistic confluence from [17] and weak
probabilistic confluence), which are even more powerful than strong probabilistic confluence. On the other
hand, it is not the case that every confluent transition can be chosen to be in a nontrivial ample set.
Confluence reduction turns out to be more liberal on several aspects, some of which are illustrated by the
following examples.

Example 30. Consider the MDPs in Figure 6 (with the atomic propositions per state indicated in brackets).
For these MDPs, all transitions are deterministic. Note also that all a-transitions are stuttering and therefore
invisible. Even more, they are constructed in such a way that the outgoing a-transitions from every state s;
are confluent. Hence, some confluence reduction is allowed to omit their outgoing b-transitions, removing
six transitions and two states.

In Figure 6(a), also the b-transition is invisible. Due to the part b € Xj,, and P(s,b) = 1; of the
disjunction in Definition 19, this transition does not prohibit the a-transition from being confluent. After
all, this part basically allows confluent transitions to disable other invisible transitions having the same source
and target state as the confluent transition, as illustrated here. Therefore, confluence reduction is allowed
to choose either one of these two transitions and could for instance reduce based on T = {(s1,a,15,)}. The
ample set conditions do not allow this; they require complete independence between a and b for {a} to be
a valid ample set for s;. Hence, the only valid ample set for s; is {a,b}.

In Figure 6(b), the b-transition is not invisible anymore. Also, a and b are again dependent since b
disables a. However, the a-transition from s; can still be considered confluent, taking 7 = {(s1,a,1s,)}
as the underlying confluent set for confluence reduction, due to the part S; = {s;} of the disjunction in
Definition 16 (so the reduction is enabled by the weakening of this definition with respect to [17]). This part
of the definition makes sure that although visible actions must still be enabled after a confluent transition,
the confluent action does not need to still be enabled after the visible action. Again, however, ample set
reduction would not work since a and b are not independent.

Although it might seem that allowing reduction in case of triangle constructions such as Figure 6(b) only
removes some transitions, it can in theory make a significant difference in the number of states. Imagine for
instance a system in which every state has a transition quit to a single deadlock state (as is partially the
case in Figure 1). Then, not one action is independent of quit, and ample set reduction would not be able
to provide any reduction. However, such transitions would not interfere with confluence. Every confluence
reduction that would be possible without the quit transitions is still possible with the quit transitions.

In Figure 6(c), the a-transition can be considered confluent since the diamond shape is closed perfectly
(taking T = {(s1,0a,1s,), (ss3,¢,1s,)}). Even though b disables a, there is a transition from s3 to s4 that
can easily be seen confluent. The ample set conditions strictly require invisible transitions to be mimicked
by equally-named invisible transitions, not allowing any reduction for this model.

In Figure 6(d), the outgoing a-transition from s; is confluent since the diamond shape of independence
is present (taking 7 = {(s1,a, 1s,), (s3,a,1s,)}). The fact that a can disable b later on in the system does
not matter for confluence. The ample set conditions, however, do require a and b to be globally independent
for {a} to be a valid ample set for s;. As this is not the case, no reductions can be achieved with ample set
reduction. O
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One large contributor to why confluence provides more reduction stems from the fact that it is defined
based on the actual low-level transitions at a given state of the model, whereas the independence notion of
ample set reduction works on higher-level actions and is considered to be global. That is, the dependency
relation is assumed to be the same for every state. In practice, however, heuristics for detecting confluent
transitions symbolically often also take this action-based point of view, which diminishes the difference [4, 17].

4.2. Making confluence and ample sets coincide

To show that the differences discussed above are indeed the only differences between confluence and
ample sets, we remove them and show that the resulting notions indeed coincide. As a first step, we
precisely prohibit all the liberal aspects of confluence that make the reductions in Figure 6(a), 6(b) and 6(c)
work. When looking at Figure 2(a), this implies changing the double lines to single lines (and hence not
allowing ‘shortcuts’ anymore). As a second step, we loosen the independence concept of ample sets so that
it better corresponds to the more local approach of confluence, allowing ample set reduction to optimise
Figure 6(d). Note that we do this safely, i.e., Theorem 25 is never compromised in the process, as all these
notions will still be confluent in the sense used in that theorem.

Restricted confluence. First of all, we strengthen equivalence up to 7-steps to force it to always occur in
the diamond structure of independence. Therefore, the part S; = {s;} of the disjunction has to be removed.
This results in confluence not being able to reduce Figure 6(b) anymore.

