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Abstract

An analysis of the average stress in a disperse flow consisting of equal spherical particles suspended in a
fluid is presented. Other than incompressibility, no assumptions are made on the rheological nature of the

fluid. In particular, the Reynolds number of the particle motion relative to the fluid is arbitrary. The use of

ensemble averages permits the consideration of spatially non-uniform systems, which reveals features not

identified before. In particular, it is shown that, in general, the average stress is not symmetric, even when

there are no external couples acting on the particles. A quantity to be identified with the mixture pressure

(including the particle contribution) is identified. The structure of the momentum equations for the fluid

and particle phases is systematically derived. As an example, the case of particles suspended in a locally

Stokes flow is considered.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

At the spatial and temporal scales of interest for most practical applications, the principal tool
for the analysis of most multiphase flows must rest on some form of averaged mathematical
description. While this basic fact has been widely recognized for many decades, progress in the
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formulation of such averaged models has been slow and has met with unexpected difficulties, not
only with respect to physical realism, but also at the more basic level of the mathematical structure
of the equations.

As in single-phase turbulence, the principal difficulty arises from the loss of information upon
averaging, which must in part be restored to arrive at a closed set of equations. A possible way to
advance the state of the art is to exploit the great progress in algorithms and computer power to
gain enough insight into the small-scale physics of the inter-phase interaction to permit the for-
mulation of better closure models. This approach has led to significant advances e.g. in the
understanding of the rheological properties of uniform suspensions in liquids and gases (see e.g.
Tsao and Koch, 1995; Sangani et al., 1996; Kang et al., 1997; Brady and Morris, 1997; Ladd,
1997; Morris and Brady, 1998; Koch and Sangani, 1999; Foss and Brady, 2000; Hill et al., 2001
and many others). Much of this progress, however, concerns specific flow situations: simple shear,
uniform settling, channel flow, and so on. The next natural step is to attempt a more general
formulation, in which a set of equations of relatively broad applicability is developed.

In attempting to reach such a goal one is faced with several difficulties: (i) the need for
sufficiently powerful algorithms; (ii) the need to phrase the closure problem in terms of well-
defined, computable quantities; (iii) a systematic procedure by which the computational results
can be used to effect the desired closure. In this paper we address the second and, in part, the
third one of these problems for disperse particle–fluid systems. The particles are taken to be
equal rigid spheres but, in developing the general theory, no assumptions are made about the
Reynolds number of their relative motion with respect to the fluid, nor about the rheological
nature of the fluid other than incompressibility. While at sufficiently high particle and global
Reynolds numbers the flow will be turbulent, we do not attempt to carry out a Reynolds
average. The way in which, for example, large-eddy simulations are built on the laminar Navier–
Stokes equations suggests that an effort to derive corresponding ‘‘laminar’’ averaged equations
for disperse particle flow is well motivated.

One of the mathematical pathologies exhibited by most of the existing models is their failure at
short spatial scales. Physically, the shortest spatial scale which must be relied upon to regularize
small-scale behavior must be the finite size of the suspended particles. This consideration suggests
that it may be useful to focus on situations in which a competition between the macroscopic scale,
L, and the particle radius, a, appears explicitly. Since, in the averaged equations, the former can
only arise through the presence of spatial gradients, we are directed to a consideration of spatially
non-uniform flows. In this connection, it may be noted that the literature contains ample evidence
for the importance of spatial gradients: shear-induced diffusion (Leighton and Acrivos, 1987;
Acrivos, 1995; Zarraga and Leighton, 2002), particle migration in pressure-driven flow (Nott and
Brady, 1994; Morris and Brady, 1998), band formation in rotating suspensions (Tirumkudulu
et al., 1999, 2000), density stratification in sedimentation (Segr�e et al., 2001; Mucha et al., 2004),
volume fraction waves in fluidized beds (Jackson, 2000, Chapter 5), and many others.

The specific objective of this paper is the study of the stress in an incompressible fluid–particle
system. As in the classic paper by Batchelor (1970) on the same subject, we use ensemble aver-
aging but, unlike him, we allow for the presence of spatial non-uniformities over length scales L
large, but finite, compared with the particle radius a. We find that, when terms of order ða=LÞ2 are
retained in the equations, the stress acquires a non-symmetric contribution even in the absence of
couples acting on the particles.
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An important aspect of the total stress is the so-called particle pressure, a notion introduced by
Anderson and Jackson (1967) as ‘‘representing the elastic resistance of the [fluidized] particle
assembly to compression’’. It is widely believed that a correct representation of this entity holds
the key to solving ‘‘one of the simplest and yet most stringent challenges in the modelling of gas-
particulate flows, [namely] to predict the conditions under which a homogeneous fluidized bed will
be unstable to volume fraction variations’’ (Koch and Sangani, 1999). Indeed, in another well-
known paper by Batchelor (1988) on the subject, for example, it is a particle pressure related to the
diffusive transport of particles down a concentration gradient which produces a region of stable
fluidization. More recently, the same concept has been used in numerical studies of fluidized bed
stability (G€oz, 1995; Glasser et al., 1996, 1997; Koch and Sangani, 1999; Sundaresan, 2003), and
in the numerical simulation of industrial-scale fluidized beds (see e.g. Gidaspow, 1994). While in a
gas–particle system much of the particle pressure would arise from inter-particle collisions, in a
liquid–particle system hydrodynamic interactions may constitute the dominant contribution. This
is the aspect on which we mostly focus in this paper.

Models also exist in the literature in which the disperse-phase averaged momentum equation
does not contain a pressure term (Gidaspow, 1994; Pape and Gidaspow, 1998; Tong and Wang,
1999; Slater and Young, 2001). While this approximation may be justified for small heavy par-
ticles, its general validity is questionable (in spite of the attractive feature of leading to hyperbolic
equations––see e.g. Lyczkowski et al., 1978). Our conclusion is that a pressure term must be
included in the particle momentum equation.

We include a summary of the main results of the paper in the following section, leaving their
derivation and generalization for the subsequent sections, with details given in Appendices A–D.
For the purpose of illustration of the general results, in Section 6 we consider the specific case of a
dilute Stokes-flow suspension for which explicit results are given.
2. Summary of results

Since the details are rather technical, it is useful to start by providing a summary of the main
results of this paper, the derivation of which is provided in the following sections and in
Appendices A–D.

We use ensemble averages and denote the continuous phase by the subscript ‘C’ and the dis-
perse phase by the subscript ‘D’. Angle brackets will denote phase averages. For example,
huCiðx; tÞ is the phase-average velocity of the continuous phase, i.e. the ensemble average of uC
taken over all those realizations of the ensemble such that the point x is in the continuous phase at
time t; a formal definition is given in (A.1).

A different type of average, denoted by an over-bar and formally defined in (A.7), also naturally
arises in the analysis. For example, wðx; tÞ is the value of the particle center-of-mass velocity
averaged over all the realization such that a particle is centered at x at time t. Other particle-
average quantities encountered in the following are the average center-of-mass acceleration, the
average total hydrodynamic force, and others.

