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Abstract

Braiding can be used to manufacture preforms for resin transfer moulding (RTM). With braiding, many yarns are used, non-geodesic yarn

paths are possible, and the interlaced structure of braids provides typical mechanical properties such as high impact strength. Previously, several

models were developed to predict the fibre angles on simple, stationary braided preforms, but not for complex, non-axisymmetric preforms.

This paper presents a fast and efficient model to predict the fibre angles on complex biaxially braided preforms. The model is verified with

experiments on two mandrels and the experimental and numerical results show good agreement. q 2002 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Braiding is an ancient technique. It has been used for

decorative purposes for many centuries. With its industri-

alisation it is now commonly used for manufacturing belts

and ropes. Automated braiding is also a suitable process for

manufacturing reproducible preforms for resin transfer

moulding (RTM). The highly interlaced structure of braids

makes it possible to cover components with sharp

curvatures and non-circular cross-sections, varying along

the length of the component. Furthermore, the interlaced

nature of braids provides high levels of impact strength.

Typical examples of these RTM components are propeller

blades, trailing arms for a helicopter landing gear and

automotive space frame components. So far, it was by no

means trivial to predict the mechanical properties of an

arbitrary braid reinforced product, firstly because the fibre

directions could not be predicted in advance. Although

different authors presented models for simple circular

braiding [1–4], these models are not suitable for the

preforms indicated, with a non-axisymmetric cross-section,

varying along the length of the component. Here, we refer to

these as ‘complex shapes’. This paper presents a model for

the prediction of the yarn trajectories on these braided

complex shapes.

2. Process description

An illustration of a horn-gear braiding machine is given

in Fig. 1. The mandrel, supported by a holder (not shown in

the figure), is located between the spools. The mandrel

moves with an axial velocity V. The yarns are driven by

spools in the spool plane. One group of yarns, denoted as the

warp yarns, moves clockwise while the weft yarns move

counter-clockwise, both with an angular velocity of ^v. As

shown in Fig. 2, the spools are passed over and under each

other in an alternating fashion. The two yarn groups

interlock, forming a closed biaxial fabric on the mandrel.

Optionally a third group of yarns can be inserted through the

horn gears. These yarns will be deposited in parallel to

the mandrel axis, providing extra stiffness and strength in

the axial direction of the now triaxially braided preform.

A guide ring with radius Rg leads the yarns towards the

mandrel. The yarns converge to the mandrel and touch the

mandrel at a distance H from the guide ring. The point,

where a yarn touches the mandrel is denoted as the fell

point. In operation, the mandrel with its holder can be driven

to the right and left alternately for both forward and reverse

braiding, and the layer of braid formed previously is covered

(or ‘overbraided’) by the newly formed one. This enables

braiding multilayered products in one run.

3. Model assumptions

A mathematical model was developed to describe the
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braiding process and to predict the resulting fibre directions

on a complex shape. This model is based on the following

assumptions:

1. The yarn trajectories are continuous and differentiable.

2. The yarn trajectories have to lie on the mandrel surface.

3. After the yarns touch the mandrel, the relative motion

between the yarns stops [2].

4. The yarns are straight in the convergence zone [3].

The first and second assumption sound trivial, but

actually form the basis of the model. The first assumption

implies that the yarn trajectories have certain smoothness

without any kinks, while the second further restricts the

spatial coordinates of the yarns. The third assumption is a

stick condition. As in previous analyses, e.g. by Du and

Popper [2], we assume that the yarn tension on the

interlaced braided structure effectively locks the yarns on

the mandrel surface, permitting non-geodesic yarn paths.

Zhang et al. [3] analysed the effect of interyarn friction in

the convergence zone. This friction leads to yarn curvature

in the convergence zone and a certain decrease of the braid

angle. These effects become more pronounced for an

increasing number of spools. It can be shown that the

fourth assumption is close to reality by elaborating this

mechanics analysis for the braider, used in the experiments.