Definition 31 (Restricted equivalence up to T-steps). Let M = (S,%, P,s°, AP, L) be an MDP, T C Ay,
a set of deterministic transitions of M, and p,v € Distr(S) two probability distributions. Then, we say
that p is equivalent up to T-steps to v, denoted by p ~75 v, if p,v # L and there erists a partitioning
spt(p) = Wi, S; of the support of u and an ordering spt(v) = {s1,...,sn} of the support of v, such that

Vi<i<mn.u(S;)=v(s;)A\VseS;.JaeX . (s,a,1,,)€T.

When symbolic analysis is carried out for ample sets and similar methods, the relations that are extracted
are usually assumed symmetric: if @ and b are independent, then they do not disable each other. This is
much due to the way algorithms for generating them often work (though not always, see for instance [16]).
The above stronger version of up-to-equivalence features this same symmetry.

In addition to strengthening equivalence up to 7T-steps, also strong probabilistic confluence is restricted
to no longer allow an action b from a state s with a confluent transition (s,a,1;) to immediately go to ¢
and not be mimicked there; the practical interpretation is similar to the one mentioned above. After this
change, no reduction is possible anymore in the model of Figure 6(a).

Definition 32 (Restricted probabilistic confluence). Let M = (S,3, P,s°, AP, L) be an MDP. A set
T C Ay of transitions of M is restrictedly probabilistically confluent if all its transitions have invisible
actions, and for every (s,a,1s) € T and every b € en(s) (b # a), it holds that

o P(s,b) ~% P(t,b) and, if (s,b,P(s,b)) € T, then also (t,b, P(t,b)) € T.

We call a reduction function with an underlying restricted confluent set a restricted confluence reduction
function.

We add the restriction b # a, as without it, confluent transitions would not commute with themselves
anymore. Since in the original definition every confluent transition also already commuted with itself, this
does not weaken the concept. Hence, Definition 32 is a true restriction of Definition 19.

Finally, we saw in Figure 6(c) that for confluence it can happen that invisible transitions are mimicked by
actions with different names. To get closer to the notions coinciding, we need to make sure that actions are
not allowed to rely on other actions to ‘close their diamonds’. From the point of view of symbolic analysis,
this restriction matches the practical methods of analysis used in conjunction with ample set reduction: this
way only pairwise analysis of actions is required, and the algorithms for generating ample sets or similar
notions mostly rely on these sort of binary relations. For this purpose we introduce the concept of action-
separability, requiring that each subset of 7 that can be obtained by only keeping one specific action, is
confluent. That way, confluence reduction functions such as the one in Figure 6(c) are not allowed anymore.
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Definition 33 (Action-separable confluence). Let M = (S,%, P,s°, AP, L) be an MDP, then a confluent
set T C A of transitions of M is action-separable if for every action a € ¥ the subset T, = {(s,a,u) €
S x {a} x Distr(S) | (s,a,pu) € T} of a-labelled confluent transitions is either empty or confluent.

A confluence reduction function T: S — 2% is action-separable if its underlying confluent set T is.

Relaxing ample sets. Independence is judged by the ample set constraints in a global manner, whereas
confluence deals with the notion of “equivalence up to”, which is much more local.

To make the methods coincide, independence should also be judged locally, i.e., given a state, dependency
of a and b makes a difference only in parts of the MDP that can be reached without executing the ample
action first. This corresponds to the fact that confluence only puts restrictions on commutation of actions
before a confluent transition.

The practical side of this lies in dynamic analysis. We can, for instance, initially consider that a and b
are dependent due to symbolic analysis. However, after finishing exploring some part of the possible states
following a state s, we might come to the conclusion that the dependency never manifests anywhere where a
has not been executed yet, and thus declare a independent of b locally in s. This idea originates from [27]
and [28], and also exactly corresponds to the way the stubborn set definitions (see, e.g., [8]) deal with
dependency in the non-probabilistic case: only executions starting from the current state, that do not
include any stubborn actions, are relevant from the point of view of commutativity.

To define local independence, let R,(s) C S be the set of states s’ such that s 2= s’ for some sequence
where there is no ¢ such that ¢; = a.