While phase averages describe the local instantaneous fields at x, particle averages describe
properties pertaining to the entire particle centered at x. Therefore, due to the finite particle size,
these latter averages are in a sense non-local. The two types of average coincide in the case of a
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spatially uniform suspension, but differ by terms of order ða=LÞ or ða=LÞ2 and higher in the
presence of spatial gradients. For example, as shown in Appendix A, the disperse-phase volume
fraction bD is related to the number density n by
bDðx; tÞ ¼
Z
jrj6 a

d3r nðxþ r; tÞ ’ 1

�
þ a2

10
r2 þ 
 
 


�
ðnvÞ; ð1Þ
where v ¼ 4
3
pa3 is the particle volume. As another example, the average velocity huDi of the

particle material is related to the average velocity w of the particle center of mass by
bDhuDi ¼ 1

�
þ a2

10
r2 þ 
 
 


�
ðnvwÞ � 1

5
a2$ � ðnvXÞ þ 
 
 
 ; ð2Þ
where X is the average particle angular velocity, and so forth.
The momentum equation for the continuous phase is found to have a standard form, namely
bCqChaCi ¼ �bC$pm þ bC$ 
 Rm � 1

�
þ a2

10
r2

�
ðnvFÞ þ bCqCg: ð3Þ
where bC is the disperse-phase volume fraction, qC the (microscopic) density, haCi the phase-
average acceleration, pm the mixture pressure defined in (17), and F the phase interaction force
defined in (11).

The mixture viscous stress tensor Rm differs from standard expressions in that, in general, it has
an antisymmetric component even when there are no couples acting on the particles. For a
Newtonian continuous phase with viscosity lC, Rm is found to have the form
Rm ¼ lCð$um þ $uTmÞ þ S� � 
 Að � $ � BÞ ð4Þ
in which the superscript ‘T’ denotes the transpose and um is the volumetric flux:
um ¼ bChuCi þ bDhuDi: ð5Þ

In (4), S is a symmetric traceless two-tensor, � is the alternating tensor, A is an axial vector, and B
is a polar vector. The two terms multiplying the alternating tensor constitute the antisymmetric
part of the mixture stress, the existence of which is one of the results of this study.

As found by Batchelor (1970), to leading order S is given by the average stresslet:
Sij ¼ n
Z
jrj¼a

dSr
1

2
ðrC 
 nÞirj þ ðrC 
 nÞjri
� �

� a
3

dijðn 
 rC 
 nÞ
� �

þOða=LÞ; ð6Þ
where n is the unit normal directed outward from the particle. It should be stressed that this result
is not limited to low-Reynolds-number flow. The complete expression of S contains additional
terms of progressively higher order in a=L, as will be shown in Section 4. It is worth noting that (6)
and all the similar relations given later express the components of the average stress in terms of
quantities that are explicitly and unambiguously computable by numerical simulation. The
present formulation, coupled with extensive numerical simulations, may therefore be of assistance
in the closure of the equations. We have undertaken such a project for particles in Stokes flow and
some results are given in Marchioro et al. (2000, 2001), Wang and Prosperetti (2001) and Ichiki
and Prosperetti (2004a,b).
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The leading-order contribution to the axial component of the antisymmetric stress is
A ¼ 1

2
n
Z
jrj¼a

dSr r� ðrC 
 nÞ þOða=LÞ ð7Þ
i.e., one half the average hydrodynamic couple on the particle. In general, this term will be non-
zero in the presence of angular acceleration of the particles or of external couples acting on them.
Again, this result is in agreement with Batchelor (1970). The leading-order contribution to the
new polar component of the antisymmetric stress may be written as
B ¼ 1

10
na2
Z
jrj¼a

dSrðI� nnÞ 
 ðrC 
 nÞ; ð8Þ
in which I is the identity two-tensor. This expression shows that B is proportional to the average of
the tangential component of the surface traction. When the Reynolds number is not small, the
hydrodynamic force is mostly due to the normal component of the stress and therefore this term
may be small compared with the total fluid force on the particle. At lower Reynolds number,
however, the normal and tangential contributions are comparable. An alternative expression forB is
B ¼ � 1

10
n
Z
jrj¼a

dSr r� ½r� ðrC 
 nÞ�: ð9Þ
Either form identifies this term as a force acting on the fluid due to an imbalance of the tangential
traction over the particle surface. In the presence of such an imbalance, there will be a net force on
the particle and, therefore, on the fluid. As in the case of S, the complete results for both A and B
contain additional terms of progressively higher order in a=L.

Here we only consider equal particles which can be approximated as rigid spheres of radius a.
The average equation for their translational motion is found to have the form
vqD _w ¼ vð�$pm þ $ 
 RmÞ þ Fþ qDvg; ð10Þ

where
F ¼ T� vð�$pm þ $ 
 RmÞ: ð11Þ

The term T is the average total hydrodynamic force
Tðx; tÞ ¼
Z
jrj¼a

dSr n 
 rCðxþ r; tÞ; ð12Þ
from which the second term removes the contribution due to the large-scale structure of the flow
responsible, among other effects, for the buoyancy force. Thus, F may properly be identified with
the average fluid force on the particles due to the local flow conditions. The collision stress has
been neglected in (10) and is introduced later. The advantage of phrasing the disperse-phase
momentum equation in terms of the average acceleration of the particle center-of-mass _w, rather
than the acceleration aD of the particle material, is that in this way the stress internal to the
particle need not appear explicitly in the theory. In particular, the rigidity constraint for solid
particles can trivially be accounted for.

As a minimum, the two momentum equations (3) and (10) should be complemented by the
conservation of the continuous-phase volumetric flux:
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obC

ot
þ $ 
 ðbChuCiÞ ¼ 0; ð13Þ
by the equation of conservation of the particle number:
on
ot

þ $ 
 ðnwÞ ¼ 0; ð14Þ
and by an equation for the angular momentum of the particles:
2

5
a5qD

_X ¼
Z
jrj¼a

dSr r� ðrC 
 nÞ þ L ð15Þ
where _X is the average angular acceleration and L the non-hydrodynamic couple. An equation
similar to (13) is also satisfied by the phase-average disperse-phase velocity huDi; adding the two
one finds the condition of incompressibility for the total volumetric flux, or mixture velocity um:
$ 
 um ¼ 0: ð16Þ

The mixture pressure pm is to be found from a solution of the averaged equations system and
therefore, in principle, there is no need to express it in terms of the averaged microscopic fields.
Nevertheless, the analysis of Sections 4 and 5 shows that, again to leading order,
pm ¼ bChpCi þ bD

1

4pa2

Z
jrj¼a

dSr pCðxþ r; tÞ
 !

þOða=LÞ ð17Þ
in which pC is the continuous-phase pressure. This result was derived earlier by other means
(Marchioro et al., 1999), and a discussion can be found in that reference. The term multiplied by
bD is just the average of the fluid pressure over the surface of the particle centered at x. This
quantity arises in other contexts such as, for instance, the theory of the osmotic pressure in a
suspension (Brady, 1993; Jeffrey et al., 1993).