4. Definitions

Fig. 3 shows a model of a braiding machine with a

complex mandrel. Because it is assumed that the yarns are

straight, and hence have no interaction, it is sufficient to

describe one single yarn at a time. In this case, it can also be

assumed that the spools rotate over the guide ring with

radius Rg, instead of rotating on the spool plane. In Fig. 3,

the position of the spool, ~qq; the surface of the mandrel, Q,

and the fell point of the yarn, ~pp; can be seen. The angle

between the path of the yarn and the tangent line of the

surface in z-direction is the braid angle a.

The surface of the mandrel can be defined as a function Q

for every point~xx on the surface:

Qð~xxÞ ¼ 0: ð1Þ

The path of the yarn on the mandrel, as shown in Fig. 3, can

be defined as a trajectory~ff : The fell point,~ppðtÞ; moves along

this trajectory in time. The fell point is therefore given by:

~ff ð~ppðtÞÞ ¼~00: ð2Þ

The coordinate system applied in Fig. 3 is fixed to the

mandrel. Hence, the location of the fell point,~pp; is invariant

under displacement or rotation of the mandrel.

Fig. 1. Braiding machine.

Fig. 2. Spool movement in the spool plane (with the thick arrows describing

the actual paths). Fig. 3. Model of a braiding machine with a complex mandrel.
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5. Mathematical relations

The four given assumptions form the basis of three

mathematical relations. First of all, the yarn path has to be

continuous and differentiable. This implies that the direction

of the fibre path at the fell point, ~pp; has to be equal to the

direction of the yarn path in the convergence zone:

d

dt
~pp ¼ l·ð~pp 2~qqÞ: ð3Þ

Secondly, the fibre path has to lie on the mandrel. This

implies:

Qð~ppÞ ¼ 0: ð4Þ

At the fell point, the relative motion stops. Because the yarn

trajectory is continuous, differentiable and lies on the

mandrel surface, the yarn has to be tangential to the surface

at the fell point. This can be written as:

ð~pp 2~qqÞ·7Qð~ppÞ ¼ 0: ð5Þ

6. Numerical model

A numerical model was developed by discretising the

mathematical relations (3)–(5). The equations are solved

for discrete time steps, n. The position of the spool and the

fell point at time step n, can be written as ~qqn and ~ppn,

respectively. In order to solve Eq. (5), the function Qð~ppÞ is

needed, which describes the mandrel surface in three-

dimensional space. For most mandrels used in practice, the

surface does not change dramatically in z-direction (the

mandrel axis in Fig. 3) and therefore, Eqs. (4) and (5) can be

approximated with:
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Instead of finding a tangent line on the mandrel surface in

three-dimensional space it is now sufficient to find a tangent

line on a curve in a plane with z-coordinate pz
n: This

significantly simplifies the calculations. Eqs. (6) and (7)