Definition 34 (Local independence). Given an MDP M = (S,%, P,s°, AP, L), a state s € S, and two
actions a,b € ¥, we say that a is independent of b at s if a # b and for every state s’ € R,(s) such that
{a,b} Cen(s’) the following conditions hold:

o If s* € spt(P(s’,a)), then b € en(s*) (and symmetrically);
. Z P(s',a)(s*) - P(s*,b)(t) = Z P(s',b)(s") - P(s*,a)(t), for everyt € S.
s*eS s*eS

If a is not independent of b at s, we say that it is dependent of b at s.

Note that local (in)dependence is not a symmetric relation. For a to be independent of b at s we only
look at the states in R,(s); this is in general a set different from Ry(s).

Example 35. In Example 13 we noticed that the actions tasks and taskg in Figure 1 were not independent,
since there is a state (s11) in which they can disable each other. However, taking local independence,
we see that Riasks(Ss) = {Ss,S10} and Riasks(Ss) = {ss,S9}, and we can verify that the independence
conditions are satisfied by all of these states. Hence, tasks is independent of taskg at sg and also taskg is
independent of tasks at sg. Therefore, if the ample set conditions would use local independence instead of
global independence, it would be allowed to take either tasks or taske as an ample set for sg. O

Under these definitions, we have the following lemma.

Lemma 36. Let M = (S,%, P,s°, AP, L) be an MDP, a € Sqe; a deterministic action, s € S a state, and
T2 {(t,a,p) € Ay |t € Ro(s)} a set containing all a-labelled transitions enabled from some state that is
reachable from s without doing any a-transitions. For any action b € ¥ such that b # a, the implication

{a,b} Cen(s’) = P(s',b) ~} P(target(s’,a),b)
holds for every s’ € Ry(s) if and only if a is independent of b at s.

Proof. (=) To prove the “only if” part of this lemma, take an arbitrary action b # a and consider any state
s' € Ry(s) such that {a,b} C en(s’). According to the assumptions of the lemma the a-transition from s’
has to be in T, so let (s',a,t) € T.
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Due to the implication assumed by this lemma, P(s’,b) ~% P(t,b). Now, from this and the fact that
T only contains a-transitions, using the part Vs* € S; . Ja € ¥ . (s*,a,1,,) € T of the conjunction in the
definition of ~X-, the first condition for independence is satisfied. For the second condition, observe that

> P(s',a)(s*) - P(s*,b)(u) = P(t,b)(u) = Y P(s',b)(s*) = > _ P(s',b)(s%)
s*eS s*€Sy s*es
, " " s* Ly
= Y P(s,b)(s") - P(s",a)(u)
s*es

where the first and last step follow from the fact that a is deterministic, the second and third from the
definition of ~%. We used S, to denote the class in the partitioning according to ~+%, corresponding to
state u.

(<) For the “if” part of this lemma, assume that @ is independent of b at s, and let s’ € R,(s) be an
arbitrary state such that {a,b} C en(s’). Carrying out exactly the same calculations as in Lemma 18 for s’
(note that T indeed contains all a-transitions from the support of P(s’,b) since all these states are also in
Rq(s)), we see that P(s’,b) ~3 P(target(s’,a),b). O

Under the local dependency condition, we can now relax the ample set conditions slightly.

Definition 37 (Relaxed ample sets). A set A(s) is a relaxed ample set if it meets the criteria of Defini-
tion 12, except that A2 is replaced by the following condition:

A2 For every path s % s1 25 ... 225 s bt in M such that b & A(s) and some a € A(s) is dependent
on b at s, there exists an 1 < i <mn such that a; € A(s);

Comparison. Our main theorem is now ready to be proven:

Theorem 38. Let M = (S,%, P,s°, AP, L) be an MDP. Then, T: S — 2% is an acyclic action-separable
restricted confluence reduction function if and only if T is a relaxed ample set reduction function.

Proof. (=) To prove the “only if” part of the theorem, let 7 be the acyclic action-separable restricted
confluent set underlying 7', and let s € S be an arbitrary state. In this proof, when we write that a
transition is confluent we mean that it is confluent and that it is in 7. If T'(s) = en(s), then all ample
set conditions hold vacuously, so assume that T(s) # en(s). Thus, by definition of confluence reduction
functions, T'(s) = {a} for some confluent a € %,y

Condition A0 is clearly satisfied. Moreover, A1 follows from fact that only transitions with invisible (and
thus stuttering) actions can be confluent, A3 from the acyclicity of T' and A4 by construction and from the
fact that all confluent transitions are deterministic.