Eqs. (3), (10), (13), (14), and (15) have the general form of the so-called ‘‘two-fluid model’’,
although they differ in important details from most of the existing formulations. In particular,
care has been exercised to retain all terms of order ða=LÞ2 (not all of which, however, are displayed
in the simplified equations presented in this section), in the belief that, if properly modelled, they
will regularize the small-scale behavior of the equations which, as is well known, is a matter of
serious concern in the formulation of averaged equations models for multiphase flow. Further-
more, the presence of an antisymmetric part of the stress has been explicitly identified. The
physical content of the terms introduced in this section will be illustrated in Section 6 by con-
sidering the specific example of a dilute suspension in Stokes flow.
3. The total stress

We write the microscopic momentum equation for the continuous (subscript C) and disperse
(subscript D) phases in the form
qC;DaC;D ¼ $ 
 rC;D � $wC;D þ bC;D; ð18Þ

where q, a, and r denote density, acceleration, and stress tensor; w is the potential of the body
force (e.g. gravity, in which case w ¼ �qx 
 gÞ, and b denotes other, non-conservative forces such
as those due to particle collisions.
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After taking the phase-ensemble average of the two equations according to (A.1) and adding,
one finds
bCqChaCi þ bDqDhaDi ¼ bCh$ 
 rCi þ bDh$ 
 rDi � bC$wC � bD$wD þ bChbCi þ bDhbDi;
ð19Þ
where we have used the fact that the conservative forces are deterministic. By using the continuity
of the normal stresses at the fluid–particle interface and the explicit expression (A.3) of the
characteristic function, it is readily established that
bCh$ 
 rCi þ bDh$ 
 rDi ¼ $ 
 ðbChrCi þ bDhrDiÞ; ð20Þ
which enables us to introduce the total mixture stress
RT ¼ bChrCi þ bDhrDi: ð21Þ

It is intuitively clear (and can be readily proven from the expression (A.3) of the characteristic

function) that the average stress hrDi at a point x inside the particle phase may be written as (see
Eq. (A.6))
bDðxÞhrDiðxÞ ¼
Z
jx�yj6 a

d3y nðyÞhrDi1ðxjyÞ; ð22Þ
where hrDi1ðxjyÞ is the average stress at x conditional on the presence of a particle centered at y;
here and in the following we omit the explicit indication of the time variable, which is immaterial
for most of the present analysis. The integrand in (22) is a smooth function of the position y of the
particle center, with respect to which it varies over the macroscopic scale L. We can therefore carry
out a Taylor series expansion to find (see (A.13))
bDhrDi ¼
X1
k¼0

ð�1Þk

k!
$ðkÞ

x � nðxÞ
Z
r6 a

d3r ðrÞðkÞrD

� �
; ð23Þ
where the notation $ðkÞ
x � signifies the kth order divergence with respect to the tensorial indices of

the polyadic rðkÞ � rr . . . r.
It is shown in Appendix B that, by using the condition of continuity of the normal stress at the

particle surface and discarding a divergenceless tensor which does not contribute to the
momentum equation, Eq. (23) may equivalently be written as
bDhrDi ¼
X1
k¼0

ð�1Þk

ðk þ 1Þ!$
ðkÞ
x � nðxÞ

Z
dSrðrÞðkÞðrC 
 nÞr

��
�
Z

d3r ðrÞðkÞð$r 
 rDÞr
��

: ð24Þ
For a spatially uniform system, only the first term in the summation would survive giving
bDhrDi ¼ nðxÞ
Z

dSrðrC 
 nÞr
�

�
Z

d3r ð$r 
 rDÞ r
�
; ð25Þ
in agreement with Eq. (4.3) of Batchelor (1970). Furthermore, it is also shown in Appendix B
that
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bDqDhaDi � $ 

X1
k¼0

ð�1Þkþ1

ðk þ 1Þ!$
ðkÞ
x 
 nðxÞ

Z
d3r ðrÞðkÞ ð$r 
 rDÞ r

� �" #

¼ nvð � bDÞ$wD þ qDn _wþ bDhbDi � nðxÞ
Z

d3rbDðxþ rÞ: ð26Þ
Thus, the combined momentum equation for the two phases (19) becomes
bCqChaCi þ qDnv _w ¼ $ 
 bChrCi


þ RP
�
� bC$wC � nv$wD þ n

Z
d3rbD þ bChbCi; ð27Þ
where
RP ¼
X1
k¼0

ð�1Þk

ðk þ 1Þ!$
ðkÞ
x � nðxÞ

Z
r¼a

dSr ðrÞðkÞ ðrC 
 nÞ r
� �� �

; ð28Þ
is the particle contribution to the total mixture stress (21). Explicitly, the first few terms are
RP
ij ¼ n

Z
dSrðrC 
 nÞi rj �

1

2
@k n

Z
dSrðrC 
 nÞi rjrk

� �
þ 1

3!
@k@‘ n

Z
dSrðrC 
 nÞirjrkr‘

� �
þ 
 
 


ð29Þ
This quantity will now be manipulated to give the form (4) of the particle stress. The isotropic part
(i.e., the part proportional to dij) will be identified with the particle pressure.
4. Decomposition of the stress

The expressions (28) and (29) for the particle stress contain tensors of the form
Tik1k2...kN�2kN�1
ðxÞ ¼

Z
dSrðrC 
 nÞirk1rk2 
 
 
 rkN�2

rkN�1
ð30Þ
which are symmetric in the indices k1; k2; . . . ; kN�1. As functions of their indices, each one of these
tensors is a reducible representations of the rotation group SOð3Þ, 2 and can be decomposed into a
sum of irreducible representations, which constitute the starting point of our analysis; details are
provided in Appendix C. A similar remark holds for another class of tensors which arises in the
analysis, namely
Uij...k � T‘‘ij...k ¼ a
Z

dSrðn 
 rC 
 nÞri 
 
 
 rk: ð31Þ
These tensors are evidently totally symmetric in their indices. We denote by U0 the lowest-order
member of this class:
he statement also holds when the x-dependence is considered; from this point of view the T ’s constitute a reducible
entation of SOð3Þ of much higher order, see Arad et al. (1999).
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U0 ¼ a
Z
jrj¼a

dSr n 
 rC 
 n: ð32Þ
It is shown in Appendix D that, at least for a Newtonian fluid, the viscous part of the stress does
not contribute to n 
 rC 
 n so that (31) can also be written as
Uij...k ¼ �a
Z

dSr pCri 
 
 
 rk: ð33Þ
We can now start to examine the individual terms in the definition (29) of RP
ij according to the

procedure outlined in Appendix C.
The first term is the second order tensor Tij which can be decomposed as
Tij ¼ bTij þ
1

3
dijU0 þ

1

2
ðTij � TjiÞ; ð34Þ
where the symmetric traceless component bTij is given by
bTij ¼
1

2
ðTij þ TjiÞ �

1

3
dijU0 ð35Þ
and coincides with the average stresslet (6). Since U0 in (34) gives an isotropic contribution to the
stress, it will give rise to the first term of the particle pressure. The antisymmetric part of (34) is
TA
ij � 1

2
Tij


� Tji
�
¼ � 1

2
�ijp

Z
dSr r� ðrC 
 nÞð Þp; ð36Þ
i.e., proportional to the hydrodynamic couple acting on the particle.
Proceeding with the decomposition of the second term of (29) according to the procedure

described in Appendix C, we find
Tijk ¼ bTijk þ
1

15
½dijðTk þ 2UkÞ þ djkðTi þ 2UiÞ þ dki Tj


þ 2Uj

�
� þ TA

ijk þ TA
ikj; ð37Þ
where
TA
ijk ¼

1

3
ðTijk � TjikÞ; TA

ikj ¼
1

3
ðTijk � TkijÞ ¼

1

3
ðTikj � TkijÞ: ð38Þ
An explicit expression for the traceless symmetric irreducible component bTijk similar to (6) can be
readily written down from these definitions. What enters the final momentum equation is the
double divergence of ðnTijkÞ over the indices j and k. Therefore, any tensor Dijk such that
@j@kðnDijkÞ ¼ 0 can be added to (37) with no consequences on the physical content of the equa-
tions. An examination of @j@kTijk suggests that the addition of
Dijk ¼
1

15
½dikðTj � 4UjÞ � dijðTk � 4UkÞ� þ

1

3
ðTkij � TjikÞ ð39Þ
gives rise to the simpler and more symmetric expression
T 0
ijk � Tijk þ Dijk ¼

2

5
Ukdij þ bTijk þ 2TA

ijk þ
2

15
�ijs�sk‘ðT‘ � U‘Þ þ

1

5
djkTi: ð40Þ
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While there is no particularly compelling reason for this procedure, the physical interpretation of
the result is somewhat easier with (40) than with (37). Indeed, after taking the divergence of this
expression with respect to the index k, as indicated in (29), the first term is isotropic and,
accordingly, will contribute to the mixture pressure. The next, totally symmetric, term contributes
to the symmetric stress, and the two following terms to the antisymmetric stress. The nature of the
last term will be clarified later in Section 5. It can be verified that, in the case of Stokes flow, (40)
coincides with the corresponding term in Eq. (10.3) of Tanksley and Prosperetti (2001).