provide a first estimation of the x- and y-coordinate of the

next fell point ðpx
nþ1 and p

y
nþ1Þ: If a first-order Taylor series

is used in Eq. (3), this leads to

d

dt
~ppn ø

~ppnþ1 2~ppn

Dt
¼ l·ð~ppn 2~qqnÞ; ð8Þ

with l as an arbitrary constant. Using the estimations of

px
nþ1 and p

y
nþ1 in Eq. (8), the unknown variable l can be

found. With this variable known, Eq. (8) gives also an

estimation of the new z-coordinate, pz
nþ1: At this z-coordi-

nate Eqs. (6) and (7) can be solved again, giving a second

approximation of the new x- and y-coordinates. This

iteration process is continued until the differences between

two subsequent approximations are smaller than the

allowable tolerance, 1

~ppðiÞ
nþ1

2~ppði21Þ
nþ1

��� ��� , 1: ð9Þ

7. Simulations and experiments

The presented model was implemented in the Matlab

programming environment. A closed form solution of the

braid angle, a p, was given by Ko [1] for stationary braiding

of axisymmetric preforms with a constant radius. It follows

directly from the ratio of the tangential velocity and the

axial velocity of the fell point and results in

ap ¼ arctan
Pmv

2pV

� �
; ð10Þ

with Pm as the perimeter of the mandrel (equal to 2pRm for a

circular cross-section of radius Rm). This expression (further

indicated as the ‘classical solution’) was used to validate the

discretisation of the numerical model for a circular cross-

section, using a range of time step sizes. The input

parameters are given in Table 1, where the convergence

zone length, H, is the length with stationary braiding, given

by Ref. [3]. The difference, E2, between the closed form

solution, a p, and the results of the numerical model, using

time step size Dt, is defined as

E2ðDtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ðap 2 aDt

i Þ2

N

s
; ð11Þ

with N as the number of time steps. Plotting this error

function logarithmically against the time step size Dt leads

to Fig. 4. The iterative scheme (further indicated as the

‘three-dimensional numerical model’) shows second-order

convergence with decreasing step size.

The model was further validated on experimental data. A

96-spool braider of EuroCarbon in the Netherlands was used

for these experiments. Two mandrels were designed for this

purpose, as depicted in Fig. 5. The first mandrel has both a

circular and square cross-section and was clamped eccen-

trically in the braiding machine, with an eccentricity of

Table 1

Parameters for the validation of the numerical model

Braiding parameter Value

Initial convergence zone length, H 354.97 mm

Angular spool velocity, v 68/s

Mandrel velocity, V 5 mm/s

Mandrel radius, Rm 50 mm

Guide ring radius, Rg 375 mm

Closed form solution of the braid angle, a p 46.328
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25 mm in the x-direction. As depicted in Fig. 6, the

configuration is symmetric around the xz-plane, with the

weft spools moving as the mirror image of the warp spools.

Hence, the braid angles also show this symmetry, formally

represented by

awarpðz;bÞ ¼ 2aweftðz;2bÞ: ð12Þ

The second mandrel is more complicated. The cross-section

of this mandrel changes its size and shape, and the mandrel

has both centric and eccentric parts. Also for this mandrel

the xz-plane is a plane of symmetry. The geometric details

are given in Fig. 7. The corners of both mandrels were

rounded off with a 15 mm radius.

The classical two-dimensional solution (Eq. (10)) can be

extended to an approximation of the braid angle for an

eccentric guide ring. A goniometric analysis with two

coordinate systems, for the guide ring and the mandrel,

respectively, as depicted in Fig. 8, leads to

u1 ¼ arctan
R0 sinðu0Þ

R0 cosðu0Þ þ e

� �
; ð13Þ

where ðR0; u0Þ are the polar coordinates of a point on the

guide ring in the guide ring system, ðR1; u1Þ the polar

coordinates of this point in the mandrel system and e is the

eccentricity. The guide ring has a constant radius R0 ¼ Rg:
The time derivative of this equation leads to a transform-

ation of the angular velocity of a yarn on the guide ring

Fig. 4. Quadratic convergence of the three-dimensional numerical model

with decreasing step size.

Fig. 5. Test mandrels 1 (top) and 2 (bottom), sizes in mm.

Fig. 6. Symmetry of the warp (grey) and weft (white) spools and yarns in

the xz-plane for an eccentricity e in the x-direction.

Fig. 7. Geometric details of mandrel 2 (sizes in mm).
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v0ð¼ du0=dtÞ in the guide ring system to the angular

velocity v1 in the mandrel system:

v1 ¼ v0

RgðRg þ e cosðu0ÞÞ

R2
g þ 2eRg cosðu0Þ þ e2

: ð14Þ

Similar to Eq. (10), the braid angle can now be expressed as

a function of the position of the yarn on the guide ring as

apðu0Þ ¼ arctan
Pmv0

2pV
·

RgðRg þ e cosðu0ÞÞ

R2
g þ 2eRg cosðu0Þ þ e2

 !
: ð15Þ

The closed form expression for the angle u0 in terms of the

angle b of the fell point in the mandrel system is fairly

complicated (Appendix A). However, a simple approxi-

mation can easily be established for an axisymmetric

mandrel with a concentric guide ring

u0 ¼ b2 1
2
pþ arcsin

Rm

Rg

 !
; ð16Þ

in this case for the weft yarns (with the spools moving

counter-clockwise). Combining Eqs. (15) and (16) gives a

convenient closed form approximation (further indicated as

the ‘extended two-dimensional solution’) of the braid angle

along the circumference of the mandrel for the eccentric

case.