For condition A2*, we prove the contrapositive: given an arbitrary path s 2 s 925 ... %oy g by y
in M such that b ¢ T(s) and a; & T(s) for every i, we show that T(s) is independent of b at s. Due
to Lemma 36, it is enough to prove that (s',a, liaget(sr,a)) € T for every s’ € Rq(s) and additionally
P(s',b) ~% P(target(s’,a),b) if {a,b} C en(s').

Let s’ € Rq(s), so there is a path s % 57 <2 ... 2=y g such that a; # a for every i and s, = s’
Since there is a confluent a-transition from s and also a; € en(s) and a; # a, by definition of restricted
confluence P(s,a;) ~% P(target(s,a),a;). Now, by definition of ~~* and using action-separability, there has
to be a confluent a-labelled transition from s;. Repeating this argument from s; we find that P(s1,az) ~7%
P(target(s1,a),as) and that there is a confluence a-labelled transition from sq, and continuing this way that
P(sm—1,am) ~% P(target(s;,—1,a),an) and that there is a confluent a-labelled transition from s,,. So,
since s, = s', indeed (s, @, Liarget(s',a)) € T- Now, if {a,b} C en(s’), then the same argument can be applied
once more from s', obtaining P(s’,b) ~* P(target(s’,a),b). (b # a since it was assumed that b & T'(s).)

(<) To prove the “if” part of the theorem, let 7, be the set of nontrivial actions of the ample set
reduction function that are labelled by a. Now, the construction and proof of confluence of a set 7. 2 7,
works almost exactly as in Theorem 29: the construction never adds actions that have a label that is different
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from a to the set (so action-separability is guaranteed), and the proof of confluence does not rely in any way
on the liberal parts that we removed from the definitions.

The only difference is that now, due to the relaxed condition A2*, a and b are not necessarily globally
independent anymore. However, confluence can still be proven. To see this, let (s,a,1;) € T and let
(s,b, 1) be a transition of M. If b equals a, then again the condition for confluence is trivially fulfilled, so
assume that b # a. Now, by definition of 7_*, there must be some state s* and a (possibly empty) path
s* 2oy o such that b; # a for each i, and a € T(s*). Then, T(s*) = {a}, by condition A4 of ample sets.
Condition A2* guarantees that if a depends on b at s*, we would have at least one b; € T(s*), contradicting
A4. Thus, a is independent of b at s*. As s € R,(s*), the conditions of local independence hold at s.
Now, confluence follows from Lemma 18. (Note that, technically, this lemma is not applicable: although by
construction 7. contains all a-transitions from the support of P(s,b), a and b are not globally independent.
However, the fact that the independence equations hold at s is the only thing that is used in the proof of
Lemma 18, so the result is still valid.)

Note that the union of these confluent sets 7, is an action-separable confluent set, as the action-specific
subsets are exactly the sets 7T, constructed above. Thus, we get the result by taking the union of every 7y,
as a ranges over all (invisible) actions: the resulting action-separable confluent set 7 contains all nontrivial
transitions of 7" and therefore proves that T is an acyclic action-separable restricted confluence reduction
function. O

Note that an action-separable restricted confluence reduction function is just a special case of the liberal
definition of confluence, used in Theorem 25, so it too preserves probabilistic visible bisimulation. Since
relaxed ample set reduction functions coincide with confluence now, we immediately have the result that
they too still preserve probabilistic visible bisimulation.

As all of our propositions and theorems hold just as well in case there are no probabilistic transitions,
and the probabilistic notions of ample set reduction and confluence reduction in that case reduce to their
non-probabilistic variants (except that we preserve divergences), the following corollary is also immediate.

Corollary 39. In the non-probabilistic setting, confluence reduction is able to reduce more than ample set
reduction. With some adjustments (as in Definitions 31, 32, 33, 84 and 37), the two notions coincide.