At the next order we have
Tijk‘ ¼ bTijk‘ þ
1

7
dijk‘mn

bTðmnaaÞ �
1

15
dijk‘U0 þ TA

ijk‘ þ TA
ikj‘ þ TA

i‘jk: ð41Þ
Here dijk‘ ¼ dijdk‘ þ dikdj‘ þ di‘djk and dijk‘mn is the similarly defined quantity with six indices.
Furthermore, bTðmnaaÞ is the traceless part of Tmnaa symmetrized over all its indices and is given by
bTðmnaaÞ ¼
1

2

1

2
ðTmn

�
þ TnmÞ þ Umn

�
� 1

3
dmnU0; ð42Þ
while
TA
ijk‘ ¼

1

4
ðTijk‘ � Tjik‘Þ: ð43Þ
As before, we subtract from the right-hand side of (41)
Dijk‘ ¼
1

28
dijðTk‘
�

þ Tk‘ � 10Uk‘Þ þ 2dikð4Uj‘ � Tj‘ � T‘jÞ þ di‘ðTjk þ Tkj þ 2UjkÞ

þ 4djkðTi‘ þ T‘i � Ui‘Þ þ dj‘ðTik þ Tki þ 2UikÞ þ dk‘ð2Uij � 5Tij � 5TjiÞ

þ 4

5
ð2dijdk‘ � dikdj‘ � di‘djkÞU0

�
þ 1

4
ðTkij‘ þ T‘ijk � 2Tjik‘Þ ð44Þ
the triple divergence of which with respect to the last three indices vanishes. With this step we find
T 0
ijk‘ ¼

3

7
dij Uk‘

�
� 2

15
dk‘U0

�
þ bTijk‘ þ 3TA

ijk‘ þ
3

14
�ijs�kms

1

2
ðTm‘

�
þ T‘mÞ � Um‘

�
þ 3

7
dk‘: ð45Þ
After taking the double divergence of this expression with respect to the indices k and ‘, as
indicated in (29), the first term is isotropic and will therefore contribute to the mixture pressure.
Again, in the case of Stokes flow, (45) coincides with the corresponding term in Eq. (10.3) of
Tanksley and Prosperetti (2001).

When the suspending fluid is Newtonian, we have
rC ¼ �pCIþ lC $uC


þ $uTC
�
: ð46Þ
It is readily shown that, due to the no-slip condition, the phase ensemble average of this quantity
gives (Zhang and Prosperetti, 1997)
bChrCi ¼ �bChpCiIþ lC $um


þ $uTm
�
: ð47Þ
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If the first term here is combined with the isotropic terms in (34), (40), and (45), we find the
following expression for the mixture pressure:
pm ¼ bChpCi �
1

3
nU0 þ

1

5
@kðnUkÞ �

1

14
@k@l n Uk‘

��
� 2

15
dk‘U0

��
¼ bChpCi �

1

3
1

�
þ a2

35
r2 þ 
 
 


�
ðnU0Þ þ

1

5
1

�
þ a2

14
r2 þ 
 
 


�
@kðnUkÞ �

1

14
@k@‘ðnUk‘Þ:

ð48Þ

The remaining terms of (34), (40), and (45) can be combined according to their tensorial nature

into the terms shown in (4) to find
bChrCi þ bDhrDi ¼ �pmIþ lC $um


þ $uTm
�
þ Sþ � 
 Að þ $ � BÞ � a2

10
@jðnTiÞ: ð49Þ
By this procedure, the symmetric part of the particle stress is found to be
Sij ¼ 1

�
þ a2

14
r2 þ 
 
 


�
ðnbTijÞ �

1

2
@kðnbTijkÞ þ

1

6
@k@‘ nbTijk‘

� �
þ 
 
 
 ; ð50Þ
where, here and in the following, the dots stand for the terms in (29) that have been dropped as
contributing corrections beyond the order ða=LÞ2. The tensors bT appearing here are given
explicitly by (35), (6) and their generalizations.

The axial component of the antisymmetric part of the particle stress is
Ai ¼ � 1

2
n�ijkTjk þ

1

6
@j½nð�ik‘Tk‘j þ �jk‘Tk‘iÞ� þ 
 
 
 ð51Þ
It was noted before in connection with (7) and (36) that the first term of the polar vector A is
proportional to the average hydrodynamic couple acting on the particles. It is evident from their
definitions (38) and (43) that the subsequent terms are the higher moments of this couple:
�ik‘Tk‘j þ �jk‘Tk‘i ¼
Z

½ðr 
 nÞ � r�irj þ ½ðr 
 nÞ � r�jri
n o

dS ð52Þ
The polar vector of the antisymmetric part of the particle stress is
Bi ¼
a
10

1

�
þ a2

14
r2

�
nðTi � UiÞ �

a
21

@j n
1

2
ðTij

��
þ TjiÞ � Uij

��
þ 
 
 
 ð53Þ
It was already noted in connection with (8) that the first term is the integral of the tangential
viscous stress on the particle surface:
Ti � Ui ¼ a
Z
jrj¼a

dSrðdij � ninjÞ 
 ðrC 
 nÞj: ð54Þ
From the definitions (30) and (31) of the tensors T and U we find that the second term is related to
the first moment of the tangential viscous stress as
1

2
ðTij þ TjiÞ � Uij ¼

a
2

Z
r¼a

dSr di‘ � nin‘ð Þrj þ dj‘ � njn‘
 �

ri
� �

rk‘nk: ð55Þ
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5. Gauge transformations and the momentum equations

The microscopic momentum equations of both phases, (18), are invariant under a gauge
transformation of the form:
r ¼ ~r þ UI; w ¼ ŵ þ U; ð56Þ
where U is an arbitrary harmonic function. In particular, the continuous-phase pressure trans-
forms according to
pC ¼ ~pC � U: ð57Þ
In spite of its mathematical simplicity, this transformation is physically meaningful: an incom-
pressible material only responds to stress gradients, irrespective of their origin and, therefore, the
effect of an external conservative field is equivalent to that of an isotropic stress. Since the mixture
we consider here is, as a whole, incompressible, one would expect a property similar to (57) to be
enjoyed by the quantity identified with the mixture pressure, in our case pm given by (48). And, if
the mixture pressure does transform as in (57), one would also expect that the viscous part of the
particle stress be invariant under the gauge transformation.

In order to verify the covariance of the mixture pressure we use the results, valid for any
harmonic function U,
Z

r¼a
dSr Uðxþ rÞ ¼ 4pa2UðxÞ; ð58Þ

a
Z
r¼a

dSr nUðxþ rÞ ¼ v$UðxÞ; ð59Þ

a
Z
r¼a

dSr nnUðxþ rÞ ¼ v I

�
þ a2

5
$$

�
UðxÞ; ð60Þ
to find
pm ¼ ~pm � bLU � U 1

�
þ a2

10
r2 þ 
 
 


�
ðnvÞ � a4

70
ð@k@‘nvÞð@k@‘UÞ þ 
 
 


¼ ~pm � U � a4

70
ð@k@‘nvÞð@k@‘UÞ þ 
 
 
 ð61Þ
where we have used (1) to replace ½ð1þ ða2=10Þr2�ðnvÞ by bD with an error of order Oða4=L4Þ. The
last term contains two more derivatives than were retained in (29) and, therefore, it should be
disregarded for consistency. It is likely that it would be cancelled if higher order terms were re-
tained (see Tanksley and Prosperetti, 2001). Thus, we see that the quantity that we identified with
the mixture pressure does transform as expected.

