Forbidden Subgraphs that Imply HamiltonianConnectedness

Hajo Broersma, ${ }^{\text {* }}$ Ralph J. Faudree, ${ }^{2}$ Andreas Huck ${ }^{3}{ }_{1}$ Huib Trommel, ${ }^{1}$ and Henk Jan Veldman ${ }^{1}$
${ }^{1}$ FACULTY OF MATHEMATICAL SCIENCES
UNIVERSITY OF TWENTE
P.O. BOX 217, 7500 AE ENSCHEDE THE NETHERLANDS
E-mail: broersma@math.utwente.nl
${ }^{2}$ DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF MEMPHIS MEMPHIS, TN 38152
E-mail: rfaudree@memphis.edu
${ }^{3}$ INSTITUT FÜR MATHEMATIK UNIVERSITÄT HANNOVER HANNOVER, GERMANY
E-mail: huck@math.uni-hanover.de

Received February 8, 2000; Revised January 7, 2002

DOI 10.1002/jgt. 10034

Abstract

It is proven that if G is a 3-connected claw-free graph which is also H_{1}-free (where H_{1} consists of two disjoint triangles connected by

[^0]© 2002 Wiley Periodicals, Sons, Inc.
an edge), then G is hamiltonian-connected. Also, examples will be described that determine a finite family of graphs \mathcal{L} such that if a 3-connected graph being claw-free and L-free implies G is hamiltonian-connected, then $L \in \mathcal{L}$. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 104-119, 2002

Keywords: hamiltonian-connected; forbidden subgraph; claw-free graph

1. INTRODUCTION

We use Bondy and Murty [2] for terminology and notation not defined here and consider finite simple graphs only. A graph G with $n \geq 3$ vertices is hamiltonian if G contains a cycle of length n, and it is hamiltonian-connected if between each pair of vertices of G there is a Hamilton path, i.e., a path on n vertices. If H is a given graph, then a graph G is called H-free if G contains no induced subgraph isomorphic to H. The graph H is said to be a forbidden subgraph.

We first describe some graphs that will be frequently used as forbidden subgraphs. Specifically, we denote by P_{k} and C_{k} the path and the cycle on k vertices, by C the claw $K_{1,3}$, by B the bull, by D the deer, by H the hourglass, by N the net, by W the wounded, by Z_{k} the graph obtained by identifying a vertex of K_{3} with an endvertex of P_{k+1}, and by H_{k} the graph obtained by joining two vertex disjoint triangles by a path of length k (see Fig. 1).

The next result was obtained in Shepherd [7], and the following one in Faudree and Gould [6]. Note that in both cases, 3-connectedness is assumed. This is natural, since the forbidden subgraph conditions, being local conditions, do not imply 3 -connectedness, and any hamiltonian-connected graph (except K_{1}, K_{2}, K_{3}) must be 3 -connected.

Theorem 1 [7]. If a 3-connected graph G is claw-free and N-free, then G is hamiltonian-connected.

The claw $K_{1,3}$ The bull B

The deer D

The hourglass H

The net N

The wounded W

FIGURE 1. Frequently used forbidden subgraphs.

Theorem 2 [6]. If a 3-connected graph G is claw-free and Z_{2}-free, then G is hamiltonian-connected.

Recently Chen and Gould [4] extended this collection of pairs of forbidden graphs ensuring hamiltonian-connectedness of 3-connected graphs by proving the following result, which gives three new independent forbidden pairs.

Theorem 3 [5]. If G is a 3-connected claw-free graph, then G is hamiltonianconnected if any of the following holds.
(a) G is Z_{3}-free,
(b) G is P_{6}-free,
(c) G is W-free.

The cases (a) and (b) of the above result were independently proved in [3]. In Section 2, we extend the collection of forbidden pairs by proving the following result.

Theorem 4. If G is a 3-connected claw-free H_{1}-free graph, then G is hamilto-nian-connected.

In Bedrossian [1], all forbidden pairs of connected graphs ensuring that a graph is hamiltonian are characterized, and the same was done for pancyclicity. The same type of characterization was done for other hamiltonian properties in Faudree and Gould [6]. A survey of results of this kind can be found in Faudree [5].

Combining their results with previous results, Chen and Gould [4] conclude that if $\{S, T\}$ is a pair of graphs such that every 2 -connected $\{S, T\}$-free graph is hamiltonian then every 3-connected $\{S, T\}$-free graph is hamiltonian-connected. Theorem 4 gives a pair of forbidden graphs that implies a graph is hamiltonianconnected in the presence of 3-connectedness but does not imply a graph is hamiltonian in the presence of 2 -connectedness.

Also, in [6] the following theorem was proved. It gives some context to the previous results on pairs of forbidden graphs ensuring hamiltonian-connectedness of 3-connected graphs.
Theorem 5 [6]. Let X and Y be connected graphs with $X, Y \neq P_{3}$, and let G be a 3-connected graph. If G being X-free and Y-free implies G is hamiltonianconnected, then, up to symmetry, $X=K_{1,3}$, and Y satisfies each of the following conditions.
(a) $\Delta(Y) \leq 3$,
(b) A longest induced path in Y has at most 12 vertices,
(c) Y contains no cycles of length at least 4,
(d) All triangles in Y are vertex disjoint,
(e) Y is claw-free.

One implication of Theorem 5 is that there are only a finite number of forbidden pairs of graphs implying hamiltonian-connected of 3-connected graphs. However,
the gap between Theorem 5 and the positive results in Theorems $1,2,3$, and 4 is still substantial. The following result will reduce, but not eliminate, that gap somewhat. The proof is postponed to Section 3.

Theorem 6. Let X and Y be connected graphs with $X, Y \neq P_{3}$, and let G be a 3-connected graph. If G being X-free and Y-free implies G is hamiltonianconnected, then $X=K_{1,3}$, and Y satisfies each of the following conditions.
(a) $\Delta(Y) \leq 3$,
(b) The longest induced path in Y has at most 9 vertices,
(c) Y contains no cycles of length at least 4,
(d) The distance between two distinct triangles in Y is either 1 or at least 3,
(e) There are at most two triangles in Y,
(f) Y is claw-free.

2. THE PROOF OF THEOREM 4

In what follows, an (x, y)-path P is said to be maximal if there is no (x, y)-path Q such that $V(P)$ is a proper subset of $V(Q)$.

The set up of the proof in this section will be to consider a maximal (x, y)-path P that is not a Hamilton path, between some pair of vertices x and y, and then show that P can be extended, contradicting the maximality of P. The following lemma will be useful in selecting such maximal paths.

Lemma 7. For any pair of vertices x and y in a 3-connected claw-free graph G, there is a maximal (x, y)-path P such that $N(x) \subseteq V(P)$.

Proof. Let $P=x_{1} x_{2} \cdots x_{m}$ with $x=x_{1}$ and $y=x_{m}$ be a maximal (x, y)-path with the property that it contains a maximum number of vertices of $N(x)$. If $N(x) \subseteq V(P)$, then we are done. Hence, we may assume there is a vertex $z \in$ $N(x) \backslash V(P)$. We will exhibit an (x, y)-path Q that contains $(N(x) \cap V(P)) \cup\{z\}$. This will give a contradiction, since any maximal path (x, y)-path Q^{\prime} that contains the vertices of Q would have more vertices in $N(x)$ than P.

Since G is 3-connected, there exist three vertex disjoint (z, P)-paths, which will be denoted by Q_{1}, Q_{2}, and Q_{3}. We may assume that Q_{1} has endvertex x_{1}. Let x_{r} and x_{s} (with $1<r<s$) be the endvertices of Q_{2} and Q_{3}, respectively. If z has more than three adjacencies on P, then select x_{r} and x_{s} to be the last two adjacencies of z on P. Let S be the set of vertices in $N(x) \cap V(P)$ that are not adjacent to z. Note that to avoid an induced claw centered at x, the vertices in S form a complete graph. Also note that $N(x) \cap N(z) \cap V(P) \subseteq x_{1} \overrightarrow{P x}_{r} \cup\left\{x_{s}\right\}$.

If $S \cap x_{r+1} \overrightarrow{P x_{s-1}}=\emptyset$, then $Q=x_{1} \overrightarrow{P x_{r}} \overleftarrow{Q}_{2} z \vec{Q}_{3} x_{s} \overrightarrow{P x_{m}}$ is the required path, since this path contains z as well as $N(x) \cap V(P)$.

If $S \cap x_{r+1} \overrightarrow{P x}_{s-1} \neq \emptyset$, then select i and j such that x_{i} is the smallest indexed vertex in $S \cap x_{r+1} \overrightarrow{P x}_{s-1}$ and x_{j} is the largest. It is possible that $i=j$. By the
$\underset{P}{\operatorname{maximality}} \xrightarrow{\text { of }} P$ and since G is claw-free, $x_{2} x_{i} \in E(G)$. Then $Q=x_{1} x_{j} \overleftarrow{P} x_{i} x_{2}$ $\overrightarrow{P x}_{r} \overleftarrow{Q}_{2} z \vec{Q}_{3} x_{S} \overrightarrow{P x}_{m}$ is the required path.

In the next proof, we start with a graph G that is 3-connected and claw-free, and for which there is no Hamilton path between some pair of vertices x and y of G. By Lemma 7, we can select a maximal (x, y)-path $P=x_{1} x_{2} \cdots x_{m}$ with $x=x_{1}$ and $y=x_{m}$ such that $N(x) \subseteq V(P)$. Since P is not a Hamilton path, there is a vertex z not on P. Since G is 3 -connected, there exist three vertex disjoint (z, P) paths, and at least two of these paths will terminate in interior vertices of P. Let x_{i}, x_{j}, and x_{k} (with $1<i<j<k \leq m$) be the endvertices on P of these paths and denote the paths by Q_{i}, Q_{j}, and Q_{k}, respectively. We can choose z and the paths Q_{i}, Q_{j}, Q_{k} in such a way that
(i) $\left|E\left(Q_{i}\right)\right|=1$,
(ii) $\left|E\left(Q_{j}\right)\right|$ is minimum subject to (i),
(iii) $\left|E\left(Q_{k}\right)\right|$ is minimum subject to (i) and (ii).