5. Practical Implications of the Theory

To further reduce the number of states, we adapt the probabilistic confluence reduction technique of [17],
which uses the method of representative states, as introduced in [4]. A highly similar construction was used
in [22] for representing sets of states for the so-called essential state abstraction. Basically, for this we
perceive the system as being partitioned into sets of states that can reach a common representative through
confluent transitions. As each state in such a set S; can simulate all other states in S;, we pick one of
them as a representative for the set and omit the other states. To make sure that all visible transitions are
enabled immediately from the representative, the representative has to be chosen from the terminal strongly
connected component (TSCC) of the subgraph spanned by confluent transitions. The representative can
easily be found using a variant of Tarjan’s algorithm for strongly connected components, as explained in
detail in [4, 5]: The algorithm follows confluent transitions until it detects a TSCC and then picks a state
to serve as representative for all the states that can reach it via confluent transitions.

We now introduce the technicalities needed for the use of a representation map with MDPs in such a
way as to preserve probabilistic visible bisimulation.

Definition 40 (Representation map). Let M be an MDP, and T C Ap; a subset of its transitions. Then,
a function ¢7: S — S is a representation map for M under T, if

e Vs, €S .(s,a,1y) €T = ¢p7(s) = dr(s);

o Vs.s—r1 ¢r(s).
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Figure 7: A quotient MDP under a representation map.

The first condition makes sure that states that can reach each other via 7 -transitions have the same repre-
sentative, and the second ascertains that every representative is in a TSCC when restricting to 7 -transitions.

Proposition 41. Let M = (S,%, P,s°, AP, L) be an MDP, and T a strongly confluent set of transitions
from M. Then, there exists a representation map for M under T .

Proof. By Corollary 23, we know that for each state s there is a unique terminal SCC of the subgraph of
M obtained by keeping only the transitions that are in 7, that can be reached from s. For each terminal
SCC, we choose one state t to be the representative of all states s that can reach that SCC by following
only T-transitions. Now, by construction indeed s —7 ¢7(s). Also, if (s,a,1s) € T, then s can reach the
same terminal SCCs as s’ when following 7 -transitions. Since both have a unique such terminal SCC, these
must coincide, and hence s and s’ indeed have the same representative. O

The following definition states how, given an MDP and a representation map, the reduced MDP is
constructed.

Definition 42 (Quotient MDP). Let M = (S, %, P,s°, AP, L) be an MDP, and ¢ a representation map for
M wunder a set T. The quotient MDP of M under ¢ is defined as My = (Sy, %, Py, 827, AP, L) where

o Sy =A{o(s) | s € S};

o Py(s,a) = p if and only if Vs' € Sy . p(s') = s eg-1(5) P(s,a)(s7);
o sy =o(s");

o Ly(s) = L(s) for every s € Sy.

The definition of the quotient is slightly different from the one given in [18]. This definition induces a
self-loop to the states of the quotient in case there is an outgoing confluent transition from the representative;
its justification is to handle infinite invisible paths correctly in probabilistic visible bisimulation.

Example 43. Consider again the MDP in Figure 1 and the strongly confluent set provided in Exam-
ple 21. As stated there, T = {(so, tasky,s1), (s2,tasky,ss), (ss,tasks,sq), (ss,tasks,ss), (ss,tasks,s9),
(810, tasks, s11)}. In the absence of cycles in T, there is only one possible representation map under 7

d1(s0) = s1 d7(52) = 54 O7(s3) = 84 o7 (85) = S6 d7(88) = 59 d1(510) = 511

and ¢7(s) = s for all other states s. The quotient MDP under this representation map is shown in
Figure 7. O

The following theorem states that the use of representation maps to reduce a state space preserves
probabilistic visible bisimulation.

Theorem 44. Let M be an MDP, and T a strongly confluent set of transitions from M. If ¢ is a repre-
sentation map for M under T, then M =y, My.
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Proof. Let R C S x S, be the relation that contains exactly all pairs (s, ¢(s)). We prove that R is a
probabilistic visible bisimulation for (M, M), by first showing that it is a probabilistic visible simulation
for (M, M) and then that R™! is a probabilistic visible simulation for (Mg, M).

Note that, by definition of quotient MDPs, the initial states of M and My are indeed related by R.
Now, let (s,8') € R, so s’ = ¢(s). By definition of representation maps we have s -7 ¢(s), and since T is
a confluent set, there is a confluent path from s to s’. Let s %% s; 22 ... 223 s’ be such a path. Then, the
conditions of probabilistic visible simulation hold as follows.