To check the invariance of the remainder of the particle stress, we note that all the axial vectors
TA
ij etc. contributing to A are manifestly invariant under the transformation as is evident from

their definition, and so is the polar vector B. It only remains to check the symmetric part of the
particle stress S. For this purpose we note the results
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bTij ¼ ebT ij þ
a2

5
v@i@jU; ð62Þ

bTijk ¼ ebT ijk þ
a2

35
v@i@j@kU; ð63Þ

bTijk‘ ¼ ebT ijk‘ þ
a3

315
v@i@j@k@‘U; ð64Þ
to find
Sij ¼ ~Sij þ
a2

5
nv@i@jU
�

þ a2

14
@k½ð@knvÞð@i@jUÞ� þ 
 
 


�
: ð65Þ
It would be possible to redefine S so as to remove the low-order term nv@i@jU. Upon taking the
divergence of S, one would then be left with a non-invariant term of order ða=LÞ3, which can be
neglected to the level of approximation retained in this paper. This procedure was followed in
Marchioro et al. (1999), where S was redefined by subtracting a proper multiple of @jTi þ @iTj. We
do not do this here for reasons which will be explained at the end of this section.

The average momentum equation for the translational motion of the particles is
vqD _w ¼ T� v$wD þ
Z

d3rbD; ð66Þ
where, as before, wD is the potential of an external force field. In a general flow situation, the
average hydrodynamic force T will depend not only on the local fluid–particle interaction, but
also on the large-scale structure of the average stress field. For example, a pressure gradient $pm
acting on the mixture (e.g., of hydrostatic origin) would contribute a (possibly ‘‘virtual’’) buoy-
ancy �v$pm to the hydrodynamic force on each particle. A closure relation for T can be more
easily developed if these large-scale effects are separated from the contribution to the hydrody-
namic force only dependent on the local state of motion of the mixture. This consideration
suggests to define the local fluid–particle interaction F by
FðxÞ ¼ TðxÞ �
Z
jrj6 a

ð � $pm þ $ 
 RmÞðxþ rÞd3r ’ TðxÞ � vð � $pm þ $ 
 RmÞ; ð67Þ
so that Eq. (66) becomes
vqD _w ¼ vð � $pm þ $ 
 RmÞ � v$wD þ Fþ
Z

d3rbD: ð68Þ
Aside from the last term, this is the form given earlier in (10). It may be observed that F defined by
(67) is invariant upon a gauge transformation, which indicates that this quantity is insensitive to
external pressure gradients applied to the system, as would be expected from a force dependent
only on the local flow conditions. A practical and very useful consequence of this fact is that the
closure relation for F defined by (67) cannot contain $pm. As a further justification for the def-
inition (67) of the inter-phase force, one may think of the stress at the particle surface as consisting
of two components, one, embodied in the mixture stress, due to the slow spatial variation of the
flow, and one arising from the local flow around the particle. If this decomposition is adopted in
the calculation of T, a Taylor series expansion of the mixture stress around the particle center
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would give the last term in (67), while the remainder would be identified with F. A similar heuristic
argument was used in Prosperetti and Jones (1984).

If now (68) is used to eliminate _w from (27), one finds
bCqChaCi ¼ �bC$pm þ bC$ 
 Rm � bC$wC � 1

�
þ a2

10
r2

�
ðnFÞ; ð69Þ
where the terms
a2

10
2ð$nvÞ 
 $ð
�

� $pm þ $ 
 RmÞ þ nvr2$ 
 ð � pmIþ RmÞ
�
: ð70Þ
have been dropped in the right-hand side as being of higher order. An additional justification for
this step is that the appearance of derivatives of the pressure higher than the first would alter the
mathematical structure of the equations and raise issues such as additional boundary conditions
about which virtually nothing is known at present. The last term ða2=10Þr2ðnFÞ in of (69) arises
from the last term of (40). The significance of this term is made clearer by noting that (Tanksley
and Prosperetti, 2001)
1

v

Z
r6 a

d3r nðxþ rÞFðxþ rÞ ¼ 1

�
þ a2

10
r2 þ 
 
 


�
ðnFÞ: ð71Þ
It is evident that the integral in the left-hand side is the proper form for the average force per unit
volume exerted by the particles on the fluid at point x, and the terms in the right-hand side
approximate it to order ða=LÞ2.

If the symmetric stress (65) had been made gauge invariant as mentioned before, the result
would have been a different form for the force F and a slight change in (70). These alternative
expressions are readily derived, but they do not seem to offer any advantage over the ones used
here.
6. An example

To first order in the disperse-phase volume fraction bD, the particles can be assumed to be
immersed in the average fields (see e.g. Zhang and Prosperetti, 1997), and it is then easy to cal-
culate the integrals of type T and U arising in the expressions of Section 4 for the various con-
tributions to the stress.

For the case of particles in Stokes flow, the components of the stress are found to be
S ¼ 5

2
bDlC $umð þ $umÞ; ð72Þ

A ¼ �3bDlC X

�
� 1

2
$ � um

�
; ð73Þ

B ¼ 3

10
bDlC umð � wÞ: ð74Þ
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Consistent with the previous analysis, in writing these expressions, we have retained only terms
which contribute at most terms of order ða=LÞ2 in the average equations, as these terms result at
most in second-order derivatives of the velocity fields. To the same accuracy, bD has been
substituted for nv whenever the resulting error is smaller than ða=LÞ2.

Since the particle momentum equation is already of order bD, the expressions for pm and Rm to
be used in it should be reduced to those of the pure fluid so that �$pm þ $ 
 Rm ¼ $wC. With this
simplification, and upon recalling Fax�en’s theorem, the interphase force (67) is
F ¼ 6plCa um

�
� wþ a2

6
r2um

�
; ð75Þ
so that, with the neglect of inertia, the particle equation of motion (66) becomes
6plCa um

�
� wþ a2

6
r2um

�
� v$ðwD � wCÞ ¼ 0: ð76Þ
When the potential w is due to gravity, the last term is just the particle weight corrected for
buoyancy.

