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Abstract We consider the mean-variance hedging problem for pricing bond options
using the yield curve as the observation. The model considered contains infinite-
dimensional noise sources with the stochastically- varying risk premium. Hence our
model is incomplete. We consider mean-variance hedging under the real world measure
and obtain an explicit form of the optimal hedging strategy.
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1 Introduction

We study in this paper the optimal hedging problem for pricing options on bonds using
the yield curve as the observation. There are various optimal hedging formulations
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available in the literature. In this paper we only consider the mean-variance formu-
lation. The mean-variance hedging problem has been studied under a risk-neutral
measure. However since risk-neutral measure does not represent a statistical descrip-
tion of market events, the profit and loss of a portfolio may have a large variance
while its “risk neutral” variance of the hedging error can be small. Therefore the
mean-variance hedging under a real world measure has been introduced and studied
extensively already, see for example [8,9].

In this article, we study the mean-variance hedging problem for the European option
with bond as underlying asset. We use the general affine term structure model from [2].
Since general affine term structure model introduced in [2] has infinite noise sources,
it describes an incomplete bond market, see [3,19] . This means one cannot perfectly
hedge all contingent claims, for example options. The model [2] is described in the
risk-neutral probability space. But as mentioned above mean-variance hedging has to
be performed in the real world probability space. Hence one need to specify the bond
market model in the real world. To describe the model given in [2] in the real world
probability space, we use the risk-premium of the market.

Many statistical studies have been performed for the modeling of the risk-premium
term, see [5,10,11]. Recently “predictability” in bond returns has been studied by
Cochrane and Piazzesi [6]. Consistent with the findings of [6], Collin-Dufresne and
Goldstein proposed a new model for the stochastic risk-premium factor, which is
driven by feedback of noise sources of factor model in [7] . In this paper we adopt this
stochastic premium model.

The stochastic risk-premium is not a tradable asset. Furthermore our market data
consists of a finite number of bond data and the yield curve. This implies that the sto-
chastic risk premium can not be reconstructed from the finite-dimensional observation
data even though the randomness of the stochastic risk premium contains all compo-
nents of the factor’s randomness. Hence we have to study mean-variance hedging
problem with partial information of the stochastic risk premium.

There are several articles dealing with partial information in finance, when the
underlying assets are stocks, e.g. [12,13,15,17]. In our present paper where the under-
lying assets are bonds, our observation is the usual yield curve data for the zero-coupon
bond and the time-series data of bonds used for constructing the self-financing portfo-
lio. Using these data, we propose the Kalman filter technique to estimate the stochastic
risk -premium. We apply the derived infinite-dimensional filter to the mean variance
hedging using a method similar to the method proposed by Pham [17].

Our paper is organized as follows. In Sect. 2, we describe our bond market model
in the real world. In Sect. 3, we review the filtering problem given in [2] and construct
the Kalman filter algorithm for estimating the risk premium for the simple case that
our observation information only contains the bond data. The mean-variance hedging
problem is studied for European type options and Sect. 4 is devoted to calculate the
optimal hedging strategy similar to the Black-Scholes delta. Augmenting the yield
curve data and the portfolio as the new observation data, we reformulate the Kalman
filter and the self-financing optimal mean variance portfolio is obtained in Sect. 5. In
Sect. 6, we finally demonstrate the simulation studies to show the feasibility of the
proposed hedging procedure.
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2 Market Price of Risk

Consider the probablity space (�,F ,P) endowed with the filtration Ft≥0. The above
probability space represents the ’real world’. As stated in [12] for hedging the model
is taken under the above original (“real-world” or “objective”) measure, and hence
we describe our model under the real-world measure.

The time variable t is defined on [0, t f ] and the time-to-maturity variable x is
defined on G =]0, T̂ [ and also the extended region G̃ =]0, T̂ + t f [1. We consider
the Hilbert space L2(G̃) (the space of square summable functions on G̃) with the
inner product (·, ·) and Hm(G̃) ( space of functions with their m-th derivatives in
L2(G̃)). Our model for the instantaneous forward rate f (t, x) for the time-to-maturity
x ∈ G =]0, T̂ [ is

d f (t, x) = ∂ f (t, x)

∂x
dt + (

1

2

d

dx
q̃(x) − λ(t)qλ(x))dt + dw(t, x), (1)

dλ(t) = (b + aλ(t))dt + (σλ(·), dw(t, ·)), λ(0) = λo, (2)

where qλ, σλ are functions satisfying (A-4) given in Proposition 1, w is a two parameter
Brownian motion process under P , defined in L2(G̃) with

E{(φ1, w(t, ·))(φ2, w(t, ·))} = t (φ1, Qφ2),∀φ1, φ2 ∈ L2(G̃), (3)

with

Qφ(·) =
∫

G̃

q(x, y)φ(y)dy, for φ ∈ L2(G̃) (4)

and2 q̃(x) is given by

q̃(x) =
x∫

0

x∫

0

q(x1, x2)dx1dx2. (5)

Note that our model incorporates the market price of risk λ(·). We are using the
model for the market price of risk proposed by Collin-Dufresne and Goldstein’s work-
ing paper [7]. For simplicity, the risk-premium is given by the product of the stochastic
part λ(t) and the deterministic function qλ(x). From the fact that the bond risk pre-
mium contains all forward rates random property as suggested in [6], stochastic risk-
premium is specified by (2).

Proposition 1 We assume

(A-1) fo ∈ L2(�, H1(G̃))

1 From the property of the first order hyperbolic systems, the spatial region G̃ =]0, T̂ + t f [ is shrinking to

G =]0, T̂ [ from t = 0 to t f . See [1].
2 The smoothness for q is given in Proposition 2.1.
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(A-2)
∫

G̃
∂2q(x,y)

∂x∂y |y=x
dx < ∞

(A-3) λo ∈ L2(�; R1) and
(A-4) qλ ∈ H1(G̃), σλ ∈ L2(G̃), a and b are constants.

Then

f ∈ L2
(
�; C([0, t f ]; H1(]0, T̂ [))

)
, (6)

λ ∈ L2
(
�; C([0, t f ]; R1)

)
(7)

Proof The proof of this proposition is shown in Appendix 1. ��
Set

dw̃(t, x) = dw(t, x) − λ(t)qλ(x)dt. (8)

Then we have the following Girsanov’s theorem.