1. L(s) = Ly(s') is obvious, since s -7 s' and all T-transitions are invisible.

2. Let a € en(s). Using the same inductive argument as in the proof of Theorem 25 (with the only extra
information that states connected by confluent transitions have the same representative), we can show
that either a € iy, A (target(s,a),s’) € R, or P(s,a) ~»7 P(s1,a) ~>7 -+ ~»7 P(s',a). In the first
case, condition 2(a) of Definition 10 follows immediately, so we assume the sequence of ~+s-steps.
Hence, a € en(s’) in M, and by definition of the quotient, this also implies that a € en(s’) in M.

To show that condition 2(b) holds, we don’t need an invisible path in the quotient (we can just
take the empty path). So, we just need to prove that P(s,a) Cr Py(s’,a). To do so, we define a
function w: S x Sy — [0,1] and show that it is a weight function. Given any pair (s1,s2) € S X Sy,
let w be given by

0 otherwise

w(sy, 82) = { P(s,a)(s1) if s2 = ¢(s1)

By definition, w(s1, s2) > 0 implies that (s1,s2) € R. Also, given any s; € S, by definition w(sy, s*)
is only nonzero if s* = ¢(s1). Moreover, since w(s1,¢(s1)) = P(s,a)(s1), we indeed obtain that
P(s,a)(s1) = Zs*es(p w(sy, s%).

For w to be a weight function, we additionally need to show that Py(s’,a)(s2) = > . cq w(s*, s2) for
every so. Since P(s,a) ~7 P(s1,a) ~7 -+ ~7 P(s',a), there is a partitioning spt(P(s, a)) = ¥~ S,
and an ordering {s{,...,s,} = spt(P(s',a)), such that P(s,a)(S;) = P(s',a)(s}) and there is a
(possibly trivial) confluent path from all states of S; to s..

Let sy € spt(Py(s’,a)) be an arbitrary state in the support of Py(s’,a). Without loss of generality,
assume that {s},...,s}.} = ¢~ 1(s2) N spt(P(s',a)) for some k < m, i.e., the first k states in the
ordering of spt(P(s’,a)) are the ones that map to so. Then, we have

P(sa)s) = Y Pla)s) = Y P a)s) =S Pleas) = S Pls,a)lsi)

S*E¢71(82) =1 =1 s1E€S1U...US

where the first equality is due to the definition of the quotient, the second and third by the assumptions
above, and the fourth by the fact that the S;’s form a partitioning.

Because each state has exactly one representative, we have spt(P(s,a)) N¢~1(s2) = S1 U ... U Sk,
which means the above can be used to find

Py(s',a)(s2) = Z P(s,a)(s1) = Z P(s,a)(s1) = Z w(s1,82) = Z w(s*, s2)

$1E€S1U...USk s1€¢p~1(s2) s1€P~1(s2) s*eS

proving the claim.
3. Let s 2% he an infinite invisible path of M such that (si,8') € R for every s; on this path, i.e.,
¢(s;) = ¢ for every s; on the path.

We show that there is an invisible self-loop at s’ in My, which then provides the finite invisible
path s’— s’ in M, that satisfies the condition. To show the existence of such a self-loop, it is sufficient
to show that s’ has an outgoing invisible transition in M to some state s* such that ¢(s*) = s’ (as the
self-loop in My then follows by definition of the quotient).

Note that in exactly the same way as we did in part 3 of the proof of Theorem 25, it can be
shown that s’ has an infinite invisible path such that every state on that path is reachable by a
directed confluent path from as least one of the states of the path s bibgeery Now, let s 2 s* be
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the first transition of this path from s’, and let v be the state on s biba-y with a directed confluent
path to s*. Because of this confluent path, ¢(s*) = ¢(v) by definition of representation maps, and

therefore ¢(s*) = s since we assumed that ¢(v) = s’ (since it is on s 2222=) finishing the proof.

In the other direction, let (s,s’) € R™! and note that s = ¢(s’).

1. Ly(s) = L(s’) is again obvious from the existence of a confluent path from s’ to s and the fact that
confluent transitions are invisible.