Although, as noted before, there is no need for a constitutive relation for the mixture pressure,
which is to be calculated from the average equations themselves, it is interesting to exhibit its form
in this case. One finds
pm ¼ bChpCi þ 1

�
þ a2

10
r2

�
ðnvhpCiÞ þ

3

10
lC$ 
 ½bDðum � wÞ�; ð77Þ
or, if only first-order derivatives of the pressure are allowed in the final equations for the reason
noted at the end of the previous section,
pm ¼ hpCi þ
3

10
lC$ 
 bD umð½ � wÞ�: ð78Þ
The particles’ size and their relative velocity with respect to the fluid may justify a Stokes-flow
approximation. The characteristic length and velocity of the average fluid motion, however, are
not necessarily small and it is therefore consistent to retain fluid inertia. With this remark, and
with the previous results (72)–(74), the continuous-phase momentum equation is
bCqChaCi ¼ �bC$pm þ bC$ 
 leff $um
�

þ $uTm
��

þ 3$ � bDlC X

��
� 1

2
$ � um

��
þ 3

10
$ � $ � ½bDlCðum � wÞ� � 1

�
þ a2

10
r2

�
ðnFÞ � bC$wC ð79Þ
in which
leff ¼ 1

�
þ 5

2
bD

�
lC ð80Þ
is the well-known result for the effective viscosity to this order. By (75) and (78) for the mixture
pressure, (79) may also be written as
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bCqChaCi ¼ �bC$hpCi þ bC$ 
 ½leffð$um þ $uTmÞ� þ 3$ � bDlC X

��
� 1

2
$ � um

��
þ 3

4
$2½bDlCðw� umÞ� � 6plCna um

�
� wþ a2

6
r2um

�
� bC$wC: ð81Þ
To first order in bD, this equation and (76) coincide with the results given earlier in Zhang and
Prosperetti (1997). They differ from the form which could be written down a priori simply by
using an effective viscosity and adding the force exerted by one particle on the fluid multiplied by n
by the term 3

4
$2½bDlCðw� umÞ� which arises in part from the antisymmetric component of the

stress, and in part from the term a2r2=10 in the parentheses multiplying the force in (79). Both
these terms are a consequence of the finite extent of the particles. It should be noted that these
contributions have the same order of magnitude as the Fax�en contribution to the force, so that it
would be inconsistent to disregard them if the latter is retained.
7. Conclusions

The objective of this paper was to present an analysis of the particle contribution to the stress in
an incompressible disperse fluid–particle system. We have found that, in general, the particle stress
consists of a symmetric and an antisymmetric part. In the simple example given in Section 6, the
symmetric part simply contributes to the effective viscosity. At higher volume fractions, it is
possible that other contributions would arise as suggested by the results of Marchioro et al.
(2001).

The antisymmetric stress consists of two parts, both related to the tangential viscous stresses on
the particle surface. The first part is just the mean hydrodynamic couple acting on the particles
and its higher moments. This contribution arises due to a relative rotation of the particles with
respect to the surrounding fluid and represents a momentum source due to the spatial variation of
the angular velocity of this rotational motion.

The second part, which enters the averaged momentum equations at a higher order in the
spatial derivatives, is the contribution to the hydrodynamic force on the particle due to an
imbalance of the tangential component of the viscous traction at the particle surface. This second
component of the antisymmetric stress does not seem to have been identified before.

In the course of the analysis, the contribution of the particle stress to the mixture pressure has
also been identified. This contribution coincides with the one derived earlier (Marchioro et al.,
1999; Tanksley and Prosperetti, 2001) by different methods.

As a further result of the analysis, a form for the momentum equations of the two phases has
been proposed and justified. In the case of dilute Stokes flow the disperse-phase momentum
equation takes on the expected form, while the continuous-phase momentum equation acquires
additional contributions which were first found in Zhang and Prosperetti (1997) on the basis of a
different analysis.

Many of the new terms that we find would vanish if a nearly spatially uniform system had been
considered, which explains why they were missed in the past. With an eye toward exploring the
effects of spatial non-uniformity, we have purposely carried terms up to second order in the ratio
a=L of the particle radius to the macroscopic scale. Our motivation was twofold. In the first place,
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recent research points out several instances in which spatial non-uniformities seem to be impor-
tant; examples are shear-induced diffusion, banding, and velocity fluctuations. Secondly, most of
the averaged equations models developed so far exhibit unphysical pathologies at the small spatial
scales and it may be thought that the situation will be improved by carrying additional terms
which depend explicitly on the shortest scale of the system, namely the particle radius.

While we have only shown explicit results for particles in dilute Stokes flow, the results given
are general and exhibit the useful feature that the closure problem that needs to be solved to
develop a closed set of equations is phrased in terms of computable quantities. Examples of how
this circumstance may open the way to a numerically-aided procedure for the development of a
systematic closure have been presented in Marchioro et al. (2001), Wang and Prosperetti (2001),
and Ichiki and Prosperetti (2004a,b).
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Appendix A. Phase and particle averages

We consider N identical spherical particles, each one with its own degrees of freedom of po-
sition, velocity, orientation, and angular velocity, in an incompressible continuous phase. We
denote by C a specific configuration of the system in its phase space, by PðCÞ the probability
density of this configuration with an associated suitable measure dC, and by vC;D the charac-
teristic, or indicator, functions of the two phases. Since the fluid–particle interfaces have measure
zero, vC þ vD ¼ 1. We omit explicit indication of the time variable throughout.

The phase ensemble average of a generic field fC;D is defined by
bC;DhfC;DiðxÞ ¼
1

N !

Z
dCPðCÞvC;Dðx;CÞfC;Dðx;CÞ; ðA:1Þ
where the division by N ! reflects the identity of the particles and bC;D are the local instantaneous
volume fractions defined by
bC;DðxÞ ¼
1

N !

Z
dCPðCÞvC;Dðx;CÞ; ðA:2Þ
i.e., the probabilities that, at time t, the position x is occupied by the C- or D-phase. The prob-
ability density is normalized in the usual way so that bC þ bD ¼ 1.

An explicit representation of the D-phase characteristic function is
vD ¼
XN
a¼1

Hða� jx� yajÞ; ðA:3Þ
with H the Heaviside distribution and a the particle radius. Upon substitution into (A.1), in view
of the identity of the particles, we have
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bDðxÞhfDiðxÞ ¼
1

ðN � 1Þ!

Z
jx�y1j6 a

d3y1
Z

dC0Pðy1;C0ÞfDðx;CÞ; ðA:4Þ
where C0 denotes all the state variables of the system with the exclusion of y1, the position of
particle 1. We now write Pðy1;CÞ ¼ PðCjy1Þnðy1Þ, where PðCjy1Þ is the conditional probability
density and n the particle number density, defined presently in (A.9), and define the conditional
average of fD by 3
hfDi1ðxjyÞ ¼
1

ðN � 1Þ!

Z
dC0PðCjyÞfDðx;CÞ: ðA:5Þ
Eq. (A.4) then becomes
bDðxÞhfDiðxÞ ¼
Z
jx�yj6 a

d3y nðyÞ hfDi1ðxjyÞ ðA:6Þ
which was used in (22).
The field fD is a quantity distributed throughout the volume of each particle. However, there

also exist quantities, such as the center-of-mass velocity, angular velocity, and many others,
associated with each particle as a whole. For quantities of this type, it is convenient to use a
different average, the particle average, indicated by an overline and defined, for a generic quantity
ga belonging to particle a, by
nðxÞgðxÞ ¼ 1

N !

Z
dCPðCÞ

XN
a¼1

dðx
"

� yaÞgaðCÞ
#

ðA:7Þ
or, upon introduction of the conditional probability,
gðxÞ ¼ 1

ðN � 1Þ!

Z
dC0PðCjxÞg1ðx;C0Þ: ðA:8Þ
The notation explicitly indicates that the value of ga for particle a in general depends on the entire
configuration of the system. The particle number density n is defined by
nðxÞ ¼ 1

N !