Proposition 2 In addition to (A-4), we assume

(A-5) (qλ, Q−1qλ) < ∞,

where

Q−1(·) =
∞∑

i=1

1

λi
ei (ei , ·)

and q(x, y) = ∑∞
i=1 λi ei (x)ei (y) for some orthonormal basis in L2(G̃). Under the

probability measure P̃ defined by

dP̃
dP = exp{

t∫

0

λ(s)(qλ, Q−1dw(s, ·)) − 1

2

t∫

0

λ2(s)(qλ, Q−1qλ)ds}, (9)

w̃ given by (8) is also a Brownian motion process .

Proof This proof is presented in Appendix 2. ��
In view of Proposition 2, it follows that under the probaility measure P̃ , the forward

rate dynamics is given by the solution of

d f (t, x) = ∂ f (t, x)

∂x
dt + 1

2

d

dx
q̃(x)dt + dw̃(t, x) (10)

f (0, x) = fo(x) (11)

where w̃(t, x) denotes the two parameter Brownian motion under P̃ with

Ẽ{w̃(t, x1)w̃(t, x2)} = q(x1, x2)t.
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The bond price P(t, T ) for a fixed maturity T is given by

P(t, T ) = exp{−
T −t∫

0

f (t, x)dx}.

Noting that the exact short rate is given by r(t) = f (t, 0), we find that

P̃(t, T ) = P(t, T )

exp{∫ t
0 f (s, 0)ds} (12)

becomes an F̃t -martingale, where F̃t = σ { f (s, ·); 0 ≤ s ≤ t} . Hence P̃ is a risk-
neutral measure.

3 Mean-Variance Hedging

We consider a simple form of a self financing portfolio which is constructed from two
bonds to make the presentation of the article simple. Note that the case of portfolio
with more than two bonds can be done along the same lines. Also we consider the
Mean-Variance hedging for European call option and the case of general payouts,e.g.
swaptions,interest rate caps, etc can be treated similarly. Our hedging problem is more
challenging because, since the stochastic risk premium can not be directly observed
from the market, the usual payout, e.g. call option can not be replicated in the usual
manner. Hence we need to estimate the movement of the stochastic risk-premium from
the observed market data and then we construct the portfolio to replicate the given pay
off for minimizing the mean square error of the wealth of portfolio and the pay off,
i.e., the mean variance hedging is introduced.

3.1 Self-financing Portfolio and Observation Data

We construct a self-financing portfolio for hedging the European type options. Con-
sider a European call option with maturity Tm on a TM -bond P(t, TM ) such that
Tm < TM . For hedging we use a portfolio of the Tm-bond and TM -bond. For clarity in
the presentation, we first give an illustration using analogous discrete version of the
portfolio.

– At t = 0 we set up a portfolio made up of x0 units of P(0, Tm). Hence the itinial
wealth V (0) becomes

V (0) = P(0, Tm)x0.

– Now from the initial wealth, we purchase θ(δ) units of P(0, TM ). Hence at t = δ,
our wealth becomes

V (δ) = P(0, Tm)x0 − P(0, TM )θ(δ)

P(0, Tm)
P(δ, Tm) + P(δ, TM )θ(δ).
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The self-financing portfolio becomes for t = δ, 2δ, · · ·
⎧⎨
⎩

V (0) = P(0, Tm)x0

V (t) = V (t − δ) − P(t − δ, TM )θ(t)

P(t − δ, Tm)
P(t, Tm) + θ(t)P(t, TM )

(13)

where θ(t) is a Ft−δ measurable process ( Ft -predictable process) and Ft denotes
the data form the market at time t . From (13) it follows that the discounted wealth,
i.e., V (t)

P(t,Tm )
satisfies

V (t)

P(t, Tm)
= V (t − δ)

P(t − δ, Tm)
+ θ(t)

{ P(t, TM )

P(t, Tm)
− P(t − δ, TM )

P(t − δ, Tm)

}
.

Hence

V (nδ) = P(nδ, Tm)

(
x0 +

n∑
i=1

θ(iδ)

{
P(iδ, TM )

P(iδ, Tm)
− P((i − 1)δ, TM )

P((i − 1)δ, Tm)

})
. (14)

It is also possible to represent the wealth process:

V (t) − V (t − δ) = V (t − δ)

P(t − δ, Tm)

(
P(t, Tm) − P(t − δ, Tm)

)

+ θ(t)

(
P(t, TM ) − P(t − δ, TM )

P(t, Tm)

P(t − δ, Tm)

)
,

i.e.,

V (nδ) = P(0, Tm)x0 +
n∑

i=1

{
V ((i − 1)δ)

P((i − 1)δ, Tm)
(P(iδ, Tm) − P((i − 1)δ, Tm))

}

+
n∑

i=1

θ(iδ)
(

P(iδ, TM ) − P((i − 1)δ, TM )

− P((i − 1)δ, TM )

P((i − 1)δ, Tm)
(P(iδ, Tm) − P((i − 1)δ, Tm))

)
(15)

Hence noting that θ(t) is Ft−δ measurable, from (14) the continuous version of
V (nδ) becomes

V (t) = P(t, Tm)

⎡
⎣x0 +

t∫

0

θ(s)d
P(s, TM )

P(s, Tm)

⎤
⎦ , (16)
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where θ(t) ∈ Uad It also follows from (15) that

V (t) = P(0, Tm)x0 +
t∫

0

{
(

V (s)

P(s, Tm)
− θ(s)

P(s, TM )

P(s, Tm)
)d P(s, Tm)

+θ(s)d P(s, TM )} . (17)

– Now our portfolio is (x0, θ(t)). The mean-variaince hedging is to find the constant
initial investment x0 for P(0, Tm) and the dynamic investment θ(s) for P(s, TM )

under the self-financing situation.

Let Yt denote the sigma algebra generated by the observation data from the market.

Proposition 3 We assume that

θ ∈ Uad =
⎧⎨
⎩θ; θ(t) is Yt − mesurable, wi th E{

TM∫

0

θ2(t)P2(t, T )dt} < ∞
⎫⎬
⎭ .

Then the portfolio (x0, θ(t)) is self-financing.

Proof From (17), we find that

dV (t) =
(

V (t)

P(t, Tm)
− θ(t)

P(t, TM )

P(t, Tm)

)
d P(t, Tm) + θ(t)d P(t, TM ).

This implies that (
V (·)

P(·,Tm )
− θ(·) P(·,TM )

P(·,Tm)
, θ(·)) of (P(·, Tm), P(·, TM )) is self-

financing, i.e. (x0, θ(·)) is self-financing. ��

Our information is P(t, Tm) and P(t, TM ) for 0 ≤ t ≤ Tm . Since the stochastic
risk premium λ(·) given by (2) is not a tradable asset, one need to estimate λ(·) from
the two bond price processes P(·, Tm) and P(·, TM ). To find the relation between λ(·)
and these bond data, we use the observation data

Ỹ (t) = − log
P(t, TM )

P(t, Tm)
. (18)

Noting that

Ỹ (t) =
TM −t∫

Tm−t

f (t, x)dx,
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from (1) we have

dỸ (t) = − f (t, TM − t)dt + f (t, Tm − t)dt +
TM −t∫

Tm−t

d f (t, x)dx

=
TM −t∫

Tm−t

⎛
⎝

x∫

0

q(x, z)dz − λ(t)qλ(x)

⎞
⎠ dxdt +

TM −t∫

Tm−t

dw(t, x)dx

= 1

2

⎡
⎢⎣

TM −t∫

Tm−t

TM −t∫

Tm−t

q(x1, x2)dx1dx2 + 2

Tm−t∫

0

TM −t∫

Tm−t

q(x1, x2)dx1dx2

⎤
⎥⎦ dt

+
TM −t∫

Tm−t

dw(t, x)dx − λ(t)

TM −t∫

Tm−t

qλ(x)dxdt. (19)

The observation process Ỹ (t) can be rewritten as

dỸ (t) = −λ(t)H(t)qλdt + 1

2
F(t)dt + H(t)dw(t, ·), (20)

where

F(t) =
TM −t∫

Tm−t

TM −t∫

Tm−t

q(x1, x2)dx1dx2 + 2

Tm−t∫

0

TM −t∫

Tm−t

q(x1, x2)dx1dx2,

H(t)φ(t, ·) =
TM −t∫

Tm−t

φ(t, x)dx, φ ∈ C([0, t f , L2(Ĝ)).

Clearly the observation noise covariance q̄(·) is given by

q̄(t) =
TM −t∫

Tm−t

TM −t∫

Tm−t

q(x1, x2)dx1dx2. (21)

Hence the Kalman filter equation for λ̂(t) = E{λ(t)|Yt }, where Yt = σ {Ỹ (s); 0 ≤
s ≤ t} is given by

dλ̂(t) = aλ̂(t)dt + bdt + Kλ(t)d 	̃(t), (22)

Kλ(t) =
⎛
⎜⎝−Pλ(t)

TM −t∫

Tm−t

qλ(x)dx +
∫

G

TM −t∫

Tm−t

σλ(x)q(x, y)dxdy

⎞
⎟⎠ q̄−1(t), (23)
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where Pλ is error covariance described by the o.d.e. (see [4,14])

d Pλ(t)

dt
= 2a Pλ(t) +

∫

G

∫

G

σλ(x)q(x, y)σλ(y)dxdy

−
(

− Pλ(t)

TM −t∫

Tm−t

qλ(x)dx +
∫

G

TM −t∫

Tm−t

σλ(x)q(x, y)dxdy
)2

q̄−1(t), (24)

and the innovation process 	̃(t) is defined by

	̃(t) = Ỹ (t) − Ỹ (0) −
t∫

0

{
1

2
q̄(s) + q̄2(s) − λ̂(s)q̄λ(s)

}
ds, (25)

q̄2(s) =
Tm−s∫

0

TM −s∫

Tm−s

q(x1, x2)dx1dx2, (26)

q̄λ(s) =
TM −s∫

Tm−s

qλ(x)dx . (27)

It is well-known that, see [14]

	̃(·) is a Yt − Brownian motion with incremental covariance q̄(·) (28)

From (16) and (18), we have

Vt

P(t, Tm)
= x0 +

t∫

0

θ(s) d
( P(s, TM )

P(s, Tm)

)

= x0 +
t∫

0

θ(s) de−Ỹ (s)

= x0 −
t∫

0

θ(s)e−Ỹ (s)dỸ (s) + 1

2

t∫

0

θ(s)e−Ỹ (s)q(s)ds.

It follows from (25) that

Ṽt = Vt

P(t, Tm)
= x0 −

t∫

0

θ(s)e−Ỹ (s)d 	̃(s) +
t∫

0

θ(s)e−Ỹ (s){−q̄2(s) + λ̂(s)q̄λ(s)}ds.

(29)
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The payoff at maturity Tm of the European call option (P(Tm, TM ) − K )+ is
represented as follows:

(P(Tm, TM ) − K )+ =
( P(Tm, TM )

P(Tm, Tm)
− K

)+ =
(

exp(−Ỹ (Tm)) − K
)+

=
⎛
⎝exp(−	̃(Tm) −

Tm∫

0

{1

2
q̄(s) + q̄2(s) − λ̂(s)q̄λ(s)}ds − Ỹ (0)) − K

⎞
⎠

+

, (30)

Hence, noting that (P(Tm, TM ) − K )+ is a functional of 	̃ and

lim
t→Tm

Ṽt = VTm ,

we set the mean-variance cost as

J (t, x0, θ) = E{|Ṽt − E{(P(Tm, TM ) − K )+|Yt }|2}, (31)

for x0 ∈ R1+, θ ∈ Uad where

Uad =
⎧⎨
⎩θ; θ(t) is Yt − measurable, with E{

TM∫

0

θ2(t)P2(t, TM )dt} < ∞
⎫⎬
⎭ .

Before proceeding to solve the above optimization problem, we calculate the so
called indifference price E{(P(Tm, TM ) − K )+|Yt }.

3.2 Explicit Form for E{(P(Tm, TM ) − K )+|Yt }

In order to obtain the explicit form of E{(P(Tm, TM )− K )+|Yt }, we use the Gaussian
nature of 	̃(·) . So we need the following auxiliary proposition.

Proposition 4 Let

A(t) = e−at

Tm∫

t

eas q̄λ(s)ds, t ≥ 0.

Then
Tm∫

t

λ̂(s)q̄λ(s)ds = A(t)λ̂(t) + b

Tm∫

t

A(s)ds +
Tm∫

t

A(s)Kλ(s)d 	̃(s). (32)

Proof See Appendix 3. ��
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Denote the indifference price as follows.

Ĥ t
Tm

= E{(P(Tm, TM ) − K )+|Yt }.

Also set

m1(t, 	̃(t)) = −	̃(t) − 1

2

Tm∫

0

q̄(s)ds (33)

m2(t, λ̂(s); 0 ≤ s ≤ t)) =
t∫

0

λ̂(s)q̄λ(s)ds − Ỹ (0)

−
Tm∫

0

q̄2(s)ds + A(t)λ̂(t) + b

Tm∫

t

A(s)ds (34)

and

K̃ = e−m1(t,	̃(t))−m2(t,λ̂(s);0≤s≤t)K .

Theorem 1 The indifference price is given by

Ĥ t
Tm

= exp
(

m1(t, 	̃(t)) + m2(t, λ̂(s); 0 ≤ s ≤ t)) + R(t)

2

)
N (d1(t)) − K N (d2(t)),

(35)
where N (·) denotes the commutative distribution function of the standard Normal
distribution,

R(t) =
Tm∫

t

q̄(s)ds − 2

Tm∫

t

q̄(s)Kλ(s)A(s)ds +
Tm∫

t

A2(s)Kλ(s)q̄(s)Kλ(s)ds, (36)

and

d1(t) = R−1/2(t)(m1(t, 	̃(t)) + m2(t, λ̂(s); 0 ≤ s ≤ t)) − log K + R(t)),

d2(t) = R−1/2(t)(m1(t, 	̃(t)) + m2(t, λ̂(s); 0 ≤ s ≤ t)) − log K ).

Proof From (30) and Proposition 4 we have

Ĥ t
Tm

= E

⎧⎨
⎩
(

exp{−	̃(t) +
t∫

0

λ̂(s)q̄λ(s)ds −
Tm∫

0

{1

2
q̄(s) + q̄2(s)}ds − Ỹ (0)}

× exp{−(	̃(Tm) − 	̃(t)) +
Tm∫

t

λ̂(s)q̄λ(s)ds} − K
)+|Yt

⎫⎬
⎭
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= E

⎧⎨
⎩
(

exp{−	̃(t) +
t∫

0

λ̂(s)q̄λ(s)ds

−
Tm∫

0

(
1

2
q̄(s) + q̄2(s))ds − Ỹ (0) + A(t)λ̂(t) + b

Tm∫

t

A(s)ds}

× exp{−(	̃(Tm) − 	̃(t)) +
Tm∫

t

A(s)Kλ(s)d 	̃(s)} − K
)+|Yt

⎫⎬
⎭

= exp(m1(t, 	̃(t)) + m2(t, λ̂(s); 0 ≤ s ≤ t))

× E

⎧⎨
⎩
(

exp{−(	̃(Tm) − 	̃(t)) +
Tm∫

t

A(s)Kλ(s)d 	̃(s)} − K̃
)+|Yt

⎫⎬
⎭ .

Noting that −(	̃(Tm) − 	̃(t)) + ∫ Tm
t A(s)Kλ(s)d 	̃(s) is Gaussian with zero mean

and covariance R(t) given by (36), this result is easily derived. ��

4 Explicit forms of Optimal Hedging Strategies

Noting that Ĥ t
TM

is a Yt martingale, and since
∫ ·

0 λ̂(s)q̄‘λ(s)ds is of bounded variation
it follows from Theorem 1 that

d Ĥ t
Tm

= ∂ Ĥ t
Tm

∂m1

∂m1

∂	̃
d 	̃(t) + ∂ Ĥ t

Tm

∂m2

∂m2

∂λ̂
Kλ(t)d 	̃(t) (37)

Using the well-known property, for i = 1, 2,

exp(m1 + m2 + R/2)
∂ N (R−1/2(m1 + m2 − log K + R))

∂mi

−K
∂ N (R−1/2(m1 + m2 − log K ))

∂mi
= 0,

we have

∂ Ĥ t
Tm

∂mi
= Ĥ t

Tm
, i = 1, 2.

Hence

d Ĥ t
Tm

= Ĥ t
Tm

(−1 + A(t)Kλ(t))d 	̃(t). (38)
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Defining the hedging error process ε(t) = Ṽt − Ĥ t
Tm

, we obtain

dε(t) = {Ĥ t
Tm

(1 − A(t)Kλ(t)) − θ(t)e−Ỹ (t)}d 	̃(t)

+{−q̄2(t) + λ̂(t)q̄λ(t)}θ(t)e−Ỹ (t)dt. (39)

Applying Ito’s lemma to |ε(t)|2, the hedging cost J (t, x0, θ) becomes

J (t, x0, θ) = E{|x0 − Ĥ0
Tm

|2} + 2E{
t∫

0

{−q̄2(s) + λ̂(s)q̄λ(s)}

× θ(s)e−Ỹ (s)(Ṽs − Ĥ s
Tm

)ds}

+ E{
t∫

0

|Ĥ s
Tm

(1 − A(s)Kλ(s)) − θ(s)e−Ỹ (s)|2q̄(s)}ds. (40)

Now from the fact that the RHS of (40) is a quadratic function with respect to x0
and θ we can derive the explicit form of the optimal hedging strategy:

Theorem 2 The optimal hedging strategy (xo
0 , θo) is given by

xo
0 = P(0, TM )

P(0, Tm)
exp
(

A(0)λ̂(0) + b

Tm∫

0

A(s)ds − 1

2

Tm∫

0

q̄(s)ds

−
Tm∫

0

q̄2(s)ds + R(0)

2

)
N (d1(0)) − K N (d2(0)) (41)

and

θo(t) =
⎧⎨
⎩exp

(
A(t)λ̂(t) + b

Tm∫

t

A(s)ds − 1

2

Tm∫

t

q̄(s)ds

−
Tm∫

t

q̄2(s)ds + R(t)

2

)
N (d1(t)) − P(t, Tm)

P(t, TM )
K N (d2(t))

⎫⎬
⎭

×
(

1 − A(t)Kλ(t) + 1

q̄(t)
{−q̄2(t) + λ̂(t)q̄λ(t)}

)

− 1

q̄(t)

{
−q̄2(t) + λ̂(t)q̄λ(t)

} Vt

P(t, TM )
, (42)
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where d1(t) and d2(t) are represented by

d1(t) = R−1/2(t)(− log
P(t, Tm)

P(t, TM )
+ A(t)λ̂(t) + b

Tm∫

t

A(s)ds

− 1

2

Tm∫

t

q̄(s)ds −
Tm∫

t

q̄2(s)ds − log K + R(t)) (43)

d2(t) = d1 − R1/2(t). (44)

Proof From (40), we have

xo
0 = Ĥo

Tm
(45)

θo(t) = eỸ (t)
{

Ĥ t
Tm

(1 − A(t)Kλ(t)) − 1

q̄(s)
{−q̄2(t) + λ̂(t)q̄λ(t)}{Ṽt − Ĥ t

Tm
}
}

.

(46)

In order to implement the optimal θo(t), we represent 	̃ as functions of P(t, TM ) and
P(t, Tm) and filter output λ̂(t). From (25) and (18) we have

	̃(t) = log
[ P(0, TM )

P(0, Tm)

P(t, Tm)

P(t, TM )

]
−

t∫

0

{1

2
q̄(s) + q̄2(s) − λ̂(s)q̄λ(s)}ds. (47)

Hence we get

m(t, 	̃(t)) + m2(t, λ̂(s); 0 ≤ s ≤ t)) = − log
P(t, Tm)

P(t, TM )
+ A(t)λ̂(t)

+ b

Tm∫

t

A(s)ds − 1

2

Tm∫

t

q̄(s)ds −
Tm∫

t

q̄2(s)ds)

(48)

eỸ (t) Ĥ t
Tm

= exp{A(t)λ̂(t) + b

Tm∫

t

A(s)ds − 1

2

Tm∫

t

q̄(s)

−
Tm∫

t

q̄2(s)ds + R(t)

2
}N (d1(t)) − P(t, Tm)

P(t, TM )
K N (d2(t)). (49)

Substituting (48) and (49) into (46), we obtain this theorem. ��
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5 Yield Curve Data

In the previous section, we only used the purchased bond data for estimating λ(·).
Usually from the market one also get the yield curve data. It is possible to include
these data for estimating the market price of risk term λ(t). According to the results
obtained previously, the optimal θo is a function of the estimate λ̂(t) and the form
of the optimal θo is easily adjusted by using the estimate λ̂(t) from Ỹ (t) and yield
curve data. To perform the Kalman filter by using these data, we need to estimate the
factor process f (t, x) whose estimate is not explicitly included in the optimal gain θo.
However we can expect that the estimation results for λ̂ are well improved including
the yield curve data in our observation.

5.1 Observation Data from Yield Curve and Optimal θo

We include continuously compounded yields on zero-coupon bonds with fixed time-
to-maturity

yi (t) = 1

τi

τi∫

0

f (t, x)dx, for τ1 < τ2 < · · · < τm (50)

as additional observations. It follows from (1) that

dyi (t) = 1

τi
( f (t, τi ) − f (t, 0))dt + 1

2τi
q̃(τi )dt

− λ(t)
1

τi

τi∫

0

qλ(x)dxdt + 1

τi

τi∫

0

dw(t, x)dx .

Let Y(t) = [y1(t), y2(t), · · · , ym(t), Ỹ (t)]′
, t ≥ 0 denote the augmented observa-

tion process. Set Y t = σ {Y(s); 0 ≤ s ≤ t}. Clearly Y(·) is given by

dY(t) = Hδ f (t, ·)dt − λ(t)H(t)qλdt + 1

2
F(t)dt + H(t)dw(t, ·), (51)

where

Hδ[·] =
[

Hδ[·]
0

]
=
[

[ 1
τi

∫
G(δ(x − τi ) − δ(x))(·)dx]m×1

0

]

(m+1)×1

,

F(t) =
[ [ 1

τi
q̃(τi )]m×1∫ TM −t

Tm−t

∫ TM −t
Tm−t q(x1, x2)dx1dx2 + 2

∫ Tm−t
0

∫ TM −t
Tm−t q(x1, x2)dx1dx2

]

(m+1)×1

,

H(t)qλ =
[ [ 1

τi

∫ τi
0 qλdx]m×1∫ TM −t

Tm−t qλdx

]

(m+1)×1
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and δ(x) is a delta function,i.e.,
∫

G δ(x − τi ) f (t, x)dx = f (t, τi ). The observation noise
covariance �(·) is given by

�(t) =
⎡
⎣

1
τi τ j

∫ τi
0

∫ τ j
0 q(x1, x2)dx1dx2

1
τi

∫ τi
0

∫ TM −t
Tm−t q(x1, x2)dx1dx2

1
τ j

∫ TM −t
Tm−t

∫ τ j
0 q(x1, x2)dx1dx2

∫ TM −t
Tm−t

∫ TM −t
T m−t q(x1, x2)dx1dx2

⎤
⎦

(m+1)×(m+1)

,

and by using the method proposed in [2],we can show that �(t) is invertible. Hence
without adding the artificial observation noise, we can derive the Kalman filter equation
for the augmented observation Y (see [2] for detail derivations). The Kalman filter is
given by

d

(
f̂ (t, x)

λ̂(t)

)
=
(

∂ f̂ (t,x)
∂x − qλ(x)λ̂(t)

aλ̂(t)

)
dt +

(
1
2

dq̃(x)
dx
b

)
dt

+
(

P(t)

(
H∗

δ−H∗(qλ)

)
+
(

H∗(q)

(σλ, H∗(q))

))
�−1d�(t), (52)

where the innovation process �(t) = [	(t) 	̃(t)]∗ is defined by

[
	(t)
	̃(t)

]
=
[

Y (t) − Y (0) − ∫ t
0 (Hδ f̂ − λ̂(s)Hqλ + 1

2 F)ds

Ỹ (t) − Ỹ (0) − ∫ t
0 { 1

2 q̄(s) + q̄2(s) − λ̂(s)q̄λ(s)}ds

]
, (53)

and q̄(s), q̄2(s) and q̄λ(s) are defined by (21), (26) and (27).
The exact form of P(t) will be listed in Appendix 4. Note that the innovation process

�(t) = [	(t) 	̃(t)]∗ is a Y t -Brownian motion with incremental covariance �(·). Hence
there exists an Rm+1-valued Y t -standard Brownian motion B(·) such that

d�(t) = (t)d B(t), t ≥ 0, (54)

where (t)(t)∗ = �(t), t ≥ 0. Let em+1 = (0, . . . , 0, 1). Then

d 	̃(t) = em+1(t)d B(t), t ≥ 0. (55)

5.2 Some Remarks of Arbitrage Opportunities

Before deriving an optimal portfolio, we discuss about possible arbitrage opportunity
in our model. The model (1)–(2) is an arbitrage free model under the risk neutral
measure P̃ with the whole information F̃t = σ { f (s, x); 0 ≤ s ≤ t}, i.e., P̃(t, T )

given by (12) becomes an F̃t -martingale. It may be possible to find λ(t) from Ft ,
because all randomness of λ(t) come from the random sources of f (t, x). In practice
we can not observe the whole process f (t, x). Some finite number of bonds and yield
curves are observed, i.e., our obtained data structure is only a partial observation,

Yt (our observation data) ⊂ F̃t .
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Hence we construct a Kalman filter to estimate λ. Now by using this estimate λ̂(t) =
E{λ(t)|Yt } and with the aid of Proposition-2, we get

d f (t, x) = ∂ f (t, x)

∂x
dt + 1

2

d

dx
q̃(x)dt − (λ(t) − λ̂(t))dt + dw̃(t, x).

This equation does not satisfies the Musiela drift condition [16]. Hence this implies
that under the partial observation Yt we may have some arbitrage opportunities which
can not be predicted from the data Yt , if (λ(t) − λ̂(t)) is not negligible. This is
the main reason to introduce the mead-variance hedging, instead of the usual hedg-
ing obtained from the standard pricing formula. Furthermore under the world of
the partial observation data Yt , the dynamics of the forward rates is the Kalman
filter:

d

(
f̂ (t, x)

λ̂(t)

)
=
(

∂ f̂ (t,x)
∂x − qλ(x)λ̂(t)

aλ̂(t)

)
dt +

(
1
2

dq̃(x)
dx
b

)
dt + K(t, x)�−1d�(t)

where the Kalman gain K(t, x) = [K1(t, x) K2(t, x)]′. In this case, using Proposition-
23 again , and setting

∫ T −t
0 K1(t, x)dx�−1d �̃(t) = ∫ T −t

0 K1(t, x)dx�−1d�(t) +∫ T −t
0 [ 1

2 (
dK̃(t,x)

dx − dq̃(x)
dx ) + qλ(x)λ̂(t)]dxdt , we derive

d f̂ (t, x) = ∂ f̂ (t, x)

∂x
dt + 1

2

d

dx
K̃(t, x)dt + K1(t)�

−1d �̃(t), (56)

where K̃(t, x) = ∫ x
0 K1(t, z)dz�−1(

∫ x
0 K1(t, z)dz)′. This equation satisfies the

Musiela drift condition, i.e., P̂(t̃, T ) = exp{− ∫ T −t
t f̂ (t,x)dx}

exp{∫ t
0 f̂ (s,0)ds} is a Yt -martingale. Hence

under the partial observation Yt , the Kalman filter (56) is an arbitrage free model.
For the mean-variance hedging problem, we only use the output λ̂(t) as mentioned in
Sect. 5.

5.3 Optimal Portfolio

We use arguments analogous to that of Sect. 4, to characterize optimal portfolio. Since,
our observation is the enlarged filtration Y t , we reset the admissible set for θ as

Uad =
⎧⎨
⎩θ; θ(t) is Y t − measurable with E{

TM∫

0

θ(t)P2(t, TM )ds} < ∞
⎫⎬
⎭ .

3 We assume that
|q̃(x)|+| ∫ x

0 qλ(y)dy|
K̃(t,x)

≤ C(independent of t and x > 0) .
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Noting that the yields y1(t), y2(t), · · · , ym(t) are not tradable assets, we choose
the same form of the self-financing portfolio as given in (29) for the augmented data
Y t . Hence we need to calculate the following indifference price:

Ĥ t
Tm

= E{(P(Tm, TM ) − K )+|Yt }. (57)

Now from (52), we get

dλ̂(t) = (aλ̂(t) + b)dt + Kλd�(t),

where �(t) = [	(t) 	̃(t)]∗ and the 1 × (m + 1)-dimensional gain Kλ satisfies

[
K f

Kλ

]
=
(

P(t)

(
H∗

δ−H(qλ)

)
+
(

qH∗
(σλ, qH∗)

))
�−1.

As in Sect. 4, using Ito’s formula, we get

d Ĥ t
Tm

= ∂ Ĥ t
Tm

∂m1

∂m1

∂	̃
d 	̃(t) + ∂ Ĥ t

Tm

∂m2

∂m2

∂λ̂
Kλ(t)d�(t)

= (−em+1 + A(t)Kλ(t))Ĥ t
Tm

d�(t). (58)

Hence the hedging error εt becomes

dεt = ((em+1 − A(t)Kλ(t))Ĥ t
Tm

− θ(t)e−Ỹ (t)em+1)d�(t)

+{q̄2(t) + λ̂(t)q̄λ(t)}θ(t)e−Ỹ (t)dt. (59)

From Ito’s lemma, we obtain

J (t, x0, θ) = E{|x0 − Ĥ0
Tm

|2}

+ 2E{
t∫

0

{q̄2(s) + λ̂(s)q̄λ(s)}θ(s)e−Ỹ (s)(Ṽs − Ĥ s
Tm

)ds}

+ E{
t∫

0

(Ĥ s
Tm

(em+1 − A(s)Kλ(s)) − θ(s)e−Ỹ (s)em+1)�

×(Ĥ s
Tm

(em+1 − A(s)Kλ(s)) − θ(s)e−Ỹ (s)em+1)
∗}ds. (60)
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It is also possible to get

Ĥ t
Tm

=exp
(

m1(t, 	̃(t)) + m2(t, λ̂(s); 0 ≤ s ≤ t)) + R(t)

2

)
N (d1(t)) − K N (d2(t)),

(61)

where m1, m2, d1 and d2 are same forms in Sect. 4 and the covariance R is reset as

R(t) =
Tm∫

t

q̄(s)ds − 2

Tm∫

t

A(s)Kλ(s)�e∗
m+1ds +

Tm∫

t

A2(s)Kλ(s)�K ∗
λ(s)ds.

Therefore, (xo
0 , θo) = argminx0∈R1,θ∈Uad

J (x0, θ) satisfies

⎧⎪⎪⎨
⎪⎪⎩

θo(t) = eỸ (t)

em+1�e∗
m+1

{
(em+1 − A(t)Kλ(t))�e∗

m+1 Ĥ t
T m

−(q̄2(t) + λ̂(t)q̄λ(t))(Ṽt − Ĥ t
Tm

)
}

xo
0 = Ĥ0

Tm

Thus we have the following theorem.

Theorem 3 The optimal mean-variance hedge (xo
0 , θo(·)) exists and is given by

xo
0 = P(0, TM )

P(0, Tm)
exp
(

A(0)λ̂(0) + b

Tm∫

0

A(s)ds − 1

2

Tm∫

0

q̄(s)ds

−
Tm∫

0

q̄2(s)ds + R(t)

2
}N (d1(t)) + R(0)

2

)
N (d1(0)) − K N (d2(0)) (62)

and

θo(t) =
⎧⎨
⎩exp

(
A(t)λ̂(t) + b

Tm∫

t

A(s)ds − 1

2

Tm∫

t

q̄(s)ds −
Tm∫

t

q̄2(s)ds + R(t)

2

)

×N (d1(t)) − P(t, Tm)

P(t, TM )
K N (d2(t))

⎫⎬
⎭

×
(

1 − A(t)Kλ(t)�e∗
m+1

1

q̄(t)
+ 1

q̄(s)
{q̄2(t) + λ̂(t)q̄λ(t)}

)

− 1

q̄(t)

{
q̄2(t) + λ̂(t)q̄λ(t)

} Vt

P(t, TM )
. (63)
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Table 1 System parameters
c ar σqλ σr σ	 a b

0.1627 3.3114 −36 0.2949 0.15 −2 0.1

Table 2 Yield and bond
parameters

τ1 τ2 τ3 τ4 τ5 τ6 τ7 Tm TM

1 2 3 5 7 10 20 0.5 0.75

6 Simulation Studies

In this digital simulation study, from [2] we set 4

q(x1, x2) = σ 2
20∑

i=1

1

i2 exp(−cx1) sin

(
π i x1

30

)
exp(−cx2) sin

(
π i x2

30

)

+ σ 2
r exp(−ar (x1 + x2))

qλ(x) = σqλ exp(−0.1x2)

x∫

0

q(x, y)dy

and

σλ(·) = σ	

∫

G̃

(·)dx .

The system parameters are given in Table 1 where c, ar , σr and q are set from the
experimental results for US-bond data in [2]. Other parameters are artificially set.

To simulate the yield curve and bond data, we used the parameters for the yield and
bond data as shown in Table 2.

Now we generated 100 samples of f , the yield and bond data. One of the simulated
f and the yield curve [y1, · · · , y7] and P(:, TM )/P(:, Tm) are shown in Figs. 1 and
2, respectively.

First we show the results for estimating the stochastically- varying risk premia by
using Ỹ and Y in Fig. 3.

We also present the estimate of f (t, x) in Fig. 4.
As we expected, the estimated value of λ(t) by using Y is much better than the

estimated value by using Ỹ . Now we shall present the hedging result for K = 0.72 in
Fig. 5.

Finally we demonstrate the histogram of the hedging results for 100 sample paths
in Figs. 6 and 7 for the yield and bond case, respectively.

4 In this digital simulation study, ei (x) is only summed up to 20 terms. Hence (A-5) is also satisfied.
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Fig. 1 True state f (t, x)

Fig. 2 Yield curve and P(·,TM )
P(·,Tm )

Fig. 3 Estimation of λ(t)
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Fig. 4 Estimate of f (t, x)

Fig. 5 Optimal θo(t) and its wealth process

Fig. 6 Hedging error by using [y1, · · · , y7, Ỹ ]

123



Appl Math Optim (2014) 70:511–537 533

Fig. 7 Hedging error by using Ỹ only

Fig. 8 Time evolution of the optimal cost

To show the feasibility of the proposed method in Sect. 5, we show the time evolution
for the hedging error et

et = 1

100

100∑
sample=1

(Vt (xo
0 , θo : sample) − (P(t f , TM ; sample) − K )+)2

for both yield and bond data cases in Fig. 8. The difference of the cost performance
for these cases is not so big. Although in this simulation we only consider the scaler
stochastic premium, the multi dimensional case will be really improved for the cost
performance by using the yield curve data as the observations.

Appendix 1: Proof of Proposition 1

The Hilbert space valued stochastic integral has been well defined. See [18] for details.
Here we need to check the integrability of stochastic integral

∫ t
0 (σλ(·), dw(s, ·))) .

From (2), we have
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λ(t) = eatλo +
t∫

0

ea(t−s)bds +
t∫

0

ea(t−s)(σλ, dw(s)). (64)

It follows from (A-2) and (A-4) that

(σλ, Qσλ) =
∫

G̃

σλ(x)

∫

G̃

q(x, y)σλ(y)dydx

≤ |σλ|L2(G̃)
T r(Q) < ∞.

Hence the 3rd term of (64) (stochastic integral) can be well defined, and (7) is derived.
The mild form of (1) becomes

f (t, x) = fo(x + t) +
t∫

0

(
1

2

d

dx
q̃(x + t − s) − λ(s)qλ(x + t − s))ds

+
∞∑

i=1

t∫

0

ei (x + t − s)
√

λi dβi (s), (65)

where we use the following representation from [18]:

w(t, x) =
∞∑

i=1

√
λi ei (x)βi (t),

and where {βi (t)} is an R1-valued standard Brownian motion process and {ei (x)}∞i=1
is an orthonormal basis in L2(G̃) with values in H1. It is easy to show that

∞∑
i=1

t f∫

0

λi

T̂∫

0

e2
i (x + t f − s)dxds =

∞∑
i=1

t f∫

0

λi

T̂ +t f −s∫

t f −s

e2
i (y)dyds

≤ t f

∞∑
i=1

λi

T̂ +t f∫

0

e2
i (y)dy = t f

∫

G̃

q(x, x)dx = t f T r{Q} < ∞.

Hence the 3rd term of (65) is also well defined in L2(G). From (A-2) and (A-4),
we find that q̃ ∈ H1(G̃) and qλ ∈ H1(G̃). Noting that λ ∈ L2(�; C([0, t f ]; R1)),

we get

E{ sup
0≤t≤t f

T̂∫

0

f 2(t, x)dx} ≤ Const.
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This implies that f ∈ L2(�; C([0, t f ]; L2(G))). To show ∂ f
∂x ∈ L2(�; C([0, t f ];

L2(G))), we repeat the above procedure. It follows from (A-2) that

E

⎧⎪⎨
⎪⎩ sup

0≤t≤t f

T̂∫

0

| ∂

∂x

t∫

0

∞∑
i=1

ei (x + t − s)
√

λi dβi (s)|2dx

⎫⎪⎬
⎪⎭

≤
T̂∫

0

(

t f∫

0

∞∑
i=1

(
∂ei (x + t f − s)

∂x

√
λi )

2ds)dx

≤ t f

∫

G̃

∂2q(x, y)

∂x∂y |y=x

dx < ∞.

Consequently, from (A-1),(A-2) and (A-4) we find that ∂ f
∂x ∈ L2(�; C([0, t f ];

L2(G))), i.e., f ∈ L2(�; C([0, t f ]; H1(]0, T̂ [))). From Sobolev’s imbedding theo-
rem, it follows that f ∈ L2(�; C([0, t f ]; C([0, T̂ ]))). From this r(t) = f (t, 0) can
be defined.

Appendix 2: Proof of Proposition 2.2

From (A-5), we can prove this proposition by repeating the well known technique in
Bensoussan [4]. Set

M(t) = exp

⎛
⎝

t∫

0

λ(s)(qλ, Q−1dw(s, ·)
⎞
⎠− 1

2

t∫

0

λ2(s)(qλ, Q−1qλ)ds).

Noting that from Proposition 2.1., M(t) is a local martingale with respect to P , we
have

E{M(t)} ≤ 1.

The rest of this proof is to show that E{M(t)} = 1. For details see the proof of
Lemma 4.1.4 in [4] p. 77.

Appendix 3: Proof of Proposition 4

Noting that A is a solution of

d A(s)

ds
+ a A(s) + q̄λ(s) = 0, A(Tm) = 0 (66)
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and λ̂ is also a solution of

dλ̂(t) = (aλ̂(t) + b)dt + Kλ(t)d 	̃(t), (67)

we obtain

d(λ̂(t)A(t)) = d A(t)

dt
λ̂(t)dt + A(t)(aλ̂(t) + b)dt + A(t)Kλ(t)d 	̃(t).

Hence

− λ̂(t)A(t) =
Tm∫

t

(
d A(t)

ds
+ a A(s))λ̂(s)ds +

Tm∫

t

A(s)dsb +
Tm∫

t

A(s)Kλ(s)d 	̃(s).

(68)

Substituting (66) into (68), we obtain (32).

Appendix 4: The Kernels of P(t) Equation

The kernel forms are listed in the partial differential equation form;

∂p f f (t, x, y)

∂t
= ∂p f f (t, x, y)

∂x
+ ∂p f f (t, x, y)

∂y
− qλ(x)pλ f (t, y) − p f λ(t, x)qλ(y)

−
⎡
⎣ p f f (t, x, τi ) − p f f (t, x, 0)

τi
− p f λ(t, x)

1

τi

τi∫

0

qλ(z)dz + 1

τi

τi∫

0

q(x, z)dz

⎤
⎦

1×m

×�−1

⎡
⎣ p f f (t, τ j , y) − p f f (t, 0, y)

τ j
− p f λ(t, y)

1

τ j

τ j∫

0

qλ(z)dz

+ 1

τ j

τ j∫

0

q(x, z)dz

⎤
⎦

m×1

+ q(x, y).

∂p f λ(t, x)

∂t
= ∂p f λ(t, x)

∂x
− qλ(x)pλλ(t) + ap f λ(t, x)

−
⎡
⎣p f f (t, x, τi ) − p f f (t, x, 0)

τi
− p f λ(t, x)

1

τi

τi∫

0

qλ(z)dz + 1

τi

τi∫

0

q(x, z)dz

⎤
⎦

1×m

�−1

×
⎡
⎣ p f λ(t, τ j ) − p f λ(t, 0)

τ j
− pλλ(t)

1

τ j

τ j∫

0

qλ(z)dz

+ 1

τ j

τ j∫

0

∫

G

σλ(z)q(z, y)dzdy

⎤
⎦

m×1

+
∫

G

σλ(y)q(y, x)dy.
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dpλλ(t)

dt
= 2apλλ(t)

−
⎡
⎣ p f λ(t, τi ) − p f λ(t, 0)

τi
− pλλ(t)

1

τi

τ j∫

0

qλ(z)dz

+ 1

τi

τi∫

0

∫

G

σλ(z)q(z, y)dzdy

⎤
⎦

1×m

�−1 ×
[

p f λ(t, τ j ) − p f λ(t, 0)

τ j

− pλλ(t)
1

τ j

τ j∫

0

qλ(z)dz + 1

τ j

τ j∫

0

∫

G

σλ(z)q(z, y)dzdy

⎤
⎦

m×1

+
∫

G

∫

G

σλ(x)q(x, y)σλ(y)dxdy.
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