2. Let a € en(s). Then, by definition of the quotient there is some transition (s, a, ) in M such that
Py(s,a)(t) = D geeg-1() 1(s™) for every t € Sy,

Now, to show condition 2(b), take a confluent path from s’ to s (which exists since ¢(s’) = s). By
definition of confluence this path is indeed invisible, and (s, s}) € R~ for every state s, on this path
by definition of representation maps. Finally, as explained above, also a € en(s) in M. It remains to
show that Py(s,a) Cg P(s,a). For this, we define a function w: Sy x S — [0,1] and show that it is a
weight function. Given any pair (s1,s2) € Sy x S, let w be given by

w(st, s5) = { P(s,a)(s2) if 51 = (s2)

0 otherwise

Note that this mirrors the function defined in the proof that R is a probabilistic visible simulation.
By definition, w(s1,s2) > 0 implies that (s1,s2) € R™L. Also, given any sy € S, by definition
w(s*, s2) is only nonzero if s* = ¢(s2). Moreover, since w(p(s2), s2) = P(s,a)(s2), we indeed obtain
that P(s,a)(s2) = Zs*es¢ w(s*, s3).
Finally, it holds that

Py(s,a)(s1) = Z P(s,a)(s*) = Z w(sy,s™)

s*€p—1(s1) s*eS

where the first equality follows from the definition M, and the second from the definition of w.

3. Let s 2225 bhe an infinite invisible path of My such that (s;,s') € R™! for every s; on this path. By
definition of representation maps, that implies that all states s; coincide, so the infinite path is just a
self-loop of s.

By definition, this invisible self-loop of s in the quotient corresponds to an invisible transition
(s,a,s*) in M such that ¢(s*) = s. Since s = ¢(s’), there is a confluent path from s’ to s. If this path
is nonempty, it proves the conditions. After all, for every state s on this path indeed (s, s}) € R™1, by
definition of representation maps. If the path is empty (so s = s’), then we can take the path s’ % s*
to prove the condition, since ¢(s*) = s and hence (s, s*) € R™1. O

Theorem 44 is useful, not only for confluence reduction, but also for ample set reduction. After all, from
Theorem 29 we know that every ample set reduction is a confluence reduction. The representation map
approach serves as an alternative implementation of the cycle condition of ample sets. The cycle condition
is satisfied in the sense that the quotient MDP never indefinitely ignores any behaviour of the original MDP.

6. Conclusions and Future Work

We redefined probabilistic confluence reduction to an MDP-based setting, enabling a comparison to
probabilistic partial order reduction based on ample sets in branching time. We proved that every nontrivial
ample set can be mimicked by a confluent set, and that in some cases reductions are possible using confluence
but not using ample sets. Therefore, at least in theory confluence reduction is able to reduce more than the
ample set method. We also showed the exact way in which confluence and ample sets have to be modified
for the two notions to coincide. These results hold for the non-probabilistic variants of the two reduction
techniques as well.

Our observation that probabilistic ample set reduction can be mimicked by probabilistic confluence
reduction has additional implications, some of which are highly practical. One such implication is that the

24



use of a representation map for reduced state space generation, already applied earlier in combination with
confluence reduction, can also be applied for partial order reduction.

As both ample sets and confluence are detected symbolically on the language level, the quality of the
heuristics applied there will decide which notion works best in practice. The results in this paper already
strengthen our theoretical understanding of the two methods, and this is independent of the heuristics that
are applied. Also, no matter how such heuristics might be improved, the results in this paper will remain
valid. Future work could focus more on the relative merits of the two notions in practice and potentially on
the improvement of the syntactical heuristics.

A natural question is, whether there are similar results that could be proven for weaker semantics, like
reductions that preserve (probabilistic) LTL\ x. For most part, the answer is obvious: confluence reduction
preserves branching time properties, so it also preserves LTL\x. However, since confluence is designed to
preserve branching properties, it has the inherent restriction that confluent transitions must lead to bisimilar
states. This means that we must be able to take single confluent transitions, for if we couldn’t, we would
lose some state that is not bisimilar to the current state. Ample sets, and similar methods, do not need such
a restriction when dealing with weaker semantics, and might then reduce more.

One class of open and interesting questions remains, however. When aiming to prove Theorem 38, we
worked mostly by restricting confluence. It is sensible to ask, if we could have proven the theorem by
relaxing the ample set conditions such as the notion of independence more and restricting the confluence
conditions less, while maintaining a practical method that can make use of the extra reduction. How would
the less restrictive conditions of confluence (e.g., the original asymmetric up-to-equivalence), or the absence
of action separability, be used in conjunction with ample sets or other partial order reduction methods?
Could similar conditions be used when partial order reduction preserves weaker properties, like LTL\ x?
Future work might focus on answering these questions.
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