Z
dCPðCÞ

XN
a¼1

dðx
"

� yaÞ
#
: ðA:9Þ
In order to prove (23), we observe that, away from boundaries and sharp transition zones, hfDi1
varies slowly with the position y of the particle center. We exploit this fact by setting y ¼ x� r and
defining
F ðx� r; sÞ � nðx� rÞhfDi1ðsþ x� rjx� rÞ; ðA:10Þ
his is a somewhat simplified definition valid when, as in this application (cf. the domain for the y1 integration in

, the point x is in the particle.
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where s will eventually be taken equal to r. A Taylor series expansion in r then gives
F ðx� r; sÞ ¼
X1
k¼0

ð�1Þk

k!
ðrÞðkÞ � $ðkÞ

x F ðx; sÞ; ðA:11Þ
where ðrÞð0Þ � $ð0Þ
x ¼ 1, ðrÞð1Þ � $ð1Þ

x ¼ r 
 $x, ðrÞð2Þ � $ð2Þ
x ¼ rr : $x$x, and so on. Upon substitution

into (A.6), and use of the definition (A.8) of particle average, we then find
bDhfDi ¼
X1
k¼0

ð�1Þk

k!
$ðkÞ

x � nðxÞ
Z
r6 a

d3r ðrÞðkÞfDðxþ r;C0Þ
� �

: ðA:12Þ
It may be noted that, for a spatially uniform system, this reduces to
bDhfDi ¼ nðxÞ
Z
r6 a

d3r fDðxþ r;C0Þ: ðA:13Þ
For example, if fD is the velocity uD of a point located at distance r from the center of a rigid
particle translating with velocity w and rotating with angular velocity X, we have uD ¼ wþ X � r
and this expression gives
bDhuDi ¼ nvw; ðA:14Þ

as expected. Similarly, upon taking fD ¼ 1, we find bD ¼ nv which this derivation shows to be
valid only in the spatially uniform case. With fD ¼ 1, the general expression (A.12) gives
bD ¼
X1
k¼0

ð�1Þk

k!
$ðkÞ

x � nðxÞ
Z
r6 a

d3r ðrÞðkÞ
� �

ðA:15Þ
which, truncated to the first three terms, is (1). A similar procedure applied to uD ¼ wþ X � r
gives (2).
Appendix B. Proof of (24) and (26)

Here we start from Eq. (23):
bDhrDi ¼
X1
k¼0

ð�1Þk

k!
$ðkÞ

x � nðxÞ
Z
r6 a

d3r ðrÞðkÞrD

� �
ðB:1Þ
and show how the results (24) and (26) are derived. An important aspect of the proof is that what
is dynamically significant is not bDhrDi but its divergence.

The first step is to generalize Batchelor’s treatment of the first term of (B.1) (which is the only
one that survives in the uniform case) to the general situation. Batchelor (1970) observes that
Z

d3r ðrDÞij ¼
Z

d3r @j rkðrDÞik
 ��

� rk@jðrDÞik
�
¼ a

Z
dS njðrC 
 nÞi �

Z
d3r rk@jðrDÞik

ðB:2Þ

which is (25) and Eq. (4.3) of Batchelor (1970). To see how to proceed for the higher-order terms,
let us consider, for example, the third term of (B.1); for simplicity of writing we drop the subscript
‘D’:
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Z
d3r rprqrij ¼

1

3

Z
d3r ½rprqrij þ rqrjrip þ rjrpriq� þ

1

3

Z
d3r ½rqðrprij � rjripÞ þ rpðrqrij � rjriqÞ�:

ðB:3Þ

The two terms in the second integral are antisymmetric in ðp; jÞ and ðq; jÞ, respectively, and
therefore they vanish when they are contracted with @p@q@j. As for the terms in the first integral,
we have
rprqrij þ rqrjrip þ rjrpriq ¼ ½rprqdjk þ rqrjdpk þ rjrpdqk�rik ¼ ½@kðrjrprqÞ�rik

¼ @kðrjrprqrikÞ � rjrprq@krik ðB:4Þ

so that
Z

d3r rprqrij ¼
1

3

Z
dS rjrprq rC 
 nð Þi �

1

3

Z
d3r rjrprq $ 
 rDð Þi: ðB:5Þ
The same procedure generates all the other terms of (24).
To prove (26), we now consider the divergence of the second group of terms generated by the

previous procedure, namely the second group of terms in (24):
$ 
B �
X1
k¼0

ð�1Þkþ1

ðk þ 1Þ!$
ðkþ1Þ
x � nðxÞ

Z
r6 a

d3r ðrÞðkÞð$r 
 rDÞr
� �

¼
X1
k¼0

ð�1Þk

k!
$k

x � nðxÞ
Z
r6 a

d3r ðrÞðkÞð$r 
 rDÞ
� �

� nðxÞ
Z
r6 a

d3r ð$r 
 rDÞ: ðB:6Þ
From (A.8) we may write
nðxÞ
Z

d3r ðrÞðkÞð$r 
 rDÞ ¼
1

ðN � 1Þ!

Z
dC0Pðx;C0Þ

Z
d3r ðrÞðkÞð$r 
 rDÞðxþ r;C0Þ: ðB:7Þ
We now apply the formula for the derivative of a product finding
$ðkÞ � 1

ðN � 1Þ!

Z
dC0Pðx;C0Þ

Z
d3r ðrÞðkÞð$r 
 rDÞ

¼ 1

ðN � 1Þ!
Xk
p¼0

k

p

 ! Z
dC0 $$ . . .$|fflfflfflfflffl{zfflfflfflfflffl}

p

Pðx;C0Þ

24 35Z d3r ðrÞðkÞ $$ . . .$|fflfflfflfflffl{zfflfflfflfflffl}
k�p

ð$r 
 rDÞ

24 35: ðB:8Þ
Upon summming over k and inverting the order of summation, we find
$ 
B ¼
Z

d3r
1

ðN � 1Þ!

Z
dC0

X1
p¼0

ð�rÞðpÞ

p!
�
"

$$ . . .$|fflfflfflfflffl{zfflfflfflfflffl}
p

Pðx;C0Þ
#
�
X1
n¼0

ð�rÞðnÞ

n!

� $$ . . .$|fflfflfflfflffl{zfflfflfflfflffl}
n

½ð$ 
 rDÞðx

24 þ r;C0Þ�

35� nðxÞ
Z

d3r ð$r 
 rDÞ: ðB:9Þ
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The two series can be summed with Taylor’s theorem so that
$ 
B ¼ 1

ðN � 1Þ!

Z
dC0½ð$ 
 rDÞðx;C0Þ�

Z
r6 a

d3rPðx� r;C0Þ � nðxÞ
Z
r6 a

d3r ð$r 
 rDÞ

¼ 1

ðN � 1Þ!

Z
dC0½ð$ 
 rDÞðx;C0Þ�

Z
r6 a

d3rPðxþ r;C0Þ � nðxÞ
Z
r6 a

d3r ð$r 
 rDÞ:

ðB:10Þ

We now substitute for $ 
 rD its expression from the momentum equation (18) for the particle
material:
$ 
 rD ¼ qDaD þ $wD � bD: ðB:11Þ

Since wD is deterministic, recalling the definition of the disperse-phase volume fraction, we
have
1

ðN � 1Þ!

Z
dC0$wDðxÞ

Z
d3rPðxþ r;C0Þ � nðxÞ

Z
d3r$wD ¼ ðbD � nvÞ$wDðxÞ: ðB:12Þ
For the acceleration term, from (A.4),
1

ðN � 1Þ!

Z
dC0aDðxjCÞ

Z
d3rPðxþ r;C0Þ � nðxÞ

Z
d3raD ¼ bDhaDi � nv _w ðB:13Þ
and, similarly,
1

ðN � 1Þ!

Z
dC0bDðxjCÞ

Z
d3rPðxþ r;C0Þ � nðxÞ

Z
d3rbDr ¼ bDhbDi � n

Z
d3rbD: ðB:14Þ
With these results, we find (26).
Appendix C. Decomposition of the stress

The decomposition of the stress adopted in Section 4 rests on the interpretation of the tensors T
and U as reducible representations of the rotation group. Here we follow the work of Damour and
Iyer (1991), whose notation we also adopt.