The two mandrels were braided with the process

parameters as given in Table 2. The braiding process was

started around the supporting steel tube. The initial

convergence length Hinitial was determined at the moment

the braid reached the actual mandrel. The braider was

mounted with 72 spools with glass yarns (tows of four 300

tex rovings of 13 mm EC glass from PPG,

EC13.300.Z20.1383) and 24 spools with black polyester

yarns (tows of four 110 tex rovings from Danfilex), thus

obtaining good contrast for subsequent measurements. The

braid angles were measured with a goniometer (with an

accuracy of 20 min of angle) at nominally 25 mm intervals,

along the four sides (b ¼ 290, 0, 90, and 1808) of both

mandrels.

8. Results

Fig. 9(a)–(d) presents the absolute braid angles on the

first mandrel along the four sides, as found from the

measurements, the classical solution (10), the extended two-

dimensional solutions (15) and (16) and the three-dimen-

sional numerical model. The 25 mm eccentricity leads to a

distinct variation in braid angles. The braid angles of the

warp and weft yarns are reasonably symmetric in the xz-

plane. A 20% difference can be observed between the angles

of the warp and weft yarns at b ¼ 290 and 908 (with b as

defined in Fig. 6), respectively. Notably, the difference is

not largest between the two faces with the largest difference

in distance to the guide ring.

The classical solution disregards the changes in both the

tangential and axial velocity of the fell point. The

tangential velocity is affected primarily by deviations

from axisymmetry. This is included in the extended two-

dimensional solution and leads to a significant improve-

ment of the predictions. The axial velocity of the fell point

is affected by the variation in the convergence zone length

H. In practice, this is a very smooth variation, even when

the mandrel cross-section changes abruptly. Only the

three-dimensional numerical model captures this effect,

leading to close approximations of the experimentally

observed braid angles. The braiding process was started

around the B35 mm steel tube supporting the mandrel. The

abrupt change to the larger square cross-section initially

leads to clustering of the yarns. This pattern gradually

evolves into an even yarn distribution around the cross-

section. As a consequence, the braid angles show strong

fluctuations at the beginning of the mandrel, which are

well captured in the numerical model. Also the gradual

change of braid angle after the change of the mandrel

cross-section (which can be attributed to the change in

convergence zone length) is well predicted with the

numerical model only.

All predictions for the first mandrel are combined in

Fig. 10, which clearly illustrates the variation of the braid

angle around the circumference and the location of the

Fig. 8. Definition of the radii and angles in the guide ring coordinate system

ðR0; u0Þ and the mandrel system ðR1; u1Þ for the two-dimensional model

with eccentricity.

Table 2

Braiding parameters for the test mandrels

Braiding parameter Value for

mandrel 1

Value for

mandrel 2

Initial convergence zone length, Hinitial (mm) 200 160

Angular spool velocity, v (8/s) 18 36

Mandrel velocity, V (mm/s) 26.3 16.67

Guide ring radius, Rg (mm) 170 170
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extrema. It is clear from Fig. 8 that the fell point is

approximately a quarter revolution ahead of the point of the

warp yarn on the guide ring. The lowest relative angular

velocity of the yarn (and correspondingly of the fell point) is

found at the maximum yarn length between the mandrel and

the guide ring. This maximum is found for u0 ¼ 08 (Fig. 8),

leading to the lowest angular velocity and the minimum

braid angle for b warp ¼ 908 in Fig. 10. The yarn length

between the fell point and the guide ring decreases in the

order b warp ¼ 0, 180, and 2908 and the braid angle can be

seen to increase correspondingly.

The simulation results for the braid angles on the four

faces of the second mandrel are presented in Fig. 11. Both

the classical closed form solution (10) and the extended

two-dimensional solutions (15) and (16) are included. In the

first 650 mm the mandrel is concentric and all four

predictions of the numerical model coincide, as well as all

two-dimensional closed form solutions. Only after 500 mm

the two- and three-dimensional predictions are approxi-

mately equal, indicating that the convergence zone length

has adapted to the rapid changes in diameter and reaches its

stationary value. After 650 mm the solutions for the four

Fig. 9. Braid angles for mandrel 1. ( ) classical solution (10); (V) extended two-dimensional solutions (15) and (16); (O) experimental data warp yarns; (B)

experimental data weft yarns; ( ) three-dimensional numerical solution.

Fig. 10. Model results for the braid angles on mandrel 1 on four angles. ( )

classical solution (10); (V) extended two-dimensional solutions (15) and

(16); ( ) three-dimensional numerical solution.
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faces diverge due to the eccentricity. As for the first

mandrel, the braid angles at b ¼ 90 and 2908 show the

greatest difference. Apparently the convergence zone length

closely follows its stationary value for b ¼ 0 and 2908 in

the convergent section between 650 and 850 mm, as the

two- and three-dimensional results are very similar. On the

other two faces these results differ considerably. When

the yarns have approached a steady state braid angle, the

eccentricity changes again between 1000 and 1100 mm,

leading to further peaks in the braid angles. At the end of the

final concentric section between 1100 and 1300 mm the four

lines of the three-dimensional simulations are still not fully

converged.

The experiments were performed with an increasing

axial velocity. At the lowest velocity V ¼ 600 mm=min it

was observed that the yarns slipped over the conical part of

the mandrel between 200 and 350 mm leading to ‘yarn

jamming’, a loose wrinkled fabric resulting from sliding

towards the smaller perimeter. Also in earlier experiments

[5], slip was observed when braiding at a lower degree of

coverage (less yarns per unit surface). In general, this slip is

undesirable as it induces a largely uncontrolled fibre

reorientation. It can be prevented by, e.g. using adhesive

layers or, in this case, by braiding at a high degree of

coverage, which is usually the case for preforms with high

fibre contents. For V ¼ 1000 mm=min this slip during

braiding was no longer observed. No attempt was made to

study the braiding process for higher axial velocities.

The experimentally obtained braid angles for these final

process parameters (Table 2) are depicted in Fig. 12 for

b ¼ 90 and 2908 together with the various predictions. As

was predicted by the three-dimensional simulations, the

braid angles lag behind the changes in diameter for the first

500 mm. For b warp ¼ 2908 (the squares in Fig. 12) the

simulation results follow the experimental values closely for

the remainder of the mandrel. The experimental data for

b weft ¼ 908 (the triangles in Fig. 12) show a significant

deviation from these values, not satisfying the symmetry

condition (12). The cause of this deviation from symmetry

of the warp and weft yarn paths is not confirmed yet; it is

suspected that the weft yarns slipped over the mandrel after

braiding. The results for b warp ¼ 908 and b weft ¼ 2908

again satisfy the symmetry condition. Between 750 and

1100 mm the correlation with the three-dimensional simu-

lation is not as good as before. Clearly the two-dimension-

ally predicted stepwise change of braid angle is not

appropriate either. No definitive reason for this discrepancy

can be given, based on the current records. The overall

accuracy of the three-dimensional predictions is judged to

be very acceptable, however.

Fig. 11. Model results for the braid angles on mandrel 2 on four angles. (V)

classical solution (10); (–S–) extended two-dimensional solutions (15)

and (16); ( ) three-dimensional numerical solution.

Fig. 12. Braid angles for mandrel 2. (V) classical solution (10); (S)

extended two-dimensional solutions (15) and (16); (O) experimental data

warp yarns; (B) experimental data weft yarns; ( ) three-dimensional

numerical solution.
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9. Reflection

The novel three-dimensional model presented here

predicts the yarn paths of biaxially braided composite

components with the production parameters as input. This

model is based on several assumptions. The first assumption

is that the yarn trajectory has to be continuous and

differentiable. Secondly the yarn paths have to lie on the

mandrel. The yarns on both mandrels showed this

behaviour. The third assumption, the stick condition on

the mandrel, is true in general. However, especially in

regions with a low degree of coverage (the percentage of

yarn surface on the mandrel), the braid structure may be

unable to lock all the yarns on the mandrel surface if it is

sufficiently smooth. If, in this case, the yarns have to make a

non-geodesic path, they start to slip after they are deposited.

Usually, the braided preforms require high fibre contents,

which prevent such a low degree of coverage. Due to the

fourth assumption, the friction between the yarns in the

convergence zone is neglected. During braiding, interyarn

stick-slip friction was observed, but the experimental values

of the braid angle are generally not below the simulated

values as described in Ref. [3]. The model gives symmetric

results for symmetric mandrels, also for offset cross-

sections. The experimental results agree with this obser-

vation for the greater part, apart from the eccentric

converging zone on the second mandrel. No definitive

explanation can be given for this lack of symmetry in the

experimental values. Further dedicated experiments should

be performed to confirm our hypothesis of yarn slip after

braiding. Further experiments are appropriate anyhow to

enable a statistical analysis of the results.

Optimisation of biaxially braided composite components

implies optimisation of the braid structure and hence of the

fibre orientations. To accomplish this, the braiding process

parameters must be determined from the desired product

properties. This is a so-called inverse problem. The

associated direct problem is to predict the braid structure

of preforms from the braiding process parameters. Such a

model was developed and presented in this paper. For

simple circular braiding the inverse problem (‘which

machine settings are required to achieve the optimum

fibre orientation?’) is easily solved. In this case there is a

direct relation (10) between the braid angle and the ratio of

the axial and tangential velocities ([2]). It was shown for

complex mandrels that the braid angle can no longer be

expressed as a function of the current angular velocity v and

the axial velocity V only. The development of the braid

angle along the component shows a certain path depen-

dency, due to the variation in convergence zone length H.

With the three-dimensional model, optimisation algorithms

can be applied to solve this inverse problem for complex

mandrels as well.

10. Conclusions

A first step in the optimisation of complex braided

composite components is to predict the braid structure of

preforms from the braiding process parameters. Such a

model was developed and presented in this paper. The

model is fast (calculation times are in the order minutes) and

efficient (second-order convergence). The experimental

results show good agreement with the predicted values,

but further work is required to enable statistical analyses.

Problems can occur when the braid structure has a low

degree of coverage, due to which the yarns can slip after

they are deposited. The current model is unable to predict

these displacements. For the practical case of a usually high

degree of coverage, the developed model gives a good

prediction of the fibre directions in the braided composite,

even if the product has non-circular cross-sections and sharp

curvatures.
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Appendix A. Two dimensional analysis of circular

braiding with eccentricity

The yarn between the fell point and the guide ring can be

described as a line y ¼ ax þ b: Considering Fig. 8, it has a

slope

dy

dx
¼ tanðb2 1

2
pÞ: ðA1Þ

A relation between b and u0 can be found by noting that

both the fell point with ðx; yÞ coordinates ðRm cos b;Rm

sin bÞ and the guide ring point ðe þ Rg cos u0;Rm sin u0Þ are

on this line. Solving this relation leads to

which can be shown to be approximated well by the linear

relation in Eq. (16) which is more convenient for a first

estimate of the braid angle.

u0 ¼ arctan
Rm 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRg 2 Rm þ e cos2bÞðRg þ Rm 2 e cos2bÞsin2b

q
cos b2 ðRm þ eÞcos2bþ e cos4b

ðRm cos bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRg 2 Rm þ e cos2bÞðRg þ Rm 2 e cos2bÞsin2b

q
2 e cos3bÞsin b

0
B@

1
CA; ðA2Þ

J.F.A. Kessels, R. Akkerman / Composites: Part A 33 (2002) 1073–10811080



References

[1] Ko FK. Braiding. Engineered materials handbook, volume 1,

composites, ASM International; 1987. p. 519–28.

[2] Du GW, Popper P. Analysis of circular braiding process for complex

shapes. J Text Inst 1994;85:316–37.

[3] Zhang Q, Beale D, Broughton RM. Analysis of circular braiding

process. J Manufact Sci Engng 1999;121:345–50.

[4] Rosenbaum JA. Flechten, Rationelle Fertigung faserverstärkter Kunst-
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