For $\ell=i, j, k$, the path Q_{ℓ} will be denoted by $z v_{\ell} \cdots u_{\ell} x_{\ell}$ realizing of course that the path might be just an edge. For shortness, we will use Q to denote the path $x_{i} \overleftarrow{Q_{i}} z \vec{Q}_{j} x_{j}$. By the way the paths are chosen, we conclude that Q is an induced path except possibly for the edge $x_{i} x_{j}$.

The maximality of P and G being claw-free implies that $x_{i-1} x_{i+1} \in E(G)$, for otherwise there would be an induced claw centered at x_{i}. Likewise, $x_{j-1} x_{j+1} \in$ $E(G)$. Note that $j-i \geq 4$, for otherwise the path P could be extended; e.g., if $j-i=3$, then $x_{1} \overrightarrow{P x_{i-1}} x_{i+1} x_{i} \vec{Q} x_{j} x_{j-1} x_{j+1} \overrightarrow{P x_{m}}$ is such a path. Also, observe that $x_{i} x_{j-2} \notin E(G)$, for otherwise the path P can be extended to the path $x_{1} \overrightarrow{P x_{i-1}} x_{i+1}$ $\overrightarrow{P x}_{j-2} x_{i} \overrightarrow{Q x}_{j} x_{j-1} x_{j+1} \overrightarrow{P x_{m}}$.

Select the smallest r_{1} with $i<r_{1}<j$ such that $x_{i} x_{r_{1}} \in E(G)$, but $x_{i} x_{r_{1}+1} \notin$ $E(G)$. By the previous remarks, such an r_{1} exists. Likewise, select the smallest s_{1} with $j<s_{1}<k$ such that $x_{j} x_{s_{1}} \in E(G)$, but $x_{j} x_{s_{1}+1} \notin E(G)$. There are no edges between $x_{i} \overrightarrow{P x}_{r_{1}+1}$ and $x_{j} \overrightarrow{P x}_{s_{1}+1}$, except possibly for $x_{i} x_{j}$: the existence of any of the edges gives an extension of P; e.g., if $x_{r_{1}+1} x_{s_{1}+1} \in E(G)$, then P can be extended to the path $x_{1} \overrightarrow{P x}_{i-1} x_{i+1} \overrightarrow{P x}_{r_{1}} x_{i} \vec{Q}_{x_{j}} x_{s_{1}} \stackrel{P x}{j+1}^{x_{j-1}} \overleftarrow{P x}_{r_{1}+1} x_{s_{1}+1} \overrightarrow{P x}_{m}$. In the same way, select a largest r_{2} with $i<r_{2}<j$ such that $x_{j} x_{r_{2}} \in E(G)$, but $x_{j} x_{r_{2}-1} \notin$ $E(G)$. By symmetry and the previous remarks, such an r_{2} exists. Also, if $x_{k} \neq x_{m}$, in the same way an s_{2} associated with the vertex x_{k} can be defined. Also, by a symmetry argument, we know that there are no edges between $x_{r_{2}-1} \overrightarrow{P x_{j}}$ and $x_{s_{2}-1} \overrightarrow{P x}_{k}$ except possibly for $x_{j} x_{k}$.

We are now ready to present the proof of Theorem 4.
Assume that G is a 3-connected, claw-free graph, and there is no Hamilton path between some pair of vertices x and y of G. We will show that G must contain an induced copy of H_{1}. We choose a maximal (x, y)-path $P=x_{1} x_{2} \cdots x_{m}$ with $x=x_{1}$ and $y=x_{m}$ subject to the condition that $N(x) \subseteq V(P)$. We choose a vertex $z \in V(G) \backslash V(P)$ and three vertex disjoint (z, P)-paths as in the general
discussion. All of the notation and observations of the general discussion are assumed.

We claim that we can choose z in such a way that $\left|E\left(Q_{j}\right)\right|=1$, and that $\left|E\left(Q_{k}\right)\right|=1$ if $x_{k} \neq x_{m}$. Suppose $\left|E\left(Q_{j}\right)\right| \geq 2$, and consider z and the successor v_{j} of z on Q_{j}. By the choice of $z, x_{i} v_{j} \notin E(G)$. Since G is 3-connected, claw-free, and $z v_{j}^{+} \notin E(G)$, there exists a triangle T containing z and v_{j} or there exists a triangle T containing v_{j} and v_{j}^{+}. We distinguish a number of cases.

Case a.1. z, v_{j}, and a vertex of Q_{k} are in a common triangle. Let $t \in V\left(Q_{k}\right) \backslash\{z\}$ be the third vertex of T. By the choice of Q_{k}, we have $t=v_{k}$. If $v_{k} \neq x_{k}$, then $G\left[\left\{x_{i-1}, x_{i+1}, x_{i} ; z, v_{j}, v_{k}\right\}\right] \cong H_{1}$, since $x_{i} v_{j} \notin E(G)$ (otherwise v_{j} contradicts the choice of z) and $x_{i} t \notin E(G)$ (otherwise t contradicts the choice of z). Hence $v_{k}=x_{k}$.

To avoid $G\left[\left\{x_{i-1}, x_{i+1}, x_{i} ; z, v_{j}, x_{k}\right\}\right] \cong H_{1}$, we must have at least one of $x_{k} x_{i-1}$, $x_{k} x_{i}$ and $x_{i+1} x_{k}$ in $E(G)$. Then, since $x_{i-1} x_{k} \notin E(G)$ (otherwise to avoid $G\left[\left\{x_{k}\right.\right.$; $\left.\left.x_{i-1}, z, x_{\vec{k}-1}\right\}\right] \cong K_{1,3}$, we have $x_{i-1} x_{k-1} \in E(G)$ yielding a path $x_{1} \overrightarrow{P x}_{i-1} x_{k-1}$ $\overleftarrow{P x_{i}} z x_{k} \overrightarrow{P x_{m}}$ which contradicts the choice of P) and $x_{i} x_{k} \notin E(G)$ (otherwise to avoid $G\left[\left\{x_{k} ; x_{i}, v_{j}, x_{k-1}\right\}\right] \cong K_{1,3}$, we have $x_{i} x_{k-1} \in E(G)$, also yielding a path which contradicts the choice of P), we get $x_{i+1} x_{k} \in E(G)$, implying also x_{i+1} $x_{k-1} \in E(G)$.

If $v_{j} x_{j} \in E(G)$ (i.e., $\left|E\left(Q_{j}\right)\right|=2$), then to avoid $G\left[\left\{x_{j-1}, x_{j+1}, x_{j} ; v_{j}, z, x_{k}\right\}\right] \cong$ H_{1}, we similarly have that $x_{j+1} x_{k} \in E(G)$, and get a contradiction since $G\left[\left\{x_{k}\right.\right.$; $\left.\left.x_{i+1}, x_{j+1}, z\right\}\right] \cong K_{1,3}$. Hence we may assume $v_{j} x_{j} \notin E(G)$ and thus $v_{j}^{+} \notin V(P)$ (where v_{j}^{+}is the successor of v_{j} on Q_{j}). Since $v_{j} v_{j}^{++} \notin E(G)$, there exists a triangle T^{\prime} containing v_{j} and v_{j}^{+}or there exists a triangle T^{\prime} containing v_{j}^{+}and v_{j}^{++}. Note that $v_{j}^{+} x_{k} \notin E(G)$ (otherwise $G\left[\left\{x_{k} ; z, v_{j}^{+}, x_{k-1}\right\}\right] \cong K_{1,3}$).
(i) Suppose v_{j} and v_{j}^{+}are in a common triangle T^{\prime} with some vertex t^{\prime}. Then $t^{\prime} \notin\left\{x_{i}, x_{j}, x_{k}, z\right\}$, while also $t^{\prime} \notin V(P) \backslash\left\{x_{i}, x_{j}, x_{m}\right\}$; otherwise if $t^{\prime} \in$ $x_{1} \overrightarrow{P x}_{i-1}$, then v_{j} contradicts the choice of z, if $t^{\prime} \in x_{i+1} \overrightarrow{P x}_{j-1}$, then the path $z v_{j} t^{\prime}$ contradicts the choice of Q_{j}, and if $t^{\prime} \in x_{k+1} \overrightarrow{P x_{m}}$, then the paths $z x_{k}$ and $z v_{j} t^{\prime}$ contradict the choice of Q_{j} and Q_{k}. Hence $t^{\prime} \notin V(P) \cup\{z\}$. To avoid $G\left[\left\{x_{i+1}, x_{k-1}, x_{k} ; v_{j}, v_{j}^{+}, t^{\prime}\right\}\right] \cong H_{1}$, we have $x_{k} t^{\prime} \in E(G)$, and to avoid $G\left[\left\{x_{k} ; x_{k-1}, z, t^{\prime}\right\}\right] \cong K_{1,3}$, we have $z t^{\prime} \in E(G)$. But then $G\left[\left\{x_{i-1}\right.\right.$, $\left.\left.x_{i+1}, x_{i} ; z, t^{\prime}, v_{j}\right\}\right] \cong H_{1}$, since $x_{i} t^{\prime} \notin E(G)$; otherwise t^{\prime} contradicts the choice of z.
(ii) If v_{j}^{+}is not in a common triangle with v_{j}, then there exists a triangle T^{\prime} containing v_{j}^{+}and v_{j}^{++}. Again let t^{\prime} be the third vertex of T^{\prime}. If $t^{\prime}=x_{k}$, then $G\left[\left\{x_{k} ; z, v_{j}^{+}, x_{k-1}\right\}\right] \cong K_{1,3}$. Hence $t^{\prime} \neq x_{k}$ and also $t^{\prime} \notin\left\{x_{i}, z\right\}$. If $t^{\prime} \in x_{1} \overrightarrow{P x}_{i-1}$ or $t^{\prime} \in x_{k+1} \overrightarrow{P x}_{m}$, we easily get contradictions with the chosen path system. If $t^{\prime} \in x_{i+1} \overrightarrow{P x}_{j-1}$, then also $v_{j}^{++}=x_{j}$, giving a contradiction, since v_{j}^{+}contradicts the choice of z. Hence $t^{\prime} \notin V(P) \cup\{z\}$. Now $G\left[\left\{t^{\prime}\right.\right.$, $\left.\left.v_{j}^{++}, v_{j}^{+} ; v_{j}, z, x_{k}\right\}\right] \cong H_{1}$, unless $v_{j}^{++} x_{k} \in E(G)$ and $v_{j}^{++}=x_{j}$. But then $G\left[\left\{x_{k} ; x_{i+1}, x_{j}, v_{j}\right\}\right] \cong K_{1,3}$.

Case a.2. z, v_{j} are in a common triangle T with some vertex t, and Case a. 1 does not apply. Then, by the choice of $z, V(T) \cap V(P)=\emptyset$. To avoid $G\left[\left\{x_{i-1}, x_{i+1}\right.\right.$, $\left.\left.x_{i} ; z, v_{j}, t\right\}\right] \cong H_{1}$, we have $x_{i} t \in E(G)$. To avoid $G\left[\left\{z ; x_{i}, v_{j}, v_{k}\right\}\right] \cong K_{1,3}$ (with possibly $v_{k}=x_{k}$), we have $x_{i} v_{k} \in E(G)$, since $v_{j} v_{k} \notin E(G)$; otherwise we would be in Case a.1. To avoid $G\left[\left\{x_{i} ; x_{i-1}, t, v_{k}\right\}\right] \cong K_{1,3}$, we have $t v_{k} \in E(G)$. If $v_{j} x_{j} \in$ $E(G)$, then $G\left[\left\{x_{j-1}, x_{j+1}, x_{j} ; v_{j}, z, t\right\}\right] \cong H_{1}$. Hence $v_{j}^{+} \neq x_{j}$. We use that v_{j}^{+}is in a triangle with v_{j} or with v_{j}^{++}.
(i) Suppose v_{j}^{+}and v_{j} are in a common triangle T^{\prime} with some vertex t^{\prime}.

Clearly, $t^{\prime} \neq z, x_{i}$. We easily see that $t^{\prime} \notin x_{1} \overrightarrow{P x}_{k-1}$. Now suppose $t^{\prime}=x_{k}$. Then $G\left[\left\{x_{k} ; x_{k-1}, v_{j}^{+}, u_{k}\right\}\right] \cong K_{1,3}$, unless $v_{j}^{+} u_{k} \in E(G)$ and $u_{k} \neq z, v_{k}$. To avoid $G\left[\left\{x_{k} ; x_{k-1}, v_{j}, u_{k}\right\}\right] \cong K_{1,3}$, we have $v_{j} u_{k} \in E(G)$. Then $G\left[\left\{x_{i}, v_{k}, t\right.\right.$; $\left.\left.v_{j}, u_{k}, x_{k}\right\}\right] \cong H_{1}$, unless $v_{k} u_{k} \in E(G)$. But then $G\left[\left\{z, t, v_{k} ; u_{k}, v_{j}^{+}, x_{k}\right\}\right]$ $\cong H_{1}$. Hence $t^{\prime} \neq x_{k}$. If $t^{\prime} \in x_{k+1} \overrightarrow{P x}_{m}$, then to avoid $G\left[\left\{x_{i}, v_{k}, t ; v_{j}, v_{j}^{+}\right.\right.$, $\left.\left.t^{\prime}\right\}\right] \cong H_{1}$, we have $v_{k} t^{\prime} \in E(G)$. But then $v_{k}=x_{k}$ or $v_{k} x_{k} \in E(G)$. In both cases, we easily obtain path systems contradicting the chosen path system. Hence $t^{\prime} \notin V(P)$.

Consider $G\left[\left\{v_{j}^{+}, t^{\prime}, v_{j} ; t, x_{i}, v_{k}\right\}\right]$ (with possibly $v_{k}=x_{k}$). If $t^{\prime} \notin V\left(Q_{k}\right)$, then to avoid an induced H_{1}, we have $t t^{\prime} \in E(G)$. But then $G\left[\left\{x_{i-1}, x_{i+1}\right.\right.$, $\left.\left.x_{i} ; t, v_{j}, t^{\prime}\right\}\right] \cong H_{1}$. Hence $t^{\prime} \in V\left(Q_{k}\right) \backslash\left\{z, v_{k}\right\}$. Then to avoid an H_{1}, we have $t^{\prime}=v_{k}^{+}$. Then $v_{k}^{+} \neq x_{k}$; otherwise $G\left[\left\{x_{k} ; x_{k-1}, v_{k}, v_{j}^{+}\right\}\right] \cong K_{1,3}$. Considering $G\left[\left\{v_{k}^{+} ; v_{k}, v_{k}^{++}, v_{j}\right\}\right]$, we get that $v_{j} v_{k}^{++} \in E(G)$. To avoid $G\left[\left\{v_{k}^{+} ; v_{k}, v_{k}^{++}, v_{j}^{+}\right\}\right] \cong K_{1,3}$, we have $v_{j}^{+} v_{k}^{++} \in E(G)$. But then $G\left[\left\{x_{i}, v_{k}\right.\right.$, $\left.\left.t ; v_{j}, v_{j}^{+}, v_{k}^{++}\right\}\right] \cong H_{1}$.
(ii) If v_{j}^{+}is not in a common triangle with v_{j}, then considering a triangle T with $V(T)=\left\{v_{j}^{+}, v_{j}^{++}, t^{\prime}\right\}$, we easily obtain that $G\left[\left\{z, t, v_{j} ; v_{j}^{+}, v_{j}^{++}\right.\right.$, $\left.\left.t^{\prime}\right\}\right] \cong H_{1}$.

Case b. $\quad z$ and v_{j} are not in a common triangle. Hence v_{j} and v_{j}^{+}are in a triangle T with some vertex t. Note that to avoid $G\left[\left\{z ; x_{i}, v_{j}, v_{k}\right\}\right] \cong K_{1,3}$, we have $x_{i} v_{k} \in$ $E(G)$ with possibly $v_{k}=x_{k}$.
(i) First suppose $t \notin V(P)$. Using that no induced claw is centered at x_{i} and that $z v_{j}^{+} \notin E(G)$, we obtain $G\left[\left\{x_{i}, v_{k}, z ; v_{j}, v_{j}^{+}, t\right\}\right] \cong H_{1}$ unless $t=v_{k}^{+}$. If $t=v_{k}^{+}$, then $v_{k}^{+} \neq x_{k}$; otherwise $G\left[\left\{x_{k} ; x_{k-1}, v_{j}, v_{k}\right\}\right] \cong K_{1,3}$ (using $v_{j} v_{k} \notin$ $E(G)$). Considering $G\left[\left\{v_{k}^{+} ; v_{k}, v_{k}^{++}, v_{j}^{+}\right\}\right]$, with possibly $x_{k}=v_{k}^{++}$, we get $v_{j}^{+} v_{k}^{++} \in E(G)$. Now $G\left[\left\{x_{i}, z, v_{k} ; v_{k}^{+}, v_{j}^{+}, v_{k}^{++}\right\}\right] \cong H_{1}$, unless $v_{j}^{+}=x_{j}$ and $x_{i} x_{j} \in E(G)$. But then $G\left[\left\{x_{i} ; x_{i+1}, z, x_{j}\right\}\right] \cong K_{1,3}$.
(ii) Now suppose $t \in V(P)$. If $t=x_{k}$, then $v_{k} \neq x_{k}$ (since z and v_{j} are not in a common triangle). No induced claw centered at x_{k} gives that $G\left[\left\{x_{i}, v_{k}\right.\right.$, $\left.\left.z ; v_{j}, v_{j}^{+}, x_{k}\right\}\right] \cong H_{1}$, unless $v_{j}^{+}=x_{j}$ and $x_{i} x_{j} \in E(G)$; in the latter case $G\left[\left\{z, v_{k}, x_{i} ; x_{j}, x_{j-1}, x_{j+1}\right\}\right] \cong H_{1}$. Hence $t \neq x_{k}$. If $t \in x_{1} \overrightarrow{P x}_{k-1}$, then v_{j} contradicts the choice of z. If $t \in x_{k+1} \overrightarrow{P x}_{m}$ (assuming $x_{k} \neq x_{m}$), and
$v_{j}^{++} \neq x_{j}$, then to avoid $G\left[\left\{x_{i}, v_{k}, z ; v_{j}, v_{j}^{+}, t\right\}\right] \cong H_{1}$, we have $v_{k} t \in E(G)$. But then $G\left[\left\{t ; t^{-}, v_{k}, v_{j}\right\}\right] \cong K_{1,3}$. If $t \in x_{k+1} \overrightarrow{P x}_{m}$ (assuming $x_{k} \neq x_{m}$), and $v_{j}^{++}=x_{j}$, then to avoid $G\left[\left\{x_{i}, v_{k}, z ; v_{j}, x_{j}, t\right\}\right] \cong H_{1}$ we have $x_{i} x_{j} \in E(G)$ or $x_{i} t \in E(G)$, both giving an induced claw as contradiction, or $v_{k} t \in E(G)$. In the latter case, $G\left[\left\{t ; t^{-}, v_{k}, v_{j}\right\}\right] \cong K_{1,3}$.

We now show that $\left|E\left(Q_{k}\right)\right|=1$, if $x_{k} \neq x_{m}$. This is not difficult if $x_{i} x_{j} \notin E(G)$: consider any neighbor z^{\prime} of z in $V(G) \backslash V(P)$. Then, considering $G\left[\left\{z ; z^{\prime}, x_{i}, x_{j}\right\}\right]$, to avoid an induced claw, we get that one of $z^{\prime} x_{i}$ and $z^{\prime} x_{j}$ is an edge. But then considering $G\left[\left\{x_{j-1}, x_{j+1}, x_{j} ; z, z^{\prime}, x_{i}\right\}\right]$ or $G\left[\left\{x_{i-1}, x_{i+1}, x_{i} ; z, z^{\prime}, x_{j}\right\}\right]$, we obtain both edges. This implies all vertices in the component of $G-V(P)$ containing z have x_{i} and x_{j} as neighbors. Hence, we can choose a vertex z with three neighbors on P.

Now assume $x_{i} x_{j} \in E(G)$, and assume $x_{k} \neq x_{m}$ and $\left|E\left(Q_{k}\right)\right| \geq 2$. Then z has no third neighbor on P. Let p denote the successor of z on Q_{k}. Since $\delta \geq 3, p$ is in a triangle by claw-freeness. If $p x_{i}$ or $p x_{j}$ is an edge, then both edges are in; otherwise we obtain a claw induced by $\left\{x_{i} ; p, x_{i+1}, x_{j}\right\}$ or $\left\{x_{j} ; p, x_{j+1}, x_{i}\right\}$. But then we contradict the choice of z. Hence $p x_{i}, p x_{j} \notin E(G)$. We distinguish four subcases.
(i) p and z are in a common triangle with a vertex $t \notin V(P)$. Clearly, by the choice of $Q_{k}, t \notin V\left(Q_{k}\right)$. To avoid $G\left[\left\{p, t, z ; x_{i}, x_{i+1}, x_{i-1}\right\}\right] \cong H_{1}$, we have $t x_{i} \in E(G)$, and similarly $t x_{j} \in E(G)$. Suppose first that $x_{k}=p^{+}$. To avoid $G\left[\left\{z, t, p ; x_{k}, x_{k-1}, x_{k+1}\right\}\right] \cong H_{1}$, we have $t x_{k} \in E(G)$ (note that $z x_{k} \notin E(G)$ by the choice of z). But then t contradicts the choice of z (since $t x_{i}, t x_{j}$, $t x_{k} \in E(G)$). Hence we may assume $p^{+} \neq x_{k}$. We use that p^{+}is in a common triangle with p or p^{++}.
(a) p and p^{+}are in a common triangle with some vertex t^{\prime}. Similar arguments as for p show $p^{+} x_{i}, p^{+} x_{j} \notin E(G)$. If $t^{\prime} \notin V(P)$, then the choice of z implies $t^{\prime} x_{i}, t^{\prime} x_{j} \notin E(G)$ and $t^{\prime} z \notin E(G)$; if $t^{\prime} \in V(P)$, then also $t^{\prime} z \notin E(G)$. Now to avoid $G\left[\left\{t^{\prime}, p^{+}, p ; z, x_{i}, x_{j}\right\}\right] \cong H_{1}$, we conclude that $t^{\prime} \in V(P)$ and that t^{\prime} is adjacent to x_{i} or x_{j}. Both cases yield a claw induced by $\left\{x_{i} ; z, t^{\prime}, x_{i+1}\right\}$ or $\left\{x_{j} ; z, t^{\prime}, x_{j+1}\right\}$, a contradiction.
(b) p and p^{+}are not in a common triangle. Hence p^{+}and p^{++}are in a common triangle with some vertex t^{\prime}. Using the choice of z and Q_{k}, to avoid $G\left[\left\{z, t, p ; p^{+}, p^{++}, t^{\prime}\right\}\right] \cong H_{1}$, we have $t^{\prime} t \in E(G)$, hence $t^{\prime} \notin$ $V(P)$. To avoid $G\left[\left\{t ; t^{\prime}, p, x_{i}\right\}\right] \cong K_{1,3}$, we conclude that $x_{i} t^{\prime} \in E(G)$, and similarly $x_{j} t^{\prime} \in E(G)$, contradicting the choice of z.
(ii) p and z are in a common triangle with a vertex $t \in V(P)$. Together with $p x_{i}, p x_{j} \notin E(G)$, we contradict the assumption that z has no third neighbor on P.
(iii) p and z are not in a common triangle, but p and p^{+}are in a common triangle with a vertex $t \notin V(P)$. Clearly, the assumption implies $t z \notin$ $E(G)$, and by the choice of $Q_{k}, z p^{+} \notin E(G)$. Hence also $t x_{i}, t x_{j} \notin E(G)$.

As before $p x_{i}, p x_{j} \notin E(G)$ and similarly $p^{+} x_{i}, p^{+} x_{j} \notin E(G)$, unless $p^{+}=$ x_{k}. To avoid $G\left[\left\{t, p^{+}, p ; z, x_{i}, x_{j}\right\}\right] \cong H_{1}$, we conclude $p^{+}=x_{k}$ and $x_{k} x_{i}$ or $x_{k} x_{j}$ is an edge. This yields a claw induced by $\left\{x_{i} ; x_{i+1}, x_{k}, z\right\}$ or $\left\{x_{j} ; x_{j+1}, x_{k}, z\right\}$.
(iv) p and z are not in a triangle, and p and p^{+}are not in a triangle with some vertex of $V(G) \backslash V(P)$. Hence p and p^{+}are in a common triangle with some vertex $t \in V(P)$. Since $p x_{i}, p x_{j} \notin E(G)$, the choice of Q_{k} implies $p^{+} \in V(P)$. Consider $G\left[\left\{x_{i}, x_{j}, z ; p, x_{k}, t\right\}\right]$. If $x_{i} x_{k} \in E(G)$, then $G\left[\left\{x_{k} ; p\right.\right.$, $\left.\left.x_{j}, x_{j-1}\right\}\right] \cong K_{1,3}$. By similar arguments, to avoid an H_{1}, we conclude $t=x_{m}$ and $t x_{i}$ or $t x_{j}$ is an edge. If $t x_{i} \in E(G)$, we obtain $G\left[\left\{x_{i-1}, x_{i+1}\right.\right.$, $\left.\left.x_{i} ; t, p, x_{k}\right\}\right] \cong H_{1}$; the case $t x_{j} \in E(G)$ is similar.

Case 1. $x_{i} x_{j} \notin E(G)$. Suppose first that $x_{k}=x_{m}$ and $z x_{k} \notin E(G)$. Then consider any neighbor z^{\prime} of z in $V\left(Q_{k}\right) \backslash V(P)$ and $G\left[\left\{z ; z^{\prime}, x_{i}, x_{j}\right\}\right]$. To avoid an induced claw, we get that one of $z^{\prime} x_{i}$ and $z^{\prime} x_{j}$ is an edge. But then considering $G\left[\left\{x_{j-1}, x_{j+1}, x_{j} ; z, z^{\prime}, x_{i}\right\}\right]$ or $G\left[\left\{x_{i-1}, x_{i+1}, x_{i} ; z, z^{\prime}, x_{j}\right\}\right]$, we obtain both edges. This contradicts the choice of z. Hence, we may assume $z x_{i}, z x_{j}, z x_{k} \in E(G)$. Since by assumption $x_{i} x_{j} \notin E(G)$, claw-freeness implies $x_{i} x_{k} \in E(G)$ or $x_{j} x_{k} \in$ $E(G)$.

First assume $x_{i} x_{k} \in E(G)$. If also $x_{j} x_{k} \in E(G)$, then to avoid $G\left[\left\{x_{k} ; x_{i}\right.\right.$, $\left.\left.x_{j}, x_{k-1}\right\}\right] \cong K_{1,3}$, we have $x_{i} x_{k-1} \in E(G)$ or $x_{j} x_{k-1} \in E(G)$, both contradicting the choice of P. So $x_{j} x_{k} \notin E(G)$. If $x_{k} x_{j-1} \in E(G)$, then also $x_{k-1} x_{j-1} \in E(G)$, contradicting the choice of P. Hence $x_{k} x_{j}, x_{k} x_{j-1} \notin E(G)$. To avoid $G\left[\left\{x_{i}, x_{k}, z\right.\right.$; $\left.\left.x_{j}, x_{j-1}, x_{j+1}\right\}\right] \cong H_{1}$, we have $x_{k} x_{j+1} \in E(G)$, and hence also $x_{k-1} x_{j+1} \in E(G)$. Since $x_{i-1} x_{k-1} \notin E(G)$, we have $x_{i-1} x_{k} \notin E(G)$. Since $x_{i-1} x_{k} \notin E(G)$, we have $x_{i-1} x_{j+1} \notin E(G)$ (otherwise $\left.G\left[\left\{x_{j+1}, x_{i-1}, x_{j}, x_{k}\right\}\right] \cong K_{1,3}\right)$. If $x_{i+1} x_{k-1} \in E(G)$, then $x_{1} \overrightarrow{P x}_{i} z x_{j} \overleftarrow{P x_{i+1}} x_{k-1} \overleftarrow{P x}_{j+1} x_{k} \overrightarrow{P x}_{m}$ contradicts the choice of P. Hence $x_{i+1} x_{k-1} \notin$ $E(G)$. To avoid $G\left[\left\{x_{i-1}, x_{i+1}, x_{i} ; x_{k}, x_{k-1}, x_{j+1}\right\}\right] \cong H_{1}$, we have $x_{i+1} x_{k} \in E(G)$. But then $G\left[\left\{x_{k}, x_{i+1}, z, x_{k-1}\right\}\right] \cong K_{1,3}$, a contradiction. We conclude that $x_{i} x_{k} \notin$ $E(G)$ and $x_{j} x_{k} \in E(G)$.

To avoid $G\left[\left\{x_{i-1}, x_{i+1}, x_{i} ; z, x_{j}, x_{k}\right\}\right] \cong H_{1}$, we have $x_{i+1} x_{k} \in E(G)$, and hence also $x_{i+1} x_{k-1} \in E(G)$. This also implies $x_{k}=x_{m}$. By the choice of P, we have $x_{i} x_{i+2} \notin E(G)$. To avoid $G\left[\left\{x_{i+1} ; x_{i}, x_{i+2}, x_{k}\right\}\right] \cong K_{1,3}$, we have $x_{i+2} x_{k} \in E(G)$ and to avoid $G\left[\left\{x_{i+1} ; x_{i}, x_{i+2}, x_{k-1}\right\}\right] \cong K_{1,3}$, we have $x_{i+2} x_{k-1} \in E(G)$. If $x_{k} x_{j+1} \in$ $E(G)$, then $G\left[\left\{x_{k} ; x_{i+1}, x_{j+1}, z\right\}\right] \cong K_{1,3}$. If $x_{i+1} x_{j-1} \in E(G)$, then $x_{1} \overrightarrow{P x_{i+1}} x_{j-1}$ $\overleftarrow{P x}_{i+2} x_{k-1} \overleftarrow{P x_{j}} z x_{k}$ contradicts the choice of P. To avoid $G\left[\left\{x_{i+1}, x_{i+2}, x_{k} ; x_{j}, x_{j-1}\right.\right.$, $\left.\left.x_{j+1}\right\}\right] \cong H_{1}, \xrightarrow{\text { we }} \underset{\rightharpoonup}{\longrightarrow} x_{i+2} x_{j-1} \in E(G) \backslash E(P)$ (i.e., $x_{i+3} \neq x_{j-1}$). If $x_{i+1} x_{i+3} \in$ $E(G)$, then $x_{1} \overrightarrow{P x}_{i} z x_{j}{\overrightarrow{P x_{k-1}}}_{k} x_{i+2} x_{j-1} \overleftarrow{P x}_{i+3} x_{i+1} x_{k}$ contradicts the choice of P. Hence $x_{i+1} x_{i+3} \notin E(G)$, implying $x_{i+3} x_{j-1} \in E(G)$ (otherwise $G\left[\left\{x_{i+2} ; x_{i+1}, x_{i+3}, x_{j-1}\right\}\right]$ $\left.\cong K_{1,3}\right)$. If $x_{i} x_{i+3} \in E(G)$, then $x_{1} \overrightarrow{P x}_{i-1} x_{i+1} x_{i} x_{i+3} \overrightarrow{P x}_{j-1} x_{i+2} x_{k-1} \widetilde{P x}_{j} z x_{k}$ contradicts the choice of P, and if $x_{i-1} x_{i+3} \in E(G)$ so does $x_{1} \overrightarrow{P x_{i-1}} x_{i+3} \overrightarrow{P x_{k-1}} x_{i+2} x_{i+1} x_{i} z x_{k}$. If $x_{i-1} x_{i+2} \in E(G)$, then, to avoid $G\left[\left\{x_{i+2} ; x_{i-1}, x_{i+3}, x_{k-1}\right\}\right] \cong K_{1,3}$, we have $x_{i+3} x_{k-1} \in E(G)$ and $x_{1} \overrightarrow{P x}_{i+2} x_{j-1} \overleftarrow{P x}_{i+3} x_{k-1} \overleftarrow{P x}_{j} z x_{k}$ contradicts the choice of P. Hence $G\left[\left\{x_{i-1}, x_{i+1}, x_{i} ; x_{i+2}, x_{i+3}, x_{j-1}\right\}\right] \cong K_{1,3}$.

Case 2. $x_{i} x_{j} \in E(G)$. To avoid $G\left[\left\{x_{i-1}, x_{i+1}, x_{i} ; x_{j}, x_{j-1}, x_{j+1}\right\}\right] \cong H_{1}$, we have either $x_{i-1} x_{j+1} \in E(G)$ or $x_{i+1} x_{j-1} \in E(G)$, since the other edges are not present by standard arguments.

Case 2.1. $x_{i-1} x_{j+1} \in E(G)$. To avoid $G\left[\left\{x_{j+1} ; x_{j}, x_{j+2}, x_{i-1}\right\}\right] \cong K_{1,3}$, we have $x_{i-1} x_{j+2} \in E(G)$, since $x_{i-1} x_{j} \notin E(G)$ (standard) and $x_{j} x_{j+2} \notin E(G)$ (otherwise $x \overrightarrow{P x_{i-1}} x_{j+1} x_{j-1} \overrightarrow{P x_{i}} z x_{j} x_{j+2} \overrightarrow{P y}$ contradicts the choice of P).

We first show $z x_{k} \in E(G)$. Assuming the contrary we have $v_{k} \neq x_{k}$. Since $\delta \geq 3$ and G is claw-free, v_{k} belongs to a triangle.

Case a. There exists a triangle T containing v_{k} and z. Let q be the third vertex of T.
Case a.1. $q \notin V(P)$. If $x_{i} v_{k} \in E(G)$, then, to avoid $G\left[\left\{x_{i} ; x_{i+1}, x_{j}, v_{k}\right\}\right] \cong K_{1,3}$, also $x_{j} v_{k} \in E(G)$, which contradicts the choice of $z\left(v_{k}\right.$ would have been a better choice). Hence, to avoid $G\left[\left\{x_{i-1}, x_{i+1}, x_{i} ; z, v_{k}, q\right\}\right] \cong H_{1}$, we have $x_{i} q \in E(G)$. But then $G\left[\left\{x_{j+1}, x_{j+2}, x_{i-1} ; x_{i}, z, q\right\}\right] \cong H_{1}$.

Case a.2. $q \in V(P)$. By the way x_{k} was chosen, we have $q=x_{i}$ or $q=x_{j}$. If $q=x_{i}$, then $G\left[\left\{x_{j+1}, x_{j+2}, x_{i-1} ; x_{i}, z, v_{k}\right\}\right] \cong H_{1}$. If $q=x_{j}$, then, to avoid $G\left[\left\{x_{j} ; x_{i}\right.\right.$, $\left.\left.v_{k}, x_{j+1}\right\}\right] \cong K_{1,3}$, we have $x_{i} v_{k} \in E(G)$, giving the same H_{1} as a contradiction.

Case b. Every triangle T containing v_{k} does not contain z. Let q_{1} and q_{2} be the two other vertices of T. If $q_{1}, q_{2} \notin V(P)$, then $G\left[\left\{x_{i}, x_{j}, z ; v_{k}, q_{1}, q_{2}\right\}\right] \cong H_{1}$; otherwise, if for example $q_{1} z \in E(G)$, there would be a triangle T containing v_{k} and z, and if $q_{1} x_{i} \in E(G)$, then $G\left[\left\{x_{i} ; z, q_{1}, x_{i+1}\right\}\right] \cong K_{1,3}$. Also, if $q_{1} \in V(P)$ (and/or $q_{2} \in V(P)$), then $G\left[\left\{x_{i}, x_{j}, z ; v_{k}, q_{1}, q_{2}\right\}\right] \cong H_{1}$; otherwise, if for example $q_{1} x_{j} \in E(G)$, then $G\left[\left\{q_{1} ; x_{j}, v_{k}, q_{1}^{-}\right\}\right] \cong K_{1,3}$.

Case 2.1.1. $\quad x_{1} \neq x_{i-1}$. To avoid $G\left[\left\{x_{i-1} ; x_{i-2}, x_{i}, x_{i+1}\right\}\right] \cong K_{1,3}$, we have $x_{i-2} x_{j+1}$ $\in E(G)$, and to avoid $G\left[\left\{x_{i-1} ; x_{i-2}, x_{i}, x_{i+2}\right\}\right] \cong K_{1,3}$, we have $x_{i-2} x_{j+2} \in E(G)$. But then $G\left[\left\{x_{i}, z, x_{j} ; x_{j+1}, x_{j+2}, x_{i-2}\right\}\right] \cong H_{1}$.

Case 2.1.2. $\quad x_{1}=x_{i-1}$.
Case 2.1.2.1. $x_{k} \neq x_{m}$. To avoid $G\left[\left\{x_{i}, x_{j}, z ; x_{k}, x_{k-1}, x_{k+1}\right\}\right] \cong H_{1}$, we have $x_{i} x_{k} \in E(G)$ or $x_{j} x_{k} \in E(G)$. First assume $x_{j} x_{k} \in E(G)$. To avoid $G\left[\left\{x_{j-1}, x_{j+1}, x_{j}\right.\right.$; $\left.\left.x_{k}, x_{k-1}, x_{k+1}\right\}\right] \cong H_{1}$, we have $x_{j-1} x_{k+1} \in E(G)$ or $x_{j+1} x_{k-1} \in E(G)$. However, if $x_{j+1} x_{k-1} \in E(G)$, then $x_{1} x_{j+2} \stackrel{x_{j-1}}{P x_{k-1}} x_{j+1} \overleftrightarrow{P x_{i}} z x_{k} x_{k+1} \stackrel{x_{j+1}}{P} x_{m}$ contradicts the choice of P; if $x_{j-1} x_{k+1} \in E(G)$, so does $x_{1} x_{j+1} \overrightarrow{P x}_{k} z x_{j} x_{i} \overrightarrow{P x_{j-1}} x_{k+1} \overrightarrow{P x_{m}}$. Hence $x_{i} x_{k} \in$ $E(G)$. To avoid $G\left[\left\{x_{i-1}, x_{i+1}, x_{i} ; x_{k}, x_{k-1}, x_{k+1}\right\}\right] \cong H_{1}$, we have $x_{i+1} x_{k-1} \in E(G)$ $\stackrel{\text { or }}{\Rightarrow} x_{i-1} x_{k+1} \in E(G)$. However, if $x_{i+1} x_{k-1} \in E(G)$, then $x_{1} x_{j+1} \overrightarrow{P x}_{k-1} x_{i+1} \overrightarrow{P x}_{j} x_{i} z x_{k}$ $\vec{P} x_{m}$ contradicts the choice of P; if $x_{i-1} x_{k+1} \in E(G)$, then $G\left[\left\{x_{1} ; x_{i}, x_{j+1}\right.\right.$, $\left.\left.x_{k+1}\right\}\right] \cong K_{1,3}$.

Case 2.1.2.2. $\quad x_{k}=x_{m}$. We distinguish between the cases that $x_{j} x_{k} \in E(G)$ and $x_{j} x_{k} \notin E(G)$.

Case 2.1.2.2.a. $x_{j} x_{m} \in E(G)$. To avoid $G\left[\left\{x_{1}, x_{j+2}, x_{j+1} ; x_{j}, z, x_{m}\right\}\right] \cong H_{1}$, we have $x_{j+2} x_{m} \in E(G)$, since $x_{1} x_{m} \notin E(G)$ (standard) and $x_{j+1} x_{m} \notin E(G)$ (otherwise
also $x_{j+1} x_{m-1} \in E(G)$, giving a path $x_{1} x_{j+2} \overrightarrow{P x}_{m-1} x_{j+1} \overleftarrow{P x}_{i} z y$ which contradicts the choice of P) while the other possible edges are not present by standard arguments.

First assume $x_{j+3} \neq x_{m-1}$. To avoid $G\left[\left\{x_{m} ; x_{m-1}, x_{j+2}, z\right\}\right] \cong K_{1,3}$, we have $x_{j+2} x_{m-1} \in E(G)$, and to avoid $G\left[\left\{x_{j+2} ; x_{1}, x_{j+3}, x_{m-1}\right\}\right] \cong K_{1,3}$, we have $x_{j+3} x_{m-1}$ $\in E(G)$. But then $G\left[\left\{x_{i+1}, x_{i}, x_{1} ; x_{j+2}, x_{j+3}, x_{m-1}\right\}\right] \cong H_{1}$, since $x_{1} x_{j+3} \notin E(G)$ (otherwise $x_{1} x_{j+3} \overrightarrow{P x}_{m-1} x_{j+2} \overleftarrow{P x_{i}} z x_{m}$ contradicts the choice of P), $x_{i} x_{j+3} \notin E(G)$ (otherwise $x_{1} x_{j+2} x_{m-1} \overleftarrow{P x_{j+3}} x_{i} \overrightarrow{P x}_{j-1} x_{j+1} x_{j} z x_{m}$ contradicts the choice of P), $x_{i+1} x_{j+3}$ $\notin E(G)$ (otherwise $x_{1} x_{j+1} x_{j+2} x_{m-1} \overleftrightarrow{P} x_{j+3} x_{i+1} \overrightarrow{P x_{j}} x_{i} z x_{m}$ contradicts the choice of P), and $x_{i+1} x_{m-1} \notin E(G)$ (otherwise $x_{1} x_{j+1} \overrightarrow{P x_{m-1}} x_{i+1} \overrightarrow{P x_{j}} x_{i} z x_{m}$ contradicts the choice of P), while the other possible edges are not present by standard arguments.

Hence we may assume that $x_{j+3}=x_{m-1}$. Let $p \in V(G) \backslash\left\{x_{j+2}, x_{m}\right\}$ be a neighbor of x_{j+3}. We first show that we can choose p on P. Suppose there does not exist such a vertex p on P and let T be a triangle containing p and containing a maximum number of vertices of P. Let q_{1} and q_{2} be the other vertices of T. To avoid $G\left[\left\{x_{j+3} ; x_{j+2}, x_{m}, p\right\}\right] \cong K_{1,3}$, we have $x_{j+2} y \in E(G)$.

If $V(T) \cap V(P)=\emptyset$, then $G\left[\left\{q_{1}, q_{2}, p ; x_{j+3}, x_{j+2}, x_{m}\right\}\right] \cong H_{1}$.
If $|V(T) \cap V(P)|=2$, then $q_{1} \neq x_{j+3}$ (since q_{2} is a neighbor of q_{1}, it would have been possible to choose p on P) and $q_{2} \neq x_{j+3}$ (similar). But then p contradicts the choice of z.

If $|V(T) \cap V(P)|=1$, let q_{1} be the vertex not on P and let q_{2} be the vertex on P. One easily shows that $q_{2} \notin\left\{x_{1}, x_{i}, x_{i+1}, x_{j-1}, x_{j}, x_{j+1}, x_{j+2}, y\right\}$ by obtaining (x, y) paths contradicting the choice of P. If $q_{2}=x_{j+3}$, then $G\left[\left\{x_{1}, x_{j+1}, x_{j+2} ; q_{2}\right.\right.$, $\left.\left.q_{1}, p\right\}\right] \cong H_{1}$. If $q_{2} \in x_{i+2} \overrightarrow{P x}_{j-2}$, then to avoid $G\left[\left\{q_{2} ; q_{2}^{-}, q_{2}^{+}, q_{1}\right\}\right] \cong K_{1,3}$, we have $q_{2}^{-} q_{2}^{+} \in E(G)$. However, then $G\left[\left\{q_{2}, q_{1}, p ; x_{j+3}, x_{j+2}, x_{m}\right\}\right] \cong H_{1}$, since $q_{2} x_{j+2} \notin$ $E(G)$ (otherwise $x_{1} \overrightarrow{P q_{2}^{-}} q_{2}^{+} \overrightarrow{P x}_{j+2} q_{2} p x_{j+3} x_{m}$ contradicts the choice of P), $q_{2} x_{j+3} \notin$ $E(G)$ by assumption and $q_{2} x_{m} \notin E(G)$ (otherwise also $q_{2} x_{j+3} \notin E(G)$ by a standard observation).

Hence we may assume that we can choose p on P, and one easily shows that $p \in x_{i+2} \overrightarrow{P x}_{j-2}$. To avoid $G\left[\left\{p ; p^{-}, p^{+}, x_{j+3}\right\}\right] \cong K_{1,3}$, we have $p^{-} p^{+} \in E(G)$, since $p^{-} x_{j+3} \notin E(G)$ (otherwise $x_{1} x_{j+2} \overleftarrow{P p} x_{j+3} p^{-} \widetilde{P x}_{i} z x_{m}$ contradicts the choice of P) and $p^{+} x_{j+3} \notin E(G)$ (similar). We may assume that $p x_{j+2} \notin E(G)$ (otherwise by considering the path $x_{1} \overrightarrow{P p}^{-} p^{+} \overrightarrow{P x}_{j+2} p x_{j+3} x_{m}$ we are back in the case that $x_{j+3} \neq x_{m-1}$) and $p x_{m} \notin E(G)$ (similar). Hence, to avoid $G\left[\left\{x_{j+3} ; p, x_{j+2}, x_{m}\right\}\right] \cong K_{1,3}$, we have $x_{j+2} x_{m} \in E(G)$. However, then $G\left[\left\{p^{-}, p^{+}, p ; x_{j+3}, x_{j+2}, x_{m}\right\}\right] \cong H_{1}$, since $p^{-} x_{j+2} \notin E(G)$ (otherwise $x_{1} x_{j+1} \overleftarrow{P} p x_{j+3} x_{j+2} p^{-} \overleftarrow{P} x_{i} z x_{m}$ contradicts the choice of $P), p^{-} x_{m} \notin E(G) \xrightarrow{(o t h e r w i s e ~ a l s o ~} p^{-} x_{j+3} \in E(G)$), $p^{+} x_{j+2} \notin E(G)$ (otherwise $x_{1} x_{j+1} x_{j+2} p^{+} \vec{P} x_{j} z x_{i} \overrightarrow{P p} x_{j+3} x_{m}$ contradicts the choice of $\left.P\right)$, and $p^{+} x_{m} \notin E(G)$ (otherwise also $p^{+} x_{j+3} \in E(G)$).

Case 2.1.2.2.b. $\quad x_{j} x_{m} \notin E(G)$. Let $p \in V(G) \backslash\left\{z, x_{m-1}\right\}$ be a neighbor of x_{m}. We first show that we can choose p on P. Suppose there does not exist such a vertex p on P. To avoid $G\left[\left\{x_{m} ; x_{m-1}, z, p\right\}\right] \cong K_{1,3}$, we have $p z \in E(G)$. If $p x_{i} \in E(G)$, then $G\left[\left\{p, z, x_{i} ; x_{i-1}, x_{j+1}, x_{j+2}\right\}\right] \cong H_{1}$. Hence we have $p x_{i} \notin E(G)$. Since $x_{i-1} x_{k-1} \notin$
$E(G)$, also $x_{i-1} x_{k} \notin E(G)$, and since $x_{i+1} x_{k-1} \notin E(G)$, also $x_{i+1} x_{k} \notin E(G)$. To avoid $G\left[\left\{x_{i-1}, x_{i+1}, x_{i} ; z, p, x_{k}\right\}\right] \cong H_{1}$, we have $x_{i} x_{k} \in E(G)$. However, then $G\left[\left\{x_{m}, x_{i}, x_{m-1}, p\right\}\right] \cong K_{1,3}$.

Hence, we may assume that we can choose p on P. If $x_{i} x_{m} \in E(G)$, then to avoid $G\left[\left\{x_{i}, x_{i+1}, x_{j}, x_{m}\right\}\right] \cong K_{1,3}$, we have $x_{i+1} x_{m} \in E(G)$, and hence also x_{m-1} $x_{i+1} \in E(G)$, yielding a path $x_{1} x_{j+1} \overrightarrow{P x_{m-1}} x_{i+1} \vec{P} x_{j} x_{i} z x_{m}$, contradicting the choice of P. Hence $x_{i} x_{m}, x_{i+1} x_{m} \notin E(G)$. If $x_{i-1} x_{m} \in E(G)$, then also $x_{i-1} x_{m-1} \in E(G)$, a contradiction. Hence $x_{i-1} x_{m} \notin E(G)$, and similarly $x_{j-1} x_{m} \notin E(G)$. If $x_{j+1} x_{m} \in$ $E(G)$, then also $x_{j+1} x_{m-1} \in E(G)$, yielding a contradicting path $x_{1} x_{j+2} \overrightarrow{P x_{m-1}} x_{j+1}$ $P x_{i} z x_{m}$. The above observations leave two cases for the location of p.
(i) $p \in x_{i+2} \overrightarrow{P x}_{j-2}$. We choose $p \in N\left(x_{k}\right)$ as close to x_{j-1} as possible. To avoid $G\left[\left\{x_{m} ; p, z, x_{m-1}\right\}\right] \cong K_{1,3}$, we have $p x_{m-1} \in E(G)$. To avoid $G\left[\left\{x_{i}, x_{j}, z\right.\right.$; $\left.\left.x_{m}, x_{m-1}, p\right\}\right] \cong H_{1}$, we have $p x_{i} \in E(G)$ or $p x_{j} \in E(G)$. If $p x_{i} \in E(G)$, then also $p x_{1} \in E(G)$ (otherwise $G\left[\left\{x_{i} ; x_{1}, p, z\right\}\right] \cong K_{1,3}$). Since $p x_{m-1} \in E(G)$, the choice of P implies $p^{+} x_{1} \notin E(G)$. To avoid $G\left[\left\{p ; x_{1}, p^{+}, x_{m}\right\}\right] \cong K_{1,3}$, we have $p^{+} x_{m} \in E(G)$, contradicting the choice of P. Next assume $p x_{j} \in$ $E(G)$. Then $p^{+} \neq x_{j-1}$. To avoid $G\left[\left\{p ; p^{+}, x_{j}, x_{m}\right\}\right] \cong K_{1,3}$, we have $p^{+} x_{j} \in$ $E(G)$, and to avoid $G\left[\left\{x_{j}, p, z, x_{j+1}\right\}\right] \cong K_{1,3}$, we have $p^{+} x_{j+1} \in E(G)$. However, then $x_{1} \vec{P} p x_{m-1} \overleftrightarrow{P} x_{j+1} p^{+} \vec{P} x_{j} z x_{m}$ contradicts the choice of P.
(ii) $p \in x_{j+2} \overrightarrow{P x}_{k-2}$. We choose $p \in N\left(x_{k}\right)$ as close to x_{j+1} as possible. We again have $p x_{m-1} \in E(G)$ and $p x_{i} \in E(G)$ or $p x_{j} \in E(G)$. If $p x_{i} \in E(G)$, then to avoid $G\left[\left\{p ; x_{i}, p^{-}, x_{m}\right\}\right] \cong K_{1,3}$, we have $p^{-} x_{i} \in E(G)$ and $p \neq x_{j+2}$. To avoid $G\left[\left\{x_{i} ; z, x_{i+1}, p^{-}\right\}\right] \cong K_{1,3}$, we have $x_{i+1} p^{-} \in E(G)$. But then $x_{1} x_{j+1}$ $\overrightarrow{P p}^{-} x_{i+1} \overrightarrow{P x}_{j} z x_{i} p \overrightarrow{P x_{m}}$ contradicts the choice of P.

If $p x_{j} \in E(G)$, then also $p x_{j-1}, p x_{j+1} \in E(G)$. If $p^{-}=x_{j+1}$, then $x_{1} x_{j+1}$ $x_{j} z x_{i} \overrightarrow{P x}_{j-1} p \vec{P} x_{m}$ contradicts the choice of P. If $p^{-} \neq x_{j+1}$, then to avoid $G\left[\left\{p ; x_{j}, p^{-}, x_{m}\right\}\right] \cong K_{1,3}$, we have $p^{-} x_{j} \in E(G)$, and to avoid $\underset{\vec{P}}{G}\left[\left\{x_{j} ; x_{j-1}^{\vec{P}}\right.\right.$, $\left.\left.z, p^{-}\right\}\right] \cong K_{1,3}$, also $p^{-} x_{j-1} \in E(G)$. But then $x_{1} x_{j+1} \overrightarrow{P p}^{-} x_{j-1} \overleftrightarrow{P x}_{i} z x_{j} p \overrightarrow{P x}_{k}$ contradicts the choice of P.

Case 2.2. $\quad x_{i-1} x_{j+1} \notin E(G)$ (hence $x_{i+1} x_{j-1} \in E(G)$).
Case 2.2.1. $j-i \geq 5$. To avoid $G\left[\left\{x_{i+1} ; x_{i}, x_{i+2}, x_{j-1}\right\}\right] \cong K_{1,3}$, we have x_{i+2} $x_{j-1} \in E(G)$, since $x_{i} x_{i+2} \notin E(G)$ (contradicting path: $x_{1} \overrightarrow{P x}_{i-1} x_{i+1} x_{j-1} \overleftarrow{P x}_{i+2} x_{i} z x_{j}$ $\left.\overrightarrow{P x_{m}}\right)$. By symmetry, we also have $x_{i+1} x_{j-2} \in E(G)$. To avoid $G\left[\left\{x_{i+1} ; x_{i}, x_{i+2}\right.\right.$, $\left.\left.x_{j-2}\right\}\right] \cong K_{1,3}$, we have $x_{i+2} x_{j-2} \in E(G)$. However, then $G\left[\left\{x_{i}, z, x_{j} ; x_{j-1}, x_{j-2}\right.\right.$, $\left.\left.x_{i+2}\right\}\right] \cong H_{1}$.

Case 2.2.2. $j-i=4$. We use that x_{i+2} has a neighbor $p \notin\left\{x_{i-1}, x_{i}, x_{i+1}, x_{i+2}\right.$, $\left.x_{j-1}, x_{j}, x_{j+1}\right\}$.

We first show we can choose $p \in V(P)$. Supposing this is not the case consider a triangle T containing p. Let q_{1} and q_{2} be the other vertices of T. First suppose $V(T) \cap V(P)=\emptyset$. If $q_{1} x_{i+2} \in E(G)$, then $G\left[\left\{x_{i-1}, x_{i}, x_{i+1} ; x_{i+2}, p, q_{1}\right\}\right] \cong H_{1}$. Hence $q_{1} x_{i+2}, q_{2} x_{i+2} \notin E(G)$. But then $G\left[\left\{q_{1}, q_{2}, p ; x_{i+2}, x_{i+1}, x_{j-1}\right\}\right] \cong H_{1}$. Hence
$|V(T) \cap V(P)| \geq 1$. Let q_{1} denote a neighbor of p in $(V(P) \cap V(T)) \backslash\left\{x_{i+2}\right\}$. Then $x_{i+2} q_{1} \notin E(G)$ by assumption. If $x_{j-1} q \in E(G)$, then also $x_{j-1} q_{1}^{-} \in E(G)$ (otherwise $G\left[\left\{q_{1} ; q_{1}^{-}, x_{j-1}, p\right\}\right] \cong K_{1,3}$), and we easily find a path contradicting the choice of P. A similar observation shows $x_{i+1} q_{1} \notin E(G)$. But then $G\left[\left\{x_{i+1}, x_{j-1}\right.\right.$, $\left.\left.x_{i+2} ; p, q_{1}, q_{2}\right\}\right] \cong H_{1}$.

Hence, we can choose $p \in V(P)$. If x_{i+2} has two successive neighbors on P, it is obvious that we can find a path contradicting the choice of P. Hence, if p^{-}and p^{+}exist, we get that $p^{-} p^{+} \in E(G)$. We deal with the cases that $p \in\left\{x_{1}, x_{m}\right\}$ later.

To avoid $G\left[\left\{x_{i+1}, x_{j-1}, x_{i+2} ; p, p^{-}, p^{+}\right\}\right] \cong H_{1}$, we have $x_{i+1} p \in E(G)$ or x_{j-1} $p \in E(G)$. If $x_{i+1} p \in E(G)$ and $p \in x_{j+1} \overrightarrow{P x}_{m-1}$, then by considering the path $x_{1} \overrightarrow{P x}_{i+1} p x_{i+2} \overrightarrow{P p}^{-} p^{+} \overrightarrow{P x}_{m}$, we are back in Case 2.2.1. But then $G\left[\left\{x_{i+1}, x_{j-1}, x_{i+2}\right.\right.$; $\left.\left.p, p^{-}, p^{+}\right\}\right] \cong H_{1}$.

Now suppose $p=x_{m}$. Then $x_{m} \neq x_{k}$, since otherwise $G\left[\left\{x_{m} ; x_{i+2}, z, x_{m-1}\right\}\right] \cong$ $K_{1,3}$. Note that $x_{k} \neq x_{m-1}$ (otherwise $x \overrightarrow{P x}_{i-1} x_{i+1} x_{i} z x_{k} \overleftarrow{P x_{i+2}} x_{m}$ contradicts the choice of P). To avoid $G\left[\left\{x_{i}, x_{j}, z ; x_{k}, x_{k-1}, x_{k+1}\right\}\right] \cong H_{1}$, we have $x_{i} x_{k} \in E(G)$ or $x_{j} x_{k} \in E(G)$. First assume $x_{j} x_{k} \in E(G)$. Like in the beginning of Case 2, we have $x_{j-1} x_{k+1} \in E(G)$ or $x_{j+1} x_{k-1} \in E(G)$. If $x_{j-1} x_{k+1} \in E(G)$, also $x_{j-2} x_{k+1} \in E(G)$. However, since $x_{j-2}=x_{i+2}$ this contradicts the fact that $x_{k} \neq x_{m-1}$. If $x_{j+1} x_{k-1} \in$ $E(G)$, then like in the beginning of this case, we have $k-j=4$. To avoid $G\left[\left\{x_{i+1}, x_{i+2}, x_{j-1} ; x_{j+1}, x_{j+2}, x_{j+3}\right\}\right] \cong H_{1}$, we have $x_{i+1} x_{j+3} \in E(G)$. But then $G\left[\left\{x_{i-1}, x_{i}, x_{i+1} ; x_{j+3}, x_{j+1}, x_{j+2}\right\}\right] \cong H_{1}$. Hence we may assume that $x_{j} x_{k} \notin E(G)$ and $x_{i} x_{k} \in E(G)$. But then $G\left[\left\{x_{i} ; x_{i-1}, x_{j}, x_{k}\right\}\right] \cong K_{1,3}$.

For the final subcase suppose $\left\{x_{1}\right\}=N\left(x_{i+2}\right) \backslash\left\{x_{i+1}, x_{j-1}\right\}$. By the choice of P, $N\left(x_{1}\right) \subseteq V(P)$ and $x_{2} \neq x_{i-1}$. All neighbors of x_{1}, except for possibly x_{i+1}, x_{i+2}, x_{j-1}, are also neighbors of x_{2}, otherwise we obtain an induced claw centered at x_{1}. If $x_{1} x_{i} \in E(G)$, then $x_{2} x_{i} \in E(G)$ and to avoid $G\left[\left\{x_{i} ; x_{2}, z, x_{i+1}\right\}\right] \cong K_{1,3}$, we have $x_{2} x_{i+1} \in E(G)$, contradicting the choice of P. Hence $x_{1} x_{i} \notin E(G)$ and similarly $x_{1} x_{j} \notin E(G)$.

If $x_{1} x_{i+1} \in E(G)$, then $G\left[\left\{x_{1}, x_{i+1}, x_{i+2} ; x_{i}, z, x_{j}\right\}\right] \cong H_{1} ;$ if $x_{1} x_{j-1} \in E(G)$, then $G\left[\left\{x_{1}, x_{i+2}, x_{j-1} ; x_{j}, x_{i}, z\right\}\right] \cong H_{1}$. Now assume $x_{1} x_{i+1}, x_{1}, x_{j-1} \notin E(G)$. Hence x_{1} has some neighbor $q \neq x_{i}, x_{i+1}, x_{i+2}, x_{j-1}, x_{j}$ which is also a neighbor of x_{2}. To avoid $G\left[\left\{q, x_{2}, x_{1} ; x_{i+2}, x_{i+1}, x_{j-1}\right\}\right] \cong H_{1}$, we have $q x_{i+1} \in E(G)$ or $q x_{j-1} \in E(G)$.

First suppose $q \in x_{3} \overrightarrow{P x_{i-1}}$ and $q x_{i+1} \in E(G)$. Then to avoid $G\left[\left\{x_{i+1} ; q, x_{i}\right.\right.$, $\left.\left.x_{i+2}\right\}\right] \cong K_{1,3}$, we have $q x_{i} \in E(G)$. To avoid $G\left[\left\{x_{1}, x_{2}, q ; x_{i}, z, x_{j}\right\}\right] \cong H_{1}$, we have $q x_{j} \in E(G)$. But then $G\left[\left\{q ; x_{2}, x_{i+1}, x_{j}\right\}\right] \cong K_{1,3}$. Next, suppose $q \in x_{3} \overrightarrow{P x}_{i-1}$ and $q x_{i+1} \notin E(G)$. Then $q x_{j-1} \in E(G)$ and to avoid $G\left[\left\{x_{j-1} ; q, x_{i+2}, x_{j}\right\}\right] \cong K_{1,3}$, we have $q x_{j} \in E(G)$. To avoid $G\left[\left\{x_{1}, x_{2}, q ; x_{j}, z, x_{i}\right\}\right] \cong H_{1}$, we have $q x_{i} \in E(G)$. But then $G\left[\left\{q ; x_{2}, x_{i}, x_{j-1}\right\}\right] \cong K_{1,3}$.

We now may assume $q \notin x_{3} \overrightarrow{P x_{i-1}}$, hence $q \in x_{j+1} \overrightarrow{P x}_{m}$. We choose q as close to x_{m} as possible, and deal with the subcase $q x_{j-1} \in E(G)$ first.

If $q=x_{m}$, then, as before, we can repeat the previous cases with x_{j}, x_{k} instead of x_{i}, x_{j}, and obtain an induced H_{1}, unless $x_{k}=x_{m}$; but in the latter case $G\left[\left\{x_{m}\right.\right.$; $\left.\left.x_{2}, u_{k}, x_{j-1}\right\}\right] \cong K_{1,3}$. Hence $q \neq x_{m}$. To avoid $G\left[\left\{x_{1}, x_{2}, q ; x_{j-1}, x_{j}, x_{j+1}\right\}\right] \cong H_{1}$, we have $q x_{j} \in E(G)$ or $q x_{j+1} \in E(G)$, both implying $q x_{j+1} \in E(G)$. To avoid $G[\{q$;
$\left.\left.\underset{\sim}{x_{1}}, x_{j+1}, q^{+}\right\}\right] \cong K_{1,3}$, we have $x_{j+1} q^{+} \in E(G)$, yielding $x_{1} x_{i+2} x_{j-1} x_{j} z x_{i} x_{i+1} x_{i-1}$ $\overleftarrow{P x_{2}} q \overrightarrow{P x}_{j+1} q^{+} \overrightarrow{P x_{m}}$, a contradiction. For the remaining case, we assume $q x_{j-1} \notin$ $E(G)$; hence $q x_{i+1} \in E(G)$. By similar arguments as before, we may assume $q \neq x_{m}$. To avoid $G\left[\left\{q ; q^{+}, x_{1}, x_{i+1}\right\}\right] \cong K_{1,3}$, we have $x_{i+1} q^{+} \in E(G)$. If $q^{+}=x_{m}$, then by similar arguments as before $x_{m}=x_{k}$ and $x_{1} x_{i+2} \overrightarrow{P x}_{k-1} x_{2} \overrightarrow{P x}_{i-1} x_{i+1} x_{i} z Q_{k} x_{k}$ gives a contradiction. In the final case, the path $P^{\prime}=x_{1} x_{i+2} \overrightarrow{P q} x_{2} \overrightarrow{P x}_{i+1} q^{+} \overrightarrow{P x}_{m}$ has the same properties as P, also with respect to the choice of z. But z has two internal vertices $x_{i^{\prime}}$ and $x_{j^{\prime}}$ of P^{\prime} with $j^{\prime}-i^{\prime} \geq 5$ as neighbors, so repeating the above arguments with respect to $P^{\prime}, x_{i^{\prime}}, x_{j^{\prime}}$ we will obtain an induced H_{1}. This completes the proof of Theorem 4.

3. POSSIBLE FORBIDDEN PAIRS AND HAMILTONIAN-CONNECTEDNESS

We start by defining eight graphs which are 3-connected but not hamiltonianconnected. Let $m \geq 4$ be an integer, M_{i} be a K_{m} in which three vertices x_{i}, y_{i}, and z_{i} are marked and $M=\cup_{i=1}^{8} M_{i}$.

- $G_{1}=K_{m, m}$,
- G_{2} is obtained from a cycle $C=x_{1} x_{2} \cdots x_{2 m}$, by adding the edges $x_{i} x_{m+i}$ $(i=1, \ldots, m)$,
- G_{3} is an arbitrary 3-connected C_{4}-free bipartite graph,
- G_{4} is obtained from M_{1} by adding two vertices a and b and all (six) edges between a, b and x_{1}, y_{1}, z_{1},
- G_{5} is obtained from a cycle $C=x_{1} x_{2} \cdots x_{6 m}$ by adding the edges $x_{3 i-2} x_{3 i}$ $(i=1, \ldots, 2 m)$ and the edges $x_{3 i-1} x_{3 m+3 i-1}(i=1, \ldots, m)$,
- G_{6} is obtained from a cycle $C=x_{1} x_{2} \cdots x_{4 m}$ by adding the edges $x_{2 i-1} x_{2 i+1}$ $(i=1, \ldots, 2 m-1), x_{4 m-1} x_{1}$, and $x_{2 i} x_{2 m+2 i}(i=1, \ldots, m)$,
- G_{7} is obtained from G_{5} by replacing every triangle $x_{3 i-2} x_{3 i-1} x_{3 i}$ $(i=1, \ldots, 2 m)$ by the graph G^{\prime} of Fig. 2,

FIGURE 2. The graph G^{\prime}.

- G_{8} is obtained from M by identifying each vertex x_{i} with $y_{i+1}(i=1, \ldots, 7)$, x_{8} with y_{1} and each vertex z_{i} with $z_{i+4}(i=1, \ldots, 4)$.

Since the graphs G_{1}, \ldots, G_{8} are not hamiltonian-connected, each of them must contain an induced copy of either X or Y. The graphs $G_{1}, G_{2}, G_{3}, G_{4}$ all contain a claw, but the last four graphs $G_{5}, G_{6}, G_{7}, G_{8}$ are all claw-free.

We will first show that one of the graphs X or Y must be $K_{1,3}$. Assume that this is not true. Assume, without loss of generality, that $X \subset G_{1}$. Then X must either contain an induced C_{4} or it must be a generalized claw $K_{1, r}$ for $r \geq 4$. First consider the case when $C_{4} \subset X$. Then Y must be an induced subgraph of both G_{3} and G_{4}, since neither of these graphs contains an induced C_{4}. However, the only induced subgraph common to both G_{3} and G_{4} is the claw $K_{1,3}$. If $X=K_{1, r}$ for $r \geq 4$, then Y must be an induced subgraph of both G_{2} and G_{4}, since neither of these graphs has an induced $K_{1,4}$. Again, the only induced subgraph common to both G_{2} and G_{4} is the claw $K_{1,3}$. Therefore, without loss of generality, we can assume that $X=K_{1,3}$.

Since $G_{5}, G_{6}, G_{7}, G_{8}$ are all claw-free, Y must be an induced subgraph of each of these graphs. Since G_{5} is claw-free and $\Delta\left(G_{5}\right)=3, Y$ must satisfy both (a) and (f). There is no induced P_{10} in G_{8}, so (b) is satisfied. The shortest induced cycle in G_{5} besides C_{3} is a C_{8}, the longest induced cycle in G_{8} is a C_{8}, and G_{6} contains no induced C_{8}. Thus (c) is satisfied. In G_{5}, the distance between distinct triangles is either one or at least three. This implies that (d) is satisfied. The graph G_{7} does not contain an induced copy of the graph S obtained from a P_{5} by placing a triangle on the first and third edge (S is an H_{1} with an edge attached to a vertex of degree two). Therefore, if Y contains three triangles, then each pair of triangles would have to be at distance at least three. This would imply an induced P_{10}, which is not true. Thus (e) is satisfied. This completes the proof of Theorem 6.

4. OPEN QUESTION

The obvious question is the following.
Question A. What is the characterization of those pairs of connected graphs X and Y such that being X-free and Y-free implies that a 3-connected graph is hamiltonian-connected?

A simpler question, but one that is critical to answering Question A is the following.
Question B. What is the largest k such that a 3-connected claw-free and P_{k}-free graph is hamiltonian-connected?

REFERENCES

[1] P. Bedrossian, Forbidden Subgraph and Minimum Degree Conditions for Hamiltonicity, Ph.D. Thesis, Memphis State University, 1991.
[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1976.
[3] H. J. Broersma, R. J. Faudree, A. Huck, H. Trommel, and H. J. Veldman, Forbidden subgraphs that imply hamiltonian-connectedness. Memorandum no. 1481, Faculty of Mathematical Sciences, University of Twente, Enschede, The Netherlands, 1999.
[4] G. Chen and R. J. Gould, Hamiltonian connected graphs involving forbidden subgraphs, preprint, 1999.
[5] R. J. Faudree, Forbidden graphs and hamiltonian properties-A survey, Surveys in graph theory (San Francisco, CA, 1995). Congr Numer 116 (1996), 33-52.
[6] R. J. Faudree and R. J. Gould, Characterizing forbidden pairs for hamiltonian properties, Discrete Math 173 (1997), 45-60.
[7] F. B. Shepherd, Hamiltonicity in claw-free graphs, J Combin Theory (B) 53 (1991), 173-194.

[^0]: The first four authors dedicate this paper to Henk Jan Veldman, a valued colleague and beloved friend who died October 12, 1998.
 Contract grant sponsor: ONR; Contract grant number (for R.F.): N00014-94-J-1085.
 *Correspondence to: H. J. Broersma, Faculty of Mathematical Sciences, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
 E-mail: h.j.broersma@math.utwente.nl