If Tij...rs is an N-tensor, we denote by Tðij...rsÞ the tensor obtained by a total symmetrization of its
indices. Clearly
Tðij...rsÞ ¼
1

N
Tiðj...rsÞ
�

þ Tjði...rsÞ þ 
 
 
 þ Trðij...sÞ þ Tsðij...rÞ
�

ðC:1Þ
or, since in our case the T’s are symmetric in all their indices except the first one,
Tðij...rsÞ ¼
1

N
Tij...rs


þ Tji...rs þ 
 
 
 þ Trij...s þ Tsij...r
�
: ðC:2Þ
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With this result we may write
Tij...rs ¼ Tðij...rsÞ þ
N � 1

N
Tij...rs �

1

N
ðTji...rs þ 
 
 
 þ Trij...s þ Tsij...rÞ

¼ Tðij...rsÞ þ
1

N
½ðTij...rs � Tji...rsÞ þ 
 
 
 þ ðTij...rs � Trij...sÞ þ ðTij...rs � Tsij...rÞ�; ðC:3Þ
where the brackets contain N � 1 pairs of terms.
The symmetric traceless part bT of T is the only irreducible representation of order N of SOð3Þ,

the rotation group in three dimensions, and is given by (Damour and Iyer, 1991)
bTijk1k2...kN�2
¼ Tðijk1k2...kN�2Þ þ

X½N=2�

k¼1

aNk dði1i2...di2k�1i2kSi2kþ1...iN Þa1a1...akak ; ðC:4Þ
where ½N=2� denotes the integer part of N=2 and the parentheses enclosing the indices indicate a
total symmetrization; the convention of summation over repeated indices is adhered to. The first
few coefficients are given by
aN0 ¼ 1; aN1 ¼ � 1

2

NðN � 1Þ
2N � 1

; aN2 ¼ 1

8

NðN � 1ÞðN � 2ÞðN � 3Þ
ð2N � 1Þð2N � 3Þ : ðC:5Þ
With (C.3) and (C.4), T may be decomposed as
Tij...rs ¼ bTij...rs �
X½N=2�

k¼1

aNk dði1i2...di2k�1i2k Si2kþ1...iN Þa1a1...akak

þ 1

N
½ðTij...rs � Tji...rsÞ þ 
 
 
 þ ðTij...rs � Trij...sÞ þ ðTij...rs � Tsij...rÞ�: ðC:6Þ
Upon noting that T‘‘ ¼ U0, application of this relation to the second-order tensor Tij gives directly
(34), where it will be recognized that the first term is an irreducible representation of order 2, the
second term an irreducible representations of order 0, and the last term an irreducible repre-
sentations of order 1.

At the next order, we find
X1
k¼1

a3kdði1i2Si3Þaa ¼ � 3

5

1

3
dijSkaa
�

þ djkSiaa þ djkSiaa
�
¼ � 1

5
dijTðkaaÞ
�

þ djkTðiaaÞ þ dkiTðjaaÞ
�

ðC:7Þ
and, therefore, (C.6) gives
Tijk ¼ bTijk þ
1

5
½dijTðkaaÞ þ djkTðiaaÞ þ dkiTðjaaÞ� þ

1

3
½ðTijk � TjikÞ þ ðTijk � TkijÞ� ðC:8Þ
The first term is an irreducible representation of order 3, the second group of terms 3 irreducible
representations of order 1, and the last two terms two irreducible representations of order 2. Upon
noting that
Tði‘‘Þ ¼
1

3
Tið þ 2UiÞ; ðC:9Þ
with the definitions (38), (C.8) reduces to (37).
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For the fourth-order tensor we have
Tijk‘ ¼ bTijk‘ �
X2
k¼1

a4kdði1i2...di2k�1i2k Si2kþ1...i4Þa1a1...akak þ
1

4
½ðTijk‘ � Tjik‘Þ þ ðTijk‘ � Tkji‘Þ þ ðTijk‘ � T‘kjiÞ�:

ðC:10Þ

with
X2

k¼1

a4kdði1i2...di2k�1i2k Si2kþ1...i4Þa1a1...akak ¼ � 1

7
dijTðk‘aaÞ
�

þ dikTðj‘aaÞ þ di‘TðjkaaÞ þ djkTði‘aaÞ þ dj‘TðikaaÞ

þ dk‘TðijaaÞ
�
þ 1

35
ðdijdk‘ þ djkdi‘ þ di‘djkÞTðaabbÞ: ðC:11Þ
It is necessary to separate out the trace of the tensors appearing here, which we do by noting that
Tðijk‘Þ ¼
1

4
½Tijk‘ þ Tjk‘i þ Tk‘ij þ T‘ijk� ðC:12Þ
so that
TðijaaÞ ¼
1

4
½Tijaa þ Tjaai þ Taaij þ Taija� ¼

1

4
½Tij þ Tji þ 2Uij� ðC:13Þ
and TðaabbÞ ¼ U0. With the definition
bTðijaaÞ ¼ TðijaaÞ �
1

3
dijU0 ðC:14Þ
(C.11) becomes
X2
k¼1

a4kdði1i2...di2k�1i2k Si2kþ1...i4Þa1a1...akak ¼ � 1

7
½dij
bTðk‘aaÞ þ dik

bTðj‘aaÞ þ di‘
bTðjkaaÞ þ djk

bTði‘aaÞ þ dj‘
bTðikaaÞ

þ dk‘
bTðijaaÞ� �

1

15
dijdk‘


þ djkdi‘ þ di‘djk

�
U0 ðC:15Þ
which, when inserted into (C.10), gives the earlier result (41).
Appendix D. Viscous contribution to the tensors U

In the case of a Newtonian fluid, the contribution of the viscous part of the stress to the tensors
U defined in (31) is the integral of
lCn 
 ð$uC þ $uTCÞ 
 n ¼ 2lCn 
 ð$uCÞ 
 n ðD:1Þ

over the particle surface. Let us adopt a (generally non-inertial) reference frame in which the
particle is at rest by writing
uC ¼ wþ X � xþ u0 ðD:2Þ

in which u0 is the velocity in the new frame and x is measured from the particle center. Then the
Navier–Stokes equation may be written as
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�$~p þ lCr2~u ¼ f ðD:3Þ
where we have introduced the definitions
~p ¼ p � 1

2
qðX � xÞ2 þ qðg� _wÞ 
 x; ðD:4Þ

~u ¼ u0 � qC

r5 � a5

10lCr3
_X � x; ðD:5Þ

f ¼ q
ou0

ot

 
þ u0 
 $u0 þ 2X � u0

!
: ðD:6Þ
It will be noted that, with these definitions, both u0 and ~u vanish at the particle surface due to the
no-slip condition, from which it follows in particular that f ¼ 0 on the particle surface as well.

It is easy to show that, at the particle surface,
n 
 ð$uCÞ 
 njr¼a ¼ n 
 ð$~uÞ 
 njr¼a: ðD:7Þ
Eq. (D.3) shows that ~u formally satisfies the non-homogeneous Stokes equation, the solution of
which may be broken up into the sum of the general solution of the homogeneous equation,
ðph; uhÞ, and of a particular solution of the non-homogeneous equation, ðpp; upÞ, both of which
may be taken to vanish at the particle surface. By using Lamb’s general solution of the Stokes
equation, it can be shown by a direct calculation that the homogeneous part gives a zero con-
tribution to (D.7). That the same must be true for the particular solution follows from the fact
that, since f vanishes as one approaches the particle surface, $up must vanish even faster since up

solves (D.3).
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