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We adopt a volume penalizing immersed boundary method for the simulation of pulsatile blood flow
inside cerebral aneurysms. We show that the flow undergoes a transition from an orderly state at low
physiological Reynolds numbers, in which the pulsatile forcing is closely followed in time, to a complex
response with strongly increased high-frequency components at higher physiological Reynolds numbers,
i.e., at higher flow rates and larger aneurysm sizes. The flow is computed by solving the Navier–Stokes
equations for incompressible flow. Geometric complexity of aneurysms in the cerebrovascular system
is captured by defining the fluid and solid domains using a so-called binary ‘masking function’, which
is a key element in the immersed boundary method. The pulsatile variation of the flow rate is represented
in terms of measured cross-sectionally averaged velocities in the vicinity of the aneurysm, obtained by
noninvasive Transcranial Doppler sonography. Transition of the flow is found to arise in qualitatively
the same way at all locations near the aneurysm bulge, quite independent of the solution component that
is monitored. The numerical reliability of the predicted transition is quantified on the basis of practical
upper and lower bounding solutions, expressing the sensitivity of the flow to uncertainties in the
aneurysm geometry. We compute the spectrum of the response of the flow at various locations and flow
conditions and quantify the transition in local pressure and velocity. The significant increase of
small-scale, high-frequency structures at higher Reynolds numbers may have potential for clinical
screening application in the future.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Prediction of blood flow inside cerebral aneurysms is a field of
intensive research, aimed at supporting medical decisions about
possible treatment strategies [18,23]. The cerebrovascular system
has a complex geometrical structure, which varies from one person
to another [46]. Also the properties of the blood flow, such as flow
rate, viscosity and the actual profile of the heart beat are patient-
specific characteristics. These days medical imaging techniques
such as 3D rotational angiography (3DRA) can be used for diagnos-
tic purposes, to visualize the vascular structure of the human brain
[43]. Likewise, the actual pulsatile volumetric flow rate can be
measured in a non-invasive way using a Transcranial Doppler
(TCD) Sonography technique, which allows to record the
time-dependent cross-sectionally averaged velocity in a chosen
cerebral artery near the aneurysm [37]. Combining these two
sources of medical data – geometry and pulsatile wave – we can
develop new computational fluid dynamics (CFD) methods to
actually compute the detailed blood flow on a patient-specific
basis and ultimately try to understand hemodynamic aspects of
slow aneurysm growth and developing risk of rupture.

In this paper we present a computational model for the flow of
blood which allows to simulate pulsatile flow. The model is based
on a finite volume discretization of the Navier–Stokes equations,
while the geometry is represented using an immersed boundary
(IB) method. The pulsatile wave is imposed as a forcing to the flow
rate in the computational domain. By changing the flow conditions
within the physiologically realistic range, we observe a striking
transition from relatively smooth and regular flow to highly
complex erratic time-dependence. To illustrate this transition we
simulate the blood flow under different Reynolds numbers. This
yields dynamic behavior ranging from smooth flow that closely
follows the pulsatile forcing profile at the lower Reynolds range
to very complex flow at the higher Reynolds range that appears
much less connected to the regular forcing and displays signifi-
cantly more contributions from high frequencies. These might be
an indication of an increased size of the aneurysm, or more
vigorous flow. The strong transition that we observed was also
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reported earlier in clinical settings [9,20], and may be of medical
use in rapid first monitoring of patients. In this paper we will illus-
trate this transition process for one particular patient’s aneurysm
geometry. We also considered other typical cerebral aneurysm
geometries for which a similar transition was found in the same
Reynolds range.

The capability to simulate the main flow structures in a realistic
aneurysm can also be applied to understand the effect of coiling of
patients from a fluid-mechanical point of view. The aim of the coil-
ing procedure is to change the pattern of the flow such that the
stream of blood is (largely) prevented from entering the weakened
area of the vessel. This is approached by filling the bulge of the
aneurysm with a slender coil. More recently, this goal is also pur-
sued using flow diverting stents [41]. Since coiling is an operation
with some risk to the patient one would like to predict the minimal
amount of coiling that would be needed to achieve the required
qualitative change in the flow. We illustrate the changes in the
flow pattern inside and near a realistic aneurysm bulge that arise
when partially filling it with a coil and observe the disappearance
of the separated vortical flow pattern with increasing fraction of
coiled volume in the bulge.

Various studies involving computational modeling of cerebral
aneurysms were presented in literature in the past decade
[4,7,10,33,40]. There has been a growing interest in the coupling
of numerical and statistical techniques to investigate cerebral
aneurysms [4,5,13,34]. The development process of numerical
methods for simulation of blood flow typically goes through a
number of stages: investigation of model geometries, computation
of model flow, inclusion of realistic geometries and simulation of
full-scale realistic flow yielding patient-specific results. For simu-
lating pulsatile flow one may start with validation based on peri-
odic sinusoidal forcing of the flow rate or other simplified forcing
profiles [15,42,44]. Once the temporal accuracy is assessed one
may continue by imposing recorded volumetric flow rates per
heart beat as inflow to the system [1,22]. The development of the
IB method used in this paper for capturing flow in cerebral aneu-
rysms also went through these stages [24,25,28,26]. In this paper
we complete the development of a first sequence of modeling steps
by incorporating realistic pulsatile flow in realistic cerebral aneu-
rysm geometries. We investigate the dynamic response of the flow
in the aneurysm neighborhood and aneurysm bulge, for a range of
physiologically relevant conditions.

We simulate pulsatile flow for different flow regimes, which are
specified by the Reynolds number. A typical Reynolds number
based on the radius of a cerebral vessel in the Circle of Willis is
around 250. Due to uncertainty in various parameters a physiolog-
ically relevant range Re = 100–400 can be defended [9,10,38]. Un-
der steady boundary conditions, this range corresponds to
smooth laminar flow [11]. However, under unsteady boundary
conditions, at the higher end of the Reynolds range rapid variations
of the solution in time, sometimes wrongly referred to as ‘turbu-
lent’ effects [2,9], were observed. In such flow conditions, diseased
vessels support flows with rapid fluctuations, which could be de-
tected via non-invasive techniques. These so-called brain ‘bruits’
can be recorded and the spectrum of frequencies can give some
characterization of the shape and size of the aneurysm, as well
as of the dominant flow regime [19,20].

Simulating flow on the basis of an IB method allows to go from
medical imagery to quantitative flow predictions. We compute
pulsatile flow inside and near a cerebral aneurysm and show that
already at physiologically relevant flow conditions complex dynam-
ics occurs. Quantitatively the level of shear stresses that is found
numerically corresponds to values known from medical practice,
thereby providing additional validation for the computations. With
changing flow condition through increasing Reynolds number we
observe transition in all sorts of quantities such as velocity compo-
nents, pressure and shear stresses at various locations inside the
vessels and aneurysm bulge. While analyzing the spectrum of the
resulting numerical solution, the complex and more intense
dynamics of higher Reynolds flows can be clearly observed.

The organization of this paper is as follows. In Section 2 we
present the computational model for pulsatile blood flow simula-
tions inside cerebral vessels. We first introduce the numerical
method and aneurysm geometry, obtained from medical data.
Then, we illustrate the reference steady state solution computed
in the selected geometry and in partially filled cerebral aneurysms
obtained from virtual coiling. Next in Section 3 we describe the
pulsatile forcing of the blood flow, measured in an artery of the
Circle of Willis and discuss the realistic range of parameters
characterizing cerebral blood flow. Subsequently, we compute
the solution in the selected geometry under reference pulsatile
flow conditions at Re ¼ 250. In Section 4 we present results ob-
tained at different flow regimes and illustrate the transition arising
in the flow at various locations inside the vessel and the aneurysm.
We discuss the robustness of the transition phenomenon subject to
uncertainties in the geometry definition by computing practical
upper and lower bounding solutions. Finally, we perform a Fourier
analysis to quantify frequencies of the pulsatile flow computed in
the different flow regimes. Concluding remarks are in Section 5.

2. Computational model of cerebral blood flow

In this section we present the computational model for simulat-
ing blood flow inside cerebral vessels and aneurysms. We first
discuss the Navier–Stokes equations and introduce the IB method,
which allows to capture flow in complex domains. We illustrate
this for a realistic aneurysm geometry, reconstructed from medical
data in Section 2.1. Later, in Section 2.2, we simulate the reference
flow in partially filled cerebral aneurysms, expressing the qualita-
tive changes in the flow patterns due to ‘virtual’ coiling.

2.1. Immersed boundary method and aneurysm geometry

Modeling of blood flow in a human body can be performed in
different ways depending on the particular flow regime that is
relevant to the medical problem. A broad overview of models of
the cardiovascular system is presented in [36]. Blood flow can be
considered on the macroscopic scale – the level of fluid patterns,
as well as on much smaller microscopic scales – blood cells and
their bio-chemical transport processes. A first decision that is
required when developing a model is whether or not to approxi-
mate blood as a Newtonian or a non-Newtonian fluid
[3,5,10,12,16]. For cerebral flows taking into account physiological
flow conditions and sizes of arteries the non-Newtonian correc-
tions were found to be quite small [12,16,35]. Flow patterns were
found to be qualitatively the same, while local values of velocities
and pressures were found to differ by less than 20%.

In our numerical model blood is treated as an incompressible
Newtonian fluid, for which the Navier–Stokes equations in 3D
provide the conservation of mass and momentum. The total phys-
ical domain X, consists of a fluid part Xf that corresponds to the
vessels containing the blood, and a solid part Xs that contains the
soft tissue material. The no-slip condition is applied at the interface
between fluid and solid parts in X. In non-dimensional form the
governing equations are given by:

@u
@t
þ u � ru ¼ �rP þ 1

Re
r2uþ f ð1Þ

r � u ¼ 0 ð2Þ

where u is the velocity of the fluid, P is the pressure, Re is the
Reynolds number: Re ¼ UrLr=mr , based on the reference velocity
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Ur , reference length scale Lr and reference kinematic viscosity mr .
Finally, f is a forcing term that is used to represent the impenetra-
bility of complex shaped solid vessel walls. For the forcing term we
select a direct volume penalization [30] in which

f ¼ �1
e

Hu ð3Þ

where e� 1 is a forcing parameter, taken in our simulation equal to
e ¼ 10�10. In Section 3.3 we will show more details regarding the
choice of the penalty parameter e. The forcing is defined in terms
of the masking function H, given by HðxÞ ¼ 0 if x 2 Xf and
HðxÞ ¼ 1 if x 2 Xs. In this form the forcing term f allows to approx-
imate the no-slip condition at the complex interface boundaries.

We solve the Navier–Stokes equations by employing symmetry-
preserving finite volume discretization, closely following [45]. The
key aspect of this discretization is strict energy conservation as
basic property of both the continuous and the discrete equations.
Specifically, we focus on the kinetic energy, given by

E ¼ 1
2

Z
X

dVu � u � 1
2
ðu;uÞ ð4Þ

where u � u is the vector inner product and ðu;uÞ is the corre-
sponding ‘function inner product’ in terms of the velocity field u.
Note, that in Eq. (4) we effectively integrate only over Xf as
u ¼ 0 in Xs. The evolution of the kinetic energy dE=dt follows from
multiplying the momentum Eq. (1) by u and integrating over the
flow domain by parts. We then may derive the contribution of each
of the fluxes in (1), establish that the convective and pressure
terms do not contribute to the evolution of E, and find

dE
dt
¼ � 1

Re

Z
X

dVðru : ruÞ 6 0 ð5Þ

where ru : ru ¼ @ iuj@iuj in which we sum over repeated indices.
Hence, the kinetic energy decreases in time because of viscous
fluxes only. This basic property of the Navier–Stokes equations is
(a)

(b)

Fig. 1. 3D masking function for aneurysm geometry (a) and typical streamlines
with indication of the monitoring points of interest (b). The cut part of the geometry
is plotted in red, while the connecting vessel is shown in black (a). Streamlines in
(b) illustrate simulations of steady flow at Re ¼ 250.
also basic for the developed discretization, as we endeavour to
maintain this property also on the discrete level.

In a discrete setting the Navier–Stokes equations (without the
forcing term f) in matrix–vector notation may be written as

K
duh

dt
¼ �Cuh � Duh þMT Ph ð6Þ

Muh ¼ 0 ð7Þ

where uh is the vector containing the discrete velocity solutions
uðhÞi ;Ph is the discrete pressure, K is a diagonal matrix with the
volumes of the grid cells on its diagonal, C and D are the coefficient
matrices corresponding to the discretization of the convective
(ðu � rÞu) and diffusive (�Du=Re) operators, respectively. The
discretization of the pressure gradient is given by �MT , while the
coefficient matrix M itself represents the discretization of the diver-
gence operator [45]. The discrete approximation for the kinetic
energy can be given as
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Fig. 2. Velocity profiles (a) and shear stresses (b) computed at several grid
resolutions (32 � 16 � 32 – dot, 64 � 32 � 64 – dash-dot, 128 � 64 � 128 – dot,
256 � 128 � 256 – solid) in the cross-section close to the aneurysm bulge.
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Eh ¼ uT
hKuh ð8Þ

The evolution of the energy in the discrete model may be
computed as

dEh

dt
¼ �uT

hðCþ CTÞuh � uT
hðDþ DTÞuh þ uT

hðM
T PhÞ þ ðMT PhÞ

T
uh

ð9Þ

For the discrete solution we also require the convective conser-
vation of energy, which implies skew-symmetry of the matrix C of
the convective operator: Cþ CT ¼ 0. The two terms related to the
numerical pressure gradient can be rewritten as

uT
hðM

T PhÞ þ ðMT PhÞ
T
uh ¼ ðMuhÞT Ph þ PhMuh ¼ 0 ð10Þ

where the numerical divergence of the numerical velocity
satisfies Eq. (7). Thus, pressure terms also do not contribute to
the evolution of the kinetic energy in the discrete formulation.
By comparison with the expression for the energy evolution Eq.
(5), the second term on the right-hand side of (9) should provide
a strict decrease of the energy:

dEh

dt
¼ �uT

hðDþ DTÞuh 6 0 ð11Þ

This implies that the coefficient matrix D of the diffusion
operator is a positive-definite matrix.

Thus, discretely we obtain the same properties for the energy
decay as in the continuous case if (i) the convective terms are
discretised with a skew-symmetric method, (ii) the numerical
divergence matrix is the transpose of the numerical gradient and
(iii) the numerical diffusive flux is represented by a positive
definite matrix. Here we adopt such a method and in particular
follow the approach presented in [45].
Fig. 3. Masking functions for partially filled aneurysms. Starting from the reference geom
in (b) and (c). The fully coiled aneurysm is shown in (d).
Since kinetic energy is preserved under the skew-symmetric
discretization a stable solution may be obtained on any grid. We
use central differencing of second order accuracy, which maintains
explicitly the skew-symmetry in the discrete equations. The contri-
butions of the convective, viscous and pressure-gradient fluxes are
integrated in time using a generalization of the explicit second or-
der accurate Adams–Bashforth method. Care is taken of accurately
representing the skew-symmetry also in the time-integration. Full
incorporation would require an implicit time-stepping, which,
however, is computationally too demanding. Instead, time-integra-
tion starts from a modification of the leapfrog method with linear
inter/extrapolations of the required ‘off-step’ velocities and an
implicit treatment of the incompressibility constraint. Optimiza-
tion for largest stability region of the resulting scheme yields a par-
ticular so-called ‘one-leg’ time-integration method, with a
mathematical structure that is akin to the well-known Adams–
Bashforth scheme. More details can be found in [45]. For the forc-
ing term such explicit time-stepping would result in extremely
small time-steps in view of numerical stability. Therefore, the
linear forcing term is integrated in time using the implicit Euler
scheme.

Complex aneurysm geometries are represented by the masking
function H, which is a key element of our IB method as it defines
fluid and solid parts of the computational domain. In fact, for those
regions, where H ¼ 0 the Navier–Stokes system is solved. In the
regions where H ¼ 1 the forcing term provides control over the
velocity in the tissue basically representing no-flow in the tissue.
Validation of our numerical model for Poiseuille type of flow in
cylindrical pipe, curved vessels and model aneurysm geometry
can be found in [28].

We adopt periodic boundary conditions for the velocity
components on the computational domain X. The pressure P is
etry (a) we can virtually fill the aneurysm with a coil and obtain the reduced shapes



148 J. Mikhal, B.J. Geurts / Computers & Fluids 91 (2014) 144–163
decomposed as P ¼ pþ aðtÞx, where p is a strictly periodic
component and aðtÞ is continuous time-dependent function
adapted at every time-step, such that the prescribed flow rate is
maintained. In this way periodic conditions are established on
the total computational domain, which implies proper connection
of the ‘corresponding’ fluid parts of the domain effectively linking
the outflow to the inflow of the geometry through the introduction
of a smooth segment of vessel that takes care of the flow feedback,
much in the same vein as the fringe region introduced in [39].
While generating the masking function, additional operations must
be performed in order to satisfy periodicity. Thus, we start with the
medical images obtained from the 3DRA procedure recording the
local vessel structure and the possible brain aneurysm. We per-
form standard segmentation and simplification processes in order
to separate the main relevant vessel segment. In more details these
procedures as well as choice of corresponding parameters are dis-
cussed in [29]. Afterwards, we perform additional operations as
‘cutting’ away parts of the vasculature far away from the aneurysm
bulge and ‘connecting’ ends of the vessel by a smooth connector
assuring periodicity of the fluid domain. In [29] we analyzed
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Fig. 4. Contour plot of the streamwise velocity in a yz cross-section in the middle of the g
while the lightest (white) contours are related to regions of negative velocity; we adopt
reference geometry of the aneurysm (a) and in the slightly coiled aneurysm (b) seen beca
the vortical pattern reduces considerably (c) and disappears in the fully coiled case (d)
sensitivity of the flow predictions to the differently cut geometries
or adding not only smooth connectors but also linear. It was shown
that the flow inside the aneurysm bulge is not affected much, if
cuts are made far away (2–3 radii of the vessel opening) from
the aneurysm bulge.

In this paper we work with a geometry, reconstructed from
3DRA data as shown in Fig. 1(a). The part of the original geometry
that is retained in the computational model is plotted in red, while
the smooth connector based on cubic spline interpolation is shown
in black. The initial medical data of the 3DRA scan consists of 2563

voxels, with voxel width 0.1213 mm. This leads to a total physical
length of the domain of 3.10528 cm. For numerical simulations it is
convenient to work in the non-dimensional setting, for which all
values for length, velocity, time, etc. are scaled by reference param-
eters. The system after scaling remains a pure analogy of the phys-
ical system, and translations back and forward are always possible.
In case of vessels and aneurysms, the radius of the vessel is a
suitable reference length [10,38]. We extract R = 1.94 mm from
the 3DRA data, which brings us to a domain of length
31:0528=1:94 � 16 in the non-dimensional formulation. Moreover,
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eometry in partially filled aneurysms. Dark regions correspond to positive velocities,
the same color-coding for all figures. The flow structures show a large vortex in the
use both positive and negative velocities occur, while with increasing coiled volume
approximately restoring the original non-diseased geometry.
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Fig. 5. Pulsatile velocity measured in the human brain using TCD sonography. Ten
seconds velocity signal as measured in the MCA is presented in (a). The unit pulse
(b) which was chosen from the original signal for computations contains also 4
points of interest during the cardiac cycle: t1 ¼ 0:112 s;t2 ¼ 0:324 s;t3 ¼ 0:416 s and
t4 ¼ 0:756 s corresponding to peak systole, end systole, peak diastole and end
diastole respectively.
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for the particular geometry we noticed that after segmentation and
additional steps of cutting and connecting, the vessels filled only
half of the volume in the y direction. This allows to remove the
3D tissue-cells in half of the domain as there is no flow in this part
of the computational model. Thus, we arrive at a computational
domain of length Lx � Ly � Lz ¼ 16� 8� 16 and use grid resolution
up to nx � ny � nz ¼ 256� 128� 256 to represent the geometry.

For simulations of steady flow in [27] we considered also coars-
ened grids of resolutions 128� 64� 128;64� 32� 64 and
32� 16� 32. Later, in [29] we improved the computation of the
shear stress by developing ‘geometry-resolved’ post-processing,
in which knowledge of the highest resolved geometry was
explicitly included in the computation of the stresses on one of
the coarser grids. This allowed to obtain more accurate results near
the fluid–solid boundaries as illustrated in Fig. 2. We may appreci-
ate the level of convergence of the velocity from a characteristic
profile taken near the aneurysm bulge (Fig. 2(a)). Similarly,
Fig. 2(b) summarizes the convergence of the shear stress in case
the geometry-resolved post-processing is incorporated (for further
details see also [27,29]).

We analyzed the convergence of the solution and could con-
clude that starting from a resolution of 64� 32� 64 reliable
results could be obtained. Under these resolution conditions a
cross-section through a vessel is typically covered by about 15–
20 grid cells in each coordinate direction. For Poiseuille flow it
was found that under these resolution conditions the L2-norm of
the error in the velocity is maximally about 10% – this level of
accuracy is considered reasonable for our purposes – higher accu-
racy requires a larger computational effort. During coarsening of
the grid, bounding geometries can be systematically generated.
These can be used to obtain the range of variability of the solution
due to uncertainty in the precise flow domain, thereby further
quantifying the quality of the predicted flow. In this paper we will
simulate pulsatile flow at a grid resolution 64� 32� 64. Typical
velocity streamlines following the main vessel and coming into
the aneurysm bulge are shown in Fig. 1(b). We also display
schematically the approximate locations of several points of inter-
est at which we will analyze the flow in more detail and investigate
the transition. These points were chosen quite uniformly through-
out the aneurysm geometry to analyze the flow dynamics in the
vessel before, after and inside the aneurysm bulge.

2.2. Flow in partially filled cerebral aneurysms

With the IB method it is possible to generate various modified
geometries in a relatively fast way, starting from the reference
geometry. This allows to investigate consequences for the flow
structure due to changes in the local vessel shape. Next to flow pre-
dictions in the initially reconstructed vascular geometry we can
also simulate flow in ‘nearby’ geometries representing aneurysms
that are ‘virtually filled’ with a slender coil. Such simulations can
help to understand how much coil is necessary to qualitatively
change the flow structure in the affected region, aimed at reducing
the flow into the aneurysm bulge to make the situation less risky.
To illustrate the approach, we generated three virtual geometries
which correspond to partially or fully filled aneurysms. In these
geometries we compute the blood flow and observe changes in
the vortical flow patterns when increasing the amount of coil in
the bulge.

In Fig. 3 we illustrate four masking functions which show
possible stages during a coiling procedure. We start with the refer-
ence geometry in Fig. 3(a) and ‘coil’ the aneurysm bulge in two
steps (Fig. 3(b and c)). The fully filled aneurysm is shown in
Fig. 3(d). Analyzing flow patterns we plot the velocity contours
in the middle cross-section of the aneurysm. We observe qualita-
tive differences in the flow patterns when comparing the reference
case and the slightly coiled geometry (Fig. 4(a and b)) with the fur-
ther coiled and the fully coiled aneurysm (Fig. 4(c and d)). These
simulations show the disappearance of the large vortical structure
seen in the first two geometries – the backward flow is almost
completely removed provided the amount of coil is adequate, as
seen in the last two geometries. These differences in flow pattern
can be relevant for decisions about the (minimal) amount of coil
needed to achieve the required flow deflection.

We will concentrate on the reference geometry alone and con-
tinue with the realistic pulsatile flow simulations.
3. Pulsatile flow simulations

In this section we focus on pulsatile flow under realistic condi-
tions. In Section 3.1, we concentrate on physiological aspects of
cerebral blood flow and specify the pulsatile forcing, extracted
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Fig. 6. Values of the x-wise velocity component during a heart beat at Re ¼ 250 in 10 chosen locations along the aneurysm geometry. The number on top of every sub-figure
corresponds to the label of the point, whose location is shown in Fig. 1(b).
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from TCD measurements. We also motivate the choice of flow
parameters that characterize physiological conditions as used in
the simulations. In Section 3.2 we present the computed velocities
at different locations along the aneurysm geometry and at different
stages during a heart-beat. In Section 3.3 we focus on the sensitiv-
ity of the predictions to the choice of the penalty parameter e and
the computational time-step Dt.

3.1. Flow conditions and pulsatile forcing

To complete the computational model we need to define flow
conditions which are realistic for blood flow in cerebral vessels
and aneurysms and specify the pulsatile cycle in the flow-rate
which is used to force the flow. The only parameter which is
responsible for specifying the flow regime in (1) is the Reynolds
number Re ¼ UrLr=mr , where Ur ; Lr and mr are reference velocity,
length and viscosity correspondingly. The range of Reynolds num-
bers characteristic of blood flow in the Circle of Willis, corresponds
to laminar flow. To quantify this, we estimate the Reynolds number
for physiologically relevant conditions next.

The reference length L is chosen based on the average radius of the
cerebral vessel in the scanned part of the Circle of Willis. For the given
geometry Lr ¼ 1:94 mm, which is consistent with [17] who found a
value of 2:1� 0:4 mm. The reference kinematic viscosity of the blood
can be found as the ratio between the dynamic viscosity of human
blood and the mass density. These quantities differ from person to
person. By choosing typical values for the mass density
qr ¼ 1060 kg=m3 and the dynamic viscosity lr ¼ 3:2� 10�3 Pa s
we arrive at a kinematic viscosity mr ¼ 3:01� 10�6 m2=s. To com-
plete the estimate of the Reynolds number, the reference velocity is
taken as the ratio between the average volumetric flow-rate of the
blood going through the vessel and an approximation of the area of
a cross-section through the vessel. The flow-rate for blood can be
measured by means of 3D MR angiograms [14,31] in which values
Q ¼ 245� 65 ml=min were found showing an uncertainty of about
25%. Based on the reference length Lr and an assumed circular cross
section as approximation, the range for the reference velocity is
U ¼ 0:345� 0:09 m=s. These values are in very close agreement with
the range 0:34� 0:087 m=s as obtained by [37] on the basis of TCD
measurements. Combining these reference scales we compute typi-
cal Reynolds numbers to be in the range of 175 K Re K 300. As key
reference Reynolds number we adopt Re ¼ 250, which in terms of
chosen reference length and kinematic velocity corresponds to a
velocity scale Ur ¼ 0:388 m=s. Later we will vary the Reynolds
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number to investigate the quantitative and qualitative sensitivity of
the flow to this parameter. We also compute the flow at Re ¼ 200
and Re ¼ 300 as these reflect the differences in the blood viscosity,
the sizes of the vessels and/or the velocity scales, which were found
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in literature. In case of diseased conditions we can expect an even
wider range of Reynolds numbers, therefore we also compute the
flow at Re ¼ 100 and Re ¼ 400. The same range of Reynolds numbers
was suggested in [10,38], based on slightly different choices for diam-
eter sizes and blood properties.

In order to compute pulsatile flow we need to impose a pulsa-
tile cycle for the volumetric flow rate as an input for our numerical
simulations. With the use of phase-contrast (MR) angiography
[14,31] or TCD sonography [37] the time-dependent cross-section-
ally averaged velocity of the blood flow in cerebral arteries can be
measured. In the current study the velocity was recorded in the
middle cerebral artery by [8] using TCD. In Fig. 5(a) we plotted a
segment of 10 s of the pulsating velocity. The mean velocity value,
obtained by integrating this signal, is found to be 38.66 cm/s,
which is very close to the reference scale selected above.

The computed pulsatile flow is maintained by using the actually
recorded velocity signal as forcing. We choose a typical pulse
(Fig. 5(b)) and repeat it periodically. For our computations, we
convert the recorded velocity pulse into a time-dependent
volumetric flow rate. The selected pulse has a maximal velocity
Umax 	 67:94 cm=s, which corresponds to a peak flow rate of
Qmax 	 8:033� 10�6 m3=s, using the selected radius
R ¼ Lr ¼ 1:94 mm and assuming a perfectly circular cross section.
If we take the reference velocity Ur ¼ 0:388 m=s corresponding to
a Reynolds number Re ¼ 250, we find similarly as reference flow
rate Qr 	 4:59� 10�6 m3=s. For convenience, we split the forcing
signal in the non-dimensional formulation into a normalized flow
rate pattern Q0 which varies between 0 and 1, and an amplitude
Qmax=Q r such that the forcing used in the simulations becomes
QðtÞ ¼ ðQ max=Q rÞQ 0ðtÞ 	 1:75Q0ðtÞ. The physical duration of one
pulse is t ¼ 0:82 s. The reference time-scale can be computed as
tr ¼ R=Ur ¼ 0:005 s. Thus at Re ¼ 250 one pulse requires 164
non-dimensional time units.

The procedure to define the pulsatile flow rate can be extended
to also address other Reynolds numbers. We take as reference Rey-
nolds number Re and fix the reference length-scale to Lr (since we
consider the same geometry) and the kinematic viscosity to mr

(since we still consider the flow of blood). If we wish to simulate
at another Reynolds number Re0 this implies that the reference
velocity scale is changed according to U0r ¼ ðRe0=ReÞUr . Correspond-
ingly, the time-scale changes into t0r ¼ ðRe=Re0Þtr and hence, the
‘new’ number of dimensionless time-steps to take in order to
complete one cycle of 0:82 s of the pulsatile flow decreases with
decreasing Reynolds number. Another consequence of changing
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the Reynolds number at constant length-scale and kinematic vis-
cosity is that Q 0r ¼ ðRe0=ReÞQr , as well as Q 0max ¼ ðRe0=ReÞQ max.
Hence, the dimensionless forcing does not alter with changing
Reynolds number and remains at QðtÞ 	 1:75Q0ðtÞ. The factor
1.75 denotes the ‘contrast’ in the pulsatile flow rate, i.e., the ratio
between the maximal and the average velocity during a cycle – this
quantity varies from one person to another and even slightly per
heartbeat. The change in Re corresponds to a change in Ur , which
affects the scale for the shear stress which is qrðUrÞ2. The final
result will be presented in dimensional form and include a wall
shear stress in Pa and time measured in s, which allows a direct
comparison with literature.

3.2. Reference pulsatile flow

For the reference case we perform pulsatile simulations at
Re ¼ 250 and first illustrate velocity traces per cardiac cycle. In
16 points, illustrated in Fig. 1(b) we compute the velocity during
one pulse and plot the results in characteristic points in Fig. 6.
We observe complex patterns of the streamwise velocity at all
locations. In some points the flow follows the pulsatile forcing pro-
file, as we would expect for laminar flow in roughly cylindrical ves-
sels, e.g., points 1, 13, 16. We also observe negative velocities, e.g.,
in point 5, 8, which are related to the recirculation of the flow.

In Fig. 7 we present 2D velocity contour plots at 4 different cross
sections along the aneurysm geometry and at 4 different cardiac
stages. Two cross sections (first and last rows) were chosen in
the vessel parts close to the ends of the selected domain at
x ¼ Lx=8 and x ¼ 7Lx=8. Two other cross sections (second and third
rows) are taken closer to the aneurysm bulge, at x ¼ 0:4Lxand
x ¼ 0:5Lx. The latter cross section was also analyzed for steady flow
in Chapter 3. The first column corresponds to the peak systole
stage, which displays a rather intense density of contour lines,
indicating the wider range of values involved. The second column
as well as the fourth column correspond to the ends of systole and
diastole and display relatively more quiet flow patterns, while the
third column is related to the peak diastole stage, which is less
vigorous than peak systole as seen from the reduced number of
contour lines compared to the first column. We plotted negative
velocities as dashed lines, which are clearly present in the second
and third rows, displaying the circulation of the blood flow near
the aneurysm bulge. In the vessels far away from the aneurysm
bulge (first and fourth rows) the flow behaves much as Poiseuille
flow and negative velocities are not present. Similar results were
obtained in [6] where the effect of flow rate during the cardiac
cycle in different aneurysm geometries was investigated.

3.3. Sensitivity of the pulsatile response to the value of e and Dt

A numerical analysis of the sensitivity of the numerical solution
to changes in the penalty parameter e was performed for the refer-
ence geometry. The results are presented in Fig. 8. The pulsatile
response of the maximum shear stress shows a clear convergence
with decreasing e. A more quantitative analysis of the error reduc-
tion with decreasing e is illustrated in Fig. 8(b), which illustrates
first order convergence of the solution as function of the penalty
parameter e. We observe such first order convergence already as
eK 10�3, and establish deviations less than 10�6 if eK 10�8, as
already advised in [21]. Since computational costs are independent
of the value of e, in all simulations we choose e ¼ 10�10 in order to
accurately represent the non-penetrating solid interfaces of the
domain.

We also analysed the sensitivity of the predicted pulsatile
response to the chosen time-step in the computations. For this
purposes we performed a set of test simulations in which the
time-step was varied according to Dt ¼ 10�1;5� 10�2;
10�2;5� 10�3;10�3;5� 10�4;10�4;5� 10�5;10�5 (in dimension-
less units). Results for the maximum shear stress response of the
flow computed during one pulse are presented in Fig. 9. Clear con-
vergence is observed starting from the solution at Dt ¼ 10�3. The
converge is presented more quantitatively by presenting the L2-
norm of the difference between the numerical solution computed
at the smallest Dt ¼ 10�5 with all other numerical solutions
computed at bigger time steps. First order convergence is observed
with respect to Dt as shown in Fig. 9(b). Based on this analysis we
chose Dt ¼ 10�4 as a suitable time step for the reference case. Sim-
ulations with this time-step for the given geometry take a few
hours on 16 CPU’s which makes it realistic for the application.
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4. Transitional pulsatile flow

In this Section we first show the occurrence of transition in pul-
satile flow in case the Reynolds number increases from the normal
range around Re ¼ 250 to the pathological range as high as
Re ¼ 400 (Section 4.1). Then we establish the robustness of this
phenomenon by showing that it can be observed in a variety of
flow properties and that it arises at basically all locations in the
domain (Section 4.2). This motivates to have a closer look at the
transition by considering the full dynamic spectrum of pressure
and velocity response (Section 4.3).
4.1. Shear stress response in normal and pathological flow

Experimental observations of ‘turbulence’ inside cerebral
aneurysms were presented in [9], confirmed by clinical study
where high frequency ‘bruits’ were measured by a phonocatheter.
Later, in [19,20] alternative clinical studies were presented, where
in a non-invasive way intracranial blood flow sounds were
recorded and analyzed. It was shown that certain high frequency
sounds are present in patients with cerebrovascular diseases and
not in healthy people. This suggests that if a cerebral aneurysm
is present, qualitative changes in the flow may occur which lead
to high-frequency bruits.

Is it possible to hear an aneurysm? Can one hear one’s own
aneurysm? Can critical aneurysms be detected by analyzing
sound? Motivated by the experimental observations and these
questions, we decided to perform a set of simulations at different
Reynolds numbers. We consider the reference flow at Re ¼ 250
to correspond to healthy cerebral blood flow circulation. Next to
this we also perform simulations at pathological flow conditions:
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at lower Reynolds numbers Re ¼ 100;200 and at higher Reynolds
numbers Re ¼ 300;400. The range Re = 100–400 was motivated
in Section 3.1 as a physiologically realistic regime for cerebral
blood flow.

We compute pulsatile flow at different Reynolds numbers for a
time corresponding to 10 pulses. In Fig. 10(a) we present the
dynamic response of the maximum shear stress only for 2 pulse
cycles in order to appreciate in more detail different levels of
magnitude and dynamical patterns at different Reynolds numbers.
The mean value averaged over 10 pulses at Re ¼ 250 is found to be
around 1.4 Pa with peak values near 2.6 Pa. At higher (possibly
pathological) Reynolds number Re ¼ 400 we observe a change in
mean value up to 2.5 Pa and a considerable increase in peak values
to 6.2 Pa averaged over 10 pulses. These values show the same
general magnitude as reported in [13,32]. Transitional dynamics
is clearly observed. Slow viscous flows at Re ¼ 100 and Re ¼ 200
smoothly follow the pulsatile forcing profile. At Re ¼ 250 more
dynamics appears to happen especially during the systole decay
phase. The most interesting flows are at Re ¼ 300 and Re ¼ 400,
where the nonlinear consequences of Navier–Stokes dynamics
are firmly present. This transition was also observed in simulations
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Fig. 11. Velocity components u; v ;w and p at point 11 in the vessel opposite the aneurys
Simulations are at Re ¼ 100 (dash-dot), Re ¼ 250 (dash) and Re ¼ 400 (solid).
of other realistic aneurysms and even for the simplified model
aneurysms consisting of a curved vessel to which a spherical cavity
was added [25].

In order to establish reliability of the transition we also
recorded the response in nearby inner and outer bounding geom-
etries, which was found to give practical bounding solutions
[26,28]. These bounding geometries are based on the slight varia-
tions in the masking functions, which can be systematically gener-
ated while coarsening the grid for the initial medical data. Thus, for
the geometry used in the current case-study, we started with
256� 256� 256 grid, in which the geometry was obtained by di-
rect transforming of the gray-scale voxels into the solid and fluid
3D-cells. While simplifying the geometry, we noticed that the main
vessel was located only in the half of the original ‘cube’ of data,
which allowed us to work with the 256� 128� 256 grid as the fin-
est one. During coarsening the grid, certain choices need to be done
in order to determine whether the 3D-cell of the coarse grid is solid
or fluid, depending on the property of the few cells of the finest
mesh. At this stage 8 bounding geometries can be defined, next
to the one basic geometry. More details about this procedure
applied to the geometry used in this case-study and analysis of
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the ‘fluid-volume’ of obtained geometries can be found in [29].
Practical application of bounding geometries is in the solutions,
which appear to be also bounded. This allows to predict the flow
and a range of possible variations caused by the slight changes in
the aneurysm geometry.

For pulsatile simulations we consider only nearby ‘inner’ and
‘outer’ geometries which have a slightly smaller and slightly larger
volume of flow domain. These bounding geometries allow a
narrow band of solutions, characterizing the sensitivity of the
simulation results. In Fig. 10(b) we show the maximum shear
stress during one cycle at three Reynolds numbers – in each case
we collect the basic solution together with its two bounding solu-
tions. The variability bands are plotted as gray shading allowing to
appreciate better the dynamics of the bounding solutions. Thus, at
Re ¼ 100 and Re ¼ 250 bounding solutions closely follow the basic
solution, representing relatively narrow sensitivity bands with a
general variability range of 10–15%. At Re ¼ 400 the transition is
present also in bounding solutions, leading to the wider variability
band, with more increased peak values for the inner geometry.
Now that we have transition established, we will consider the
robustness of this phenomenon regarding flow-quantity and phys-
ical location at which transition is measured.
4.2. Robustness of pulsatile transition

In this subsection we will establish the robustness of the tran-
sition phenomena observed in the previous subsection. In particu-
lar, we will show that this phenomenon is equally present in a
variety of flow properties such as the three velocity components
and the pressure. This shows transition to be independent of the
quantity that is being monitored. Subsequently, we will turn atten-
tion to the pressure response and show that the qualitative fea-
tures of the transition appear similarly at different measuring
points in the flow domain. This shows an independence of location.

In Fig. 11 we show the velocity components u;v and w and
pressure p at point 11 (see Fig. 1(b)) during one pulse at three Rey-
nolds numbers. We choose point 11 as the reference point due to
its location - directly opposite of the aneurysm bulge. We observe
the transition in all presented quantities. Not only levels for u;v ;w
and p are varying but also the dynamic pattern of the response dur-
ing one cardiac cycle is changing considerably as a result of the
transition. This illustrates the general independence of transition
on observed flow-quantity.

In Fig. 12 we collect the pressure response during a pulsatile
cycle in 8 characteristic measuring points selected form those
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indicated in Fig. 1(b). We take the average pressure at point 11 as
reference pressure and compare pressure response relative to this
point. We observe that, although the precise pressure signal is dif-
ferent at each location, the general characteristic of smooth time-
dependence at Re ¼ 100 and 250 changes considerably at Re ¼ 400.

4.3. Frequencies of the pulsatile solution

There are a few ways to measure the flow inside cerebral ves-
sels and aneurysms: invasively, measuring pressure directly by
inserting a pressure sensor on a catheter and non-invasively as,
e.g., using TCD to obtain time-dependent mean velocity time traces
in the arteries nearby the scalp. Sounds inside cerebral vessels can
also be measured in both ways: with a phono-catheter [9] and with
a sonic detector [19] or a transducer [20] which are applied close to
the head or even attached to the scalp. Afterwards the signals
recorded by any of the above listed techniques can be analyzed
by considering their spectra.

We translated the numerical signals computed during one cycle
into the corresponding spectra. As was shown in the previous sub-
section, transition occurs quite independently of flow-quantity and
location at which it was measured. We concentrate on pressure
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Fig. 13. Fourier transform of the pressure signals at three different Reynolds numbers i
aneurysm bulge (point 11) and inside the aneurysm bulge (points 7, 10). Simulations ar
and streamwise velocity component u as these would correspond
roughly with the quantities that can be measured clinically. We
analyze the spectra in four chosen points along the aneurysm
geometry. In particular, we chose one point at the beginning of
the aneurysm geometry (point 1), where flow is close to a Poiseu-
ille type flow. We also include point 11, located opposite the aneu-
rysm bulge. Two more points are 7 and 10, which are inside the
aneurysm bulge at different distances from the main vessel (see
Fig. 1(b)). Similar choices for points of interest near and inside
the aneurysm are shown in [1,9].

In Fig. 13 we show the Fourier transform of the pressure com-
puted at three flow regimes in four chosen points. The actual fre-
quencies are represented on the horizontal axis. The main
component due to the cardiac cycle of 0.82 s is clearly observed
at 1.22 Hz. On the vertical axis we plot the square of the coeffi-
cients of the Fourier transform of the time-trace of the pressure.
We plot all the spectra on the same scale to facilitate comparison
of the values. Transition in the flow due to different Reynolds num-
bers is shown in terms of much higher values for the high frequen-
cies. In point 1 all the signals seem to give similar spectra. This
suggests that in a roughly cylindrical vessel the flow keeps its
properties at Re ¼ 100;250 and 400. In the other points we see
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more dynamics in the small scales. We also notice that the differ-
ence between the tails of the spectra when comparing different
Reynolds numbers increases. Even though the spectra have quite
wiggly tails, the general levels of high frequency components can
be readily identified.

In Fig. 14 the Fourier transform of the u velocity component is
shown in the same four points. On the vertical axis we plot the
square of the coefficients of the Fourier transform of the u velocity
time trace. The flow patterns again display transition with increas-
ing Reynolds number. In all points the spectrum at Re ¼ 400 is well
separated from the other recordings, showing the increased pres-
ence of components of high frequencies. Interestingly, the tail of
the velocity spectra for the velocities is rather smooth for the lower
Reynolds numbers.

5. Concluding remarks

In this paper we presented a complete computational model for
the simulation of pulsatile blood flow in cerebral aneurysms. Based
on the volume penalizing IB method, the current model allows to
compute flow and forces that emerge in aneurysms under pulsatile
flow conditions. We analyzed several solutions at different flow re-
gimes and observed strong transition to complex time-dependence
at higher Reynolds number, which may be of interest for medical
monitoring. We emphasized this point in terms of presenting
time-traces of the solution as well as the corresponding spectra.

The aneurysm geometry considered in this study was recon-
structed from 3DRA medical data. The IB method allows a quite di-
rect transformation of the gray scale voxels contained in the
images into fluid and solid 3D cells in the computational domain.
Flow conditions corresponding to physiologically relevant cerebral
flows were estimated, based on data obtained from literature.
Numerous clinical studies show variability of the measured sizes
of cerebral arteries, ranges for blood flow velocity and viscosity.
Combining the variability ranges of these components we arrived
at the approximate range of flow conditions, that would apply
for cerebral flow in the Circle of Willis. As a typical reference cere-
bral flow we considered Re ¼ 250. When taking into account all the
uncertainties we obtained flows in a range of 100 6 Re 6 400. At
these different flow conditions we performed pulsatile flow
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simulations. The main purpose of this study was not just to com-
pute the flow with given parameters, but to assess how the vari-
ability in the parameters translates into a confidence interval
around the basic final solution.

For the reference flow we illustrated the influence of partial fill-
ing of the aneurysm bulge on the flow pattern that develops inside.
This type of simulations can support coiling procedures in taking a
decision about the amount of coil that is required to change the
flow sufficiently to remove the problem for the patient.

The imposed pulsatile profile was obtained from TCD measure-
ments of the velocity of the blood flow in the middle cerebral ar-
tery in the brain. We chose a typical pulse, normalized it and
translated this into the volumetric flow rate assuming a circular
cross-section of the vessel. We repeated this signal periodically
as flow forcing which leads to a model for the time-dependent pul-
satile flow. We performed pulsatile simulations at different Rey-
nolds numbers and analyzed the main solution and its
components. In particular, we considered velocity, pressure and
maximum shear stress.

Increasing or decreasing the Reynolds number has a marked ef-
fect on the dynamic response. At the lower Reynolds numbers the
response of the solution is seen to be smooth, following the im-
posed pulsatile profile. At the higher Reynolds numbers the natural
Navier–Stokes nonlinearity seems to become dominant, which
makes the numerical response lively by the emergence of relatively
high frequency components of the solution. In addition, the ampli-
tude of the solution components rises considerably, clearly
expressing the transition towards complex pulsatile flow in which
much higher frequencies gain in dynamic importance. We investi-
gated in more detail this transition and showed that it is robust to
choice of the computed quantity and to the location in the aneu-
rysm geometry. The method of bounding solutions was employed
to arrive at a confidence interval around the basic solution - this
was illustrated for the time-dependent maximum shear stress. Fur-
thermore, we looked into the spectra for the pressure and stream-
wise velocity. Much higher levels of both - high and low
frequencies arise at increased Reynolds number, which may be
associated with an increased risks to the patient. Recording the
spectrum of frequencies and analyzing trends in their levels may
become relevant in medical practice and used as an easy monitor-
ing procedure